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ABSTRACT

Game theory has been studied by economists and applied metib&ns for almost a century,
and recently computer scientists have increasingly betmested in the field as well. This is
a very important addition, as algorithmic and complexiguiss must be addressed in order to be
able to apply classical theoretical results. In particulse Nash Existence Theorem, while of great
theoretical interest, would be of limited practical usehwiit efficient methods for actually finding
equilibria. This paper begins by defining basic game theorncepts and presenting proofs of
some classical results, including Nash’s theorem and tmenvéix Theorem. Section 4 begins with
a discussion of the linear programming. | prove some prekamyi results leading up to the Duality
Theorem, and then show that every zero-sum game can be cettuepair of dual linear programs.
Next | show that any two-player game can be reduced to andgperof optimization problem
called a linear complementarity problem. Section 5 presiatLemke-Howson algorithm —which
computes a Nash equilibrium in any two-player game — fromargric perspective. In section
6, | show that the algorithm can also be interpreted algedligito give a solution to the linear
complementarity problem.



1. INTRODUCTION

A game is any social situation involving the interactionwbtor more individuals. While tic-tac-
toe, chess, and rock-paper-scissors are more traditigsaai@es of games in the everyday usage
of the term, games do not need to have such a recreationaknatilitary strategy, biological
competition, and voting are examples of games with morel-meald” applications. Myerson
(2004) defines game theory as “the study of mathematical maxfeconflict and cooperation
between intelligent rational decision-makers.” Game théas been successfully applied to every
social science discipline, the life sciences, and to manyngon, everyday situations. In addition,
it has been a major area of study for mathematicians, ecasprand more recently computer
scientists.

Because of the field’s widespread applicability and the #aié mathematical and computa-
tional issues it encompasses, it is hard to place game tiethny any single discipline (although it
has traditionally been viewed as a branch of economics). &\¥hd field is clearly benefitting from
being analyzed from many different perspectives, it is algoortant to make sure that it doesn’t
become disorganized as a result. When | started doing réstarmy thesis, | was surprised at
how difficult it was to find a basic introduction to the fundamted mathematical and computational
results. | had to turn to game theory textbooks for proofslagsical results, operations research
and optimization books for results in linear programming &near complementarity, and more
recent computer science and economics papers for algaridmah complexity results. Thus, the
major contribution of this paper is to present the basic ematitical and computational results
related to computing Nash equilibria in a coherent form daat benefit people from all fields.

In terms of background, no knowledge of game theory or ogttion theory is necessary, and
very little specific mathematical knowledge is assumed. él@x, a general mathematical maturity
is necessary and familiarity with linear algebra and realysis would be helpful.

In addition to my advisor Avi Pfeffer, | would also like to thiaDaniel Goroff and David Parkes
for taking the time to meet with me and suggesting usefuresiees.

2. GAME THEORY BACKGROUND

In the introduction | mentioned that game theorists geheedsume all players amational
andintelligent We will make these two assumptions throughout this papetedsion-maker is
rational if he makes decisions in pursuit of maximizing his own wedidg. Without getting too
involved in the technical foundations of decision theorg, assume that each player’s well-being
can be formally measured byudility scale and that each player’s goal is to maximize his expected
utility. A player isintelligentif he knows everything that we — as outside observers — knawtab
the game and he can make any inferences about the situatibmwéhcan make. For example,
he is aware of the possible strategies available to all ptaged the payoffs associated with each
outcome.

Definition 2.1. A strategic-form (or normal-form) game is any of the form

= (N, (S)igN, (ui)iEN)7

where N is a nonempty set, and for each i in NjsSa nonempty set and s a function from
X jenSj into the set of real numbeiR.
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N denotes the set of players in the gaimd-or each player € N, S is the set ofstrategieqor
pure-strategiesavailable to player. A strategic-form game inite if the set of player&N and all
the strategy setS are finite. LetN = {1,2,...,1}, so that players are denoted by positive integers,
and for each € N let § = {s1,S02,...,Sk }- Often, | will slightly abuse this notation by lettirs
be an arbitrary element &. This paper is only concerned with finite strategic-form gamevo
player strategic-form games are often depicted usingnwon matricesA andB, wherem = ki,
n=ko, a&j = U1(Sy,Sj), andbijj = ux(sy,Sj). For this reason, two-player strategic-form games
are also known akimatrix games.

When dealing with bimatrix games, we will sometimes assuna¢ a@li entries of the payoff
matrices are positive. Informally, we can always make temuaption without loss of generality
because we can always add a sufficiently large number to adiffsasuch that all payoffs become
positive and the new game is fundamentally the same as thenad In particular, both games
have the same Nash equilibria (defined later in this sectibin¢ proof of this result is trivial, and
I will omit it. Unless otherwise specified, assume all payuéitrices contain positive entries.

A strategy profileis a possible combination of strategies that the playefd might choose,
where each playerchooses one pure-strategy$ S= x jcnSj denotes the set of all possible
strategy profiles. Let = (s1,S,...,5) denote an arbitrary element 8f For any strategy profile
se S letui(s) = ui(sy,--.,S)-

I will refer to all players other than a given playiaas “player’s opponents” and denote them by
“—1.” This does not mean that the other players are all tryingoeat” playeri; they are trying to
maximize their individual utility functions, which may oray not coincide with decreasing player
i's utility. Let u(s,s_i) denote the utility payoff to playerwhen he plays strategy € S and his
opponents together play; € xken ki S

In a two-playerzero-sungame, maximizing one’s utility is equivalent to minimizitige other
player’s utility: that is,ux(s) = —uy(s) for all se€ S So in matrix formB = —A, and the game is
fully specified just by the matriA. We will assume without loss of generality that all entrieg\of
are positive in a zero-sum game (and therefore all entri@sawé negative).

To demonstrate the definition of a strategic-form game, idenshe following example of Rock-
Paper-Scissors. Since there are two play¥rs,{1,2}. Each player has three available strategies:
Rock (R), Paper (P), and Scissors (S).Spe- S = {R P, S}. Assume that the winner gains 1 unit
of utility, the loser loses 1 unit of utility, and that utfidoes not change for either player in a tie.
We can imagine that the loser pays the winner one dollar eawfdr, in which case each unit of
utility corresponds to a dollar. Then

W(R ) =u(SP) =w(PR) =w(SR) =w(P.§) = u(RP) =
U (SR) =u1 (RS =u(RP)=uz(RS) =uw(SP)=w(PR) =-1
Ul(R, R) = Ul(P, P) = U]_(S, S) = Uz(R, R) = Uz(P, P) = Uz(S, S) =0.

Notice thaty; is specified for each strategy profile and for each playes. dtear that Rock-Paper-
Scissors is a zero-sum game and is fully specified by the xnatri

0-1 1
A= 1 0-1
-1 1 0
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Definition 2.2. Given a strategic-form game = (N, (S)ien, (U)ien), @ mixed strategy o; for
player i is a probability distribution over pure strategi€Bhat is, it is a maw; : § — R such that

oi(s) >0foreachse Sand ¥ oi(s)=1
S€S

Pure strategies are a trivial subset of mixed strategiesl dl@note the set of playeis possible
mixed strategies b¥;, and the space of mixed-strategy profilesdy x;Z;, with an individual
element ofZ denoted byo = (01,...,01). In a two-player game, we can equivalently represent
a mixed strategy for player 1 by a vectoe R™, wherex; = 01(syi), and a mixed strategy for
player 2 by a vectoy € R", wherey; = 02(s;j). In this case, leX = Z; andY = X for notational
convenience.

The payoffs to a profile of mixed strategies are the expecahaesg of the corresponding pure-
strategy payoffs. So play€s payoff to profilec is

Zs(ﬂ 0;j(sj))ui(s),
seS =1
which | will denote byu;(o). Notice thatu; has been defined in several different ways; however, it
will be clear by the number and type of arguments which défimiapplies in a given context. For
anyT; in Zj, let (1j,0_;) denote the mixed-strategy profile in which playgiayst; and all other
players play the same strategy awin

A very natural question to ask about a game is how it shoulddged, or what strategies are in
some sense “optimal.” While there are several reasonaléiarfor judging whether a strategy is
“optimal,” the concept of a Nash equilibrium solution hasnmeoto dominate much of game theory
literature for several reasons.

Definition 2.3. A mixed-strategy profile* of I' is aNash equilibrium iff u; (o, 0* ;) > ui(0i, 0" ;)
forall oj € Zj, forall i € N.

A Nash equilibrium is a profile of strategies such that eaeygf's strategy is an optimal re-
sponse to the other players’ strategies. That is, no plagepoofit by deviating unilaterally from
his strategy assuming his opponents’ strategies remaid. fifeve suppose that an external ob-
server — such as a social planner — publicly specificies advsi@ategy for each player before the
game is actually played, then one would expect this profileetéollowed if and only if no player
could increase his utility by playing a different strategguivalently, we could imagine that the
players are allowed to communicate with each other and rssigixed strategy to each player
before playing. Then we expect the strategy profile wouldaltt be played if and only if it is
a Nash equilibrium. As with any possible solution concemré are some obvious drawbacks of
the Nash equilibrium. First, it might seem unrealistic tswase that each player “knows” what
strategy each of his opponents will play in advance and thatam change his strategy without
having any effect on his opponents’ strategies. In thisedhs the concept of Nash equilibria
might seem to require too much.

Additionally, many games have multiple Nash equilibriag &rcan be difficult to predict which
one will (or should) be played. Most critics have supportegllatter objection, and several refine-
ments of the Nash equilibrium have been proposed, such lalg speerfect, and proper equilibria.
In certain situations, different equilibrium concepts htipave more natural interpretations than
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others. For those interested, Fudenberg and Myerson grawidanalysis of several solution con-
cepts, and McKelvey and von Stengel discuss methods fonéixig the algorithms discussed in
this paper to find various equilibrium refinements. This pap# focus exclusively on techniques
for computing Nash equilibria — which has been widely aceéts the “standard” solution con-
cept in game theory. In section 3 we will prove Nash’s famaesuit stating that every finite
strategic-form game contains at least one Nash equilibridme problem with the various equi-
librium refinements is that some of them are not guaranteesisbin a given game, making them
less desirable general solution concepts. In this papeil] s@metimes refer to Nash equilibria
just as “equilibria.”

The following lemma shows that the highest expected utitibt any player can obtain against
any combination of other players’ mixed strategies doesdepend on whether he uses mixed or
only pure strategies.

Lemma 2.4. For anyo in Z and any playeriin N,

maxu;(s,0_j) = maxu;(Tj,0_j).
seS TiEZj

Proof. LetA= maéxui (s,0_ij) andB = mazxui (Ti,0_j). Itis clear thatB > A, since pure strategies
SE T2

are a subset of mixed strategies. Bf> A, then there exists; € Z; such thatu;(tj,0_j) > A.
Supposeli(s',0_i) = A, wheres' € §. Thenui(s,0_;) <ui(s’,0_j) foralls € §. So

ui(Ti,0-i) = ZSTi(S)Ui(S,G—i) < ZsTi(S)Ui(S*,O—i)-

S€ se

= Ui(s,0-) ZSTi(S) = Ui(§,0-i).
TS
This contradicts the fact that(ti,0_i) > A. SOA=B. O

The following theorem shows that the optimal mixed strasdor each player are the strategies
that assign positive probability only to his optimal pureastgies. Thus, it provides an equivalent
definition of Nash equilibria which turns out to be quite usef

Theorem 2.5. The mixed strategy is a Nash equilibrium off if and only ifoj(s) > 0 implies $ €
argmax,esUi(ci,o_i), foralli e N and s € S.

Proof. Supposeo is a Nash equilibrium of , and letA = argmax,cs Ui(Ci,0_;). Suppose there
exists a player and a pure strategy € S such thaioj(s) > 0 ands ¢ A. Supposel; € A. Then
ui(di,o_i) > ui(s,0-i). Definep; € Z; as follows: pi(ci) = oi(c) if ¢ # 5 ord;, pi(s) =0, and
pi(di) = oi(di) + oi(s). Sop;i is the same strategy @ except with all of the weight given tg
shifted tod;. Then

Ui(pi,0-i) = Ui(0i,0-i) — Gi(S)Ui(S,0-i) + 0i(s)ui(d, 0-i) > Li(0i, 0-i).

Soag; is not a best response of playeo o_;. This contradicts the fact thatis a Nash equilibrium,
and we have a contradiction.

Conversely, picko € Z and suppose that for dlle N ands € S, 0i(s) > 0 impliess € A. If
o is not a Nash equilibrium, then by the previous lemma for ary A we havel = ui(s,0_;) >
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ui(oj,0_j). By assumption,

ui(0j,0_i) = S; oi(s)ui(s,0_j) = S%{\(Ji(S)Ui(SaG—i) =u

Sou > U, which is a contradiction. So is a Nash equilibrium. O

Thesupportof a mixed strategy; is the set of pure strategigse S for whichoi(s) > 0. The
following example illustrates how Theorem 1.5 can be helpfeomputing equilibria.

Example 2.6. The unique equilibrium of rock-paper-scissorg(§, 1, 1),(3,3,1)).
Proof. First we must show that this profile is a Nash equilibrium. gge player 1 could profit by
deviating to the profile; = a;R+ 1P+ y1S Player 1's new payoff would be
Bi—v1 yi—01 a1—Pg
3 + 3 + 3 = 0.
So any deviation will produce the same payoff. Similarlgy@r 2 cannot profitably deviate from
his strategy. So the given profile is an equilibrium.

Now suppose there is another equilibrium in which each plaleys the strategy; = o;R+
BiP+VviS Supposd; =y1 =0. Then ifBx < 1 itis clear that player 2 can do better by playing
P. But if player 2 playsP, player 1 can do better by playirfg§thanR. Therefore, there is no
Nash equilibrium in which player 1 play@with probability 1. Similar logic shows that in a Nash
equilibrium both player’s supports must contain more tha@ pure strategy.

Now suppose there is an equilibrium in which player 1's suppantains two strategies: without
loss of generality assumg = 0, anda,31 > 0. By Theorem 1.5, it follows that; (R, 02) =
ui(P,02) >= u1(S,02). This impliesy, — B2 = 02 — Y2 > 2 — 02. The first two equalities imply
that ap + B2 = 2y,. Sinceaz + B2+ Y2 = 1, it follows thaty, = 1/3. Similarly, it follows that
o2 >1/3 andf,; > 1/3, and therefore that, = B, = y» = 1/3. So player 2’s expected payoff is
—% + % — % + % = 0. However, if player 2 instead played the pure strategynen his expected
payoff would bea; > 0. Similar logic shows that both player’'s supports must awmnall three
strategies.

By Theorem 1.5u1(R,02) = u1(P,02) = u1(S,02), which impliesay = 32 = y2 = 1/3 from the
above analysis. Similarly we hawe(R,01) = uz(P,01) = up(S 01) and therefor@; =1 =y1 =
1/3. So the Nash equilibrium is unique. O

3. NASH EXISTENCE THEOREM
In this section we prove the general existence theorem df KE250):
Theorem 3.1. Every finite strategic-form game has a mixed-strategy dayuiim.

Notice that the theorem refers to mixed strategies, ang/évete game does not need to contain
a pure-strategy Nash equilibrium (as the rock-paper-s@ssxample demonstrated). Most of the
definitions and results in this section are based on sectich@& Myerson (2004).

For any finite seM, let RM denote the set of all vectors of the foXm)mem Such that, € R
for eachmin M. We can equivalently define &M to be the set of all functions froml into the
set of real numberR; in this case I'll write them-component ok € RM asx(m) instead ofxm. It
is clear thaRM is a finite-dimensional vector space.
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Let T be a subset oRM. T is convexiff Ax+ (1—A)y € T for all vectorsx,y € T and every
A € Rsuchthat 6X A < 1. T isclosediff im x(j) € T for every convergent sequence of vectors

j—oo
(X(J))7=1 such thai(j) € T for everyj. T is boundedff there exists some positive real number
K suchthat 3 |xm| <K for every vectox e T.
meM

A point-to-setcorrespondence GX — 2" is a mapping that sends each paint X to a set
G(x) C Y. Suppose thaX andY are normed linear spaces, so that the concepts of convergedc
limits are defined for sequencesXrandY. A correspondencé : X — Y is upper-hemicontinuous
if and only if, for every sequence(j),y(j))j-s, if X(j) € X andy(j) € G(x(j)) for everyj, and
the sequence<(j))‘]?°:1 converges to some poiRt and the sequeno{q(j))?:l converges to some
pointy, theny € G(X) . ThusG: X — Y is upper-hemicontinuous iff the sgfx,y)|x € X,y € G(x)}
is a closed subset of x Y. In particular, ifg: X — Y is a continuous function fronX to Y
and G(x) = {g(x)} for everyx in X, thenG: X — Y is an upper-hemicontinuous point-to-set
correspondence. So upper-hemicontinuous corresponslennebe viewed as a generalization of
continuous functions.

A fixed pointof a point-to-set correspondenge T — T is anyx € T such thak € F(x). | will
now state the Kakutani fixed point theorem, which is centvahe proof of Nash’s theorem. A
proof can be found in Scarf (1973).

Theorem 3.2.Kakutani Fixed-Point Theorem. Let T be a nonempty, convex, bounded, and closed
subset of a finite-dimensional vector space. LeflF— T be an upper-hemicontinuous point-to-
set correspondence such that, fofXf is a nonempty convex subset of T for each®. Then F

has a fixed point.

To see how the various assumptions in the theorem come iay @bnsider the following ex-
ample. Let
T=[0,1 ={xeR0<x< 1},
and letF; : T — T be defined as

Fi(x) ={1} if 0<x<0.5
={0} if 0.5<x<1
ThenF; has no fixed points, and it satisfies all of the assumptionb@Kakutani fixed-point

theorem except for upper-hemicontinuity. Specificallg getT’ = {(x,y)|x € Sy € F1(x)} is not
closed af0.5,0) since

lim (x,F1(x)) = (0.5,0),

x—0.51

but(0.5,0) ¢ T'. To satisfy upper-hemicontinuity, we must extend thisespondence tb, : T —
T, where

R(x) = {1} if 0<x<O0J5,
={0,1} if x=025,
= {0} if 05<x<1



F> now satisfies all of the assumptions of the Kakutani fixedipthheorem except convex-
valuedness, becaubg(0.5) is not a convex set. In particular, De F,(0.5), but if we setA = 0.5
thenA«0+Ax1=0.5¢ F(0.5). To satisfy convex-valuedness, we must extend the comespo
dencetd~: T — T, where

Fs(x) = {1} if 0<x<0.5
=[0,1] if x=0.5
= {0} if 0.5<x<1
Fs now satisfies all the assumptions of the Kakutani fixed-piieorem and has 0.5 as a fixed

point, since (6 € R3(0.5).
We can now prove the Nash existence theorem.

Proof. LetT = (N, (S)ien, (U )ien). Consider the sef = x N2 of all mixed-strategy profiles

is clearly nonempty sinc§ is nonempty for each player Supposes andt are elements ok
and letA be a real number if0,1]. Thentt= Ao+ (1— A)T corresponds to the profile in which
each playeii plays the mixed strateg = Ao; + (1 — A)1;. For each player, we know that
Sses0i(s) =landygcs Ti(s) = 1. It follows that

3, (A6i(8)+ (1-Ayi(8) <A+ (1-N) =1
SE

Sinceaoi(s) andTi(s) are nonnegative for eveliyc N ands € S, it follows thatg(s) > O for
eachi € N ands € S. ThereforeAo+ (1—A)T € 2, andX is convex.X is a subset of the finite-
dimensional vector spad@®, whereM = S. X is bounded since

5 lomi= 5 oi(s)=l.
me ieN,s¢

To see thak is a closed subset &V, let (oj)‘f:l be a convergent sequence of vectors such that

ol e I for everyj. This sequence converges to some limit RM. Suppose ¢ Z. Then either
pi(s) < 0 for somei € Nands € S, or S pi(s) # 1 for somei € N. Suppose we are using the
S€S

1-norm inRM, where||o|| = ¥ |ai(s)]. In the first case, lek = pi(s) < O for somei € N.
ieN.s€S
Then _ _
lp—0'|| > |oj(s) —pi(s)] > —k

for eacha! in our sequence, and the sequence cannot converge 1o the second case, let
c= Y pi(s)—1#0.If c>0then
s€S

gl (s)—ol(s (S-S lol(s) =c.
Ip GHZS;M(S) 0.(S)IES;IP(S)! S;IOJS)\ c

Similar logic shows thafip — al|| > —cif ¢ < 0, and in either case we have a contradiction.pSo
must lie inZ, and it follows that is closed.
For anyo € X and any playej in N, let

Rj(0-j) = argmax;cs;Uj(Tj,0-j).
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ThenRj(o_j) is the set of playelj’s best responses iBj to the combinatioro_; of mixed-
strategies of his opponents. By Theorem RFo_) is the set of alp; € % such that

pj(sj) = O for everys; such thatsj ¢ argmax, s, Uj(dj, 0—j).

Rj(0-j) is nonempty since it includes every pure strategin argmay, s, uj(dj,0—j), which is
nonempty. Supposg andt; are elements dRj(o_j), and letA be a real number in [0,1]. Let

T = Apj + (L—A)Tj.

By previous analysist; € Zj. For everys; € §j such thatsj ¢ argmay;cs, Uj(dj, 0—j), we know
that pj(sj) = Tj(sj) = 0. It follows that;(sj) = O also, and therefore thatj < RJ (0_j). So
Rj(o_j) is convex.

LetR: 2 — Z be the point-to-set correspondence such that

R(0) = xjenRj(0_j) for eacho € .

ThenR(o) = {t € X|t; € Rj(0_) for every j € N}. For eaclo € 2, R(0) is nonempty and convex,
because it is the Cartesian product of nonempty convex sets.
To show thatR is upper-hemicontinuous, suppose tha{t 1 and( ) >, are convergent se-

quences where® € ¥ andt® € R(c¥) for all k, 5 = I|m o, andr = lim . These conditions imply

k— o0
that, for every playef € N and ever)pJ €2,
uj (t%,0% ;) > uj(p;,0* ;) for all k.
Taking the limit on the left yields
lim UJ(Tk o) =lim § ™(sjuj(sj, 0% )
k— koo L
1=
- k k
=Jim > T(sj)ozj(s-j)uj(sjs-j)
Sj€S},S_j€S
= Uj(T},0-)-
Similarly, limg_.. u;j(pj, o® i) = Uj(pj,0-j). It follows that for everyj in N andpj in 2,

uj(Tj,0-j) > uj(pj,0-j).

SoT_j € Rj(0_j) for everyj in N, and therefor& € R(0). Thus,R: >~ — X is an upper-
hemicontinuous correspondence.

By the Kakutani fixed-point theorem, there existg = such thato € R(g). Sooj € Rj(0_j)
for everyj in N, and hence is a Nash equilibrium of . O

This theorem has an important consequence in two-playersagn games, known as thin-
imax Theorem Consider the zero-sum game defined by the following payoffiméor player
1:
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It can easily be calculated that the unique Nash equilibrgi(i,H). The same conclusion could
also be obtained by the following intuition. First note tlia¢ minimum payoff in row 1 is -4,
while the minimum payoff in row 2 is 3. These payoffs reprégbe smallest payoff that player
1 can guarantee himself from each of his two available pustegfies. Knowing that player 2's
goal is to minimize his utility, it seems logical for playetd prefer the strategy that achieves the
maximum of these two minimum payoffs; choosing pure stratBgvill guarantee that he will
obtain at least 3, while choosing H will only guarantee him Sdmilarly, player 2 observes that
the maximum payoff (to player 1) in column 1 is 3, while the mmaxm payoff in column 2 is 5.
These represent the largest payoffs player 2 can guaralatger @ will receive from each of his
pure strategies. By similar reasoning, he prefers the mimrofithese two payoffs; choosing pure
strategy H will prevent player 1 from getting any more thais thinimum amount. Thus, we will
expect that (T,H) will be played, since the payoff is simaéiausly a maximum of row minimums
as well as a minimum of column maximums. We will call a strgtéy player 1 that maximizes
his expected minimum payoffrmaximin strategyor player 1 (herd’), and a strategy for player 2
that minimizes player 1's expected maximal payoffisimax strategyor player 2 (hereH).

Theorem 3.3.0 = (01, 02) is a Nash equilibrium of if and only if both of the following conditions
hold:

(3.1) 01 € argmax, cx, mMin uy(T1,T2),
To€E2H
(3.2) 02 € argming,ex, maxuy (T1,T2).
T1€21
Furthermore, ifo is an equilibrium then
(3.3) u1(0) = max min ui(T1,T2) = mMin Mmaxuy(T1,T2).
T1€21 1€ T2€2,T1E€2,

Proof. Suppose is a Nash equilibrium. Then

ui(o) = maxul(Tl,oz) > max min uy(Ty,T2) > m|n U]_(O']_,Tz) = u1(0),
T1€E21 T2€E3D

where the final equality follows from the fact that player Qtﬂlty is maximized when player 1's
utility is minimized. Similarly, we have

ui(o) = mln U1(0'17T2) < min maxuy(Ty,T2) < maxul(rl,og) = u1(0).
T2€EZPT1€2,

So all of the expressions are equal, which shows (3.3). éhd)3.2) follow from the fact that

(3.4) minuy (01, T2) = max min uy (T4, T2)
PIDP) T1€21 €2

and

(3.5) maxui (T1,02) = MiN maxup(Ty,T2).
T1€2; T2E22T1E2,

Conversely, suppose thai ando, satisfy (3.1) and (3.2). (3.1) implies that (3.4) holds and
(3.2) implies that (3.5) holds. Sindehas an equilibrium by Theorem 3.1, the final equality in
(3.3) still holds. So all four expressions in (3.4) and (&f9 equal. So

ui(o) > min u1(01,T2) = maxuy(11,02) > Uy (0).
1€ T1€21
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It follows that all of these expressions are equal, ansla Nash equilibrium of . O

Notice that the assumption that an equilibrium exists waesgary to prove the converse.

4. LINEAR PROGRAMMING AND COMPLEMENTARITY

4.1. Linear Programming. From now on our goal will be to find a single Nash equilibriurmeof
given two-player game: we will refer to this as “solving” tpame. In this section we will present
two types of problems from mathematical programming catledlinear programming problem
(LPP) and the linear complementarity problem (LCP). We wikn show that the problem of
solving a zero-sum game is equivalent to solving a LPP andrgph general two-player game is
equivalent to solving a LCP; heegjuivalenceneans that there are mappings between the solution
sets of the two problems (solving one problem allows us tbyesalve the other, and vica versa).

Linear programming deals with finding a vector in a real vesfzace that maximizes (or mini-
mizes) a given linear function subject to a set of linear taimsts. We will call a LPPstandardif
all of the constraints are inequalities, ageheralif they include both inequalities and equalities. It
turns out that both of these forms are equivalent, wherevatgrice here means that the programs
have equal values (defined below). One direction is trigadce standard problems are a subset
of general problems; the first major result of this sectioh e to show that a general LPP can
be transformed into an equivalent standard LPP. This toamsftion is important because solving
zero-sum games can naturally be formulated as solving arglebeP, but it is easier to prove
results about standard LPP’s than general LPP’s.

Assume that all vectors in this section are column vectogialities and inequalities between
two vectors apply to all components of the given vectors.tihaf x andy belong toR™ thenx =y
meansx; = y; for 1 <i < m. The vectorO denotes the vector of zeroes of appropriate dimension,
andl,, denotes thenvector consisting of all ones.

Definition 4.1. Suppose & R™" b e R" and ce R™. A standard linear programming problem
is that of finding a nonnegative vectoex(x;) € R™ that either maximizes or minimizes the given
linear function

m

(4.2) _;Xi Ci

subject to the inequalities

m

(4.2) inaj <bj, j=1,...,n

The vectorx € R™M is feasibleif it satisfies (4.2), and a linear programfwmasibleif it has a
feasible solution. A feasible solution which maximizes if@nimizes) (4.1) is called aoptimal
solution. The optimal value of the function (4.1) is calleé valueof the linear program.

Assuming that the preceding LPP is a maximization problesfind the following minimization
problem to be itslual to find a nonnegative vectgr= (y;) € R" that minimizes

n
j; i0j
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subject to the inequalities
n

(4.3) zyjaijZCi,izl,...,m.
=1

Now letM = {1,...,m} andN = {1,...,n}. Let| be a subset dfl and letl’ =M —I. Similarly,
let J be a subset dfl and let)’ = N — J. Then thegeneral maximum LPR to find a vectox € R™

such that
m

leici is maximized
i=
subject to

X >0jiel,

m
gjx <bj,jeJ,
2
AL /
aijXi =bj,jeJ.
2
This problem has the following dual: to find a vecyor R" such that

n
> yjbj is minimized
=1

subject to
yj=>0,j€ed
n
aijyj <c,iel,
=1
n
Z ajjyj =Gi,l € .
=1

Lemma 4.2. Any general maximum problem can be transformed to a standardmum problem
that has the same solutions.

Proof. Consider the general problem of finding mrvectorx such that

(4.4) x' cis a maximum
subject to

(4.5) x'al <bjfor jeJ,
(4.6) x'al =bjfor jel,

whereal denotes thg’th column of matrixA.
We first obtain constraints involving only inequalities ®placing the equations in (4.6) by the
inequalities
T
(4.7) x'al <bj,
(4.8) —x"al < —b;.
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Itis clear thax"al = bj if and only if both of the above inequalities hold.
Next, introduce new unknown nonnegativevectorsx' = (x) andx” = (x) and replace in-
equalities (4.5), (4.7), and (4.8) with

(X —x")Tal <bj forjel,
(4.9) (X —x")Tal <bj forjel,
~(X—x")Tal < —bj forjeJ,
requiring that
(4.10) (X —x")Tc be a maximum

Then itis clear that the vectar= (X', x”) maximizes (4.10) subject to (4.9) if and only if the vector
x =X — X' solves the original problem, and that these solutions Havsame values. So we have
transformed the general problem to an equivalent standatdgm. O

I will now prove some results about standard LPP’s, culniiigain the Duality Theorem.

Lemma 4.3. Let x be a feasible solution of a standard maximization proband let y be a feasible
solution of the dual problem. Then

m n
ZXiCi < Z yjbj.
i= =1

Proof. Multiplying the j-th inequality of (4.2) byy; and summing ovej gives

n n
ib; >
jzlw j = JZ % le.a” Zl Z XiYaij.

Similarly, multiplying thei-th inequality of (4.3) by and summing overgives

le'c' ZX.Zy,a” iiélxiwaij-

Combining these two equations gives the desired result. O

Theorem 4.4. If there exist feasible solutions x and y for the standardimarn problem and its
dual such that
m

(4.11) an'c' Z yibj,
then the solutions are optimal.

Proof. Supposed = (X)) is another feasible solution of the standard maximizatiabijem. Then
from the previous lemma we have

m n
leilci < D vibj.
i= =1
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Combining this with equation (4.11) gives
m m
X-lCi < X Cj.
272
Soxis an optimal solution. An identical argument proves theroglity of y. O

The following theorem follows from some basic linear algelesults. A proof can be found in
Gale (1989), and | will omit it:

Theorem 4.5.Let Ac R™" b e R", and let xe R™, y € R" be vectors of unknowns. Then exactly
one of the following alternatives holds. Either the equation

(4.12) x"A<b'
has a nonnegative solution, or the inequalities
(4.13) Ay>0 by <0

have a nonnegative solution.
4.2. The Duality Theorem.

Theorem 4.6. Duality Theorem. If both a standard LPP and its dual are feasible, then bothehav
optimal vectors and the values of the two programs are the same

Proof. Suppose that a standard maximum problem and its dual anbleEa$his means that we
have nonnegative solutiomsandy to the inequalities

(4.14) xTA<Db'

(4.15) Ay > c.

By Lemma 4.3, we know that i andy satisfy these two inequalities then they also satisfy <
yTb. So if we can find a solutiofx, y) of (4.14) and (4.15) that also satisfies
(4.16) x'c—y'b>0,

then it follows thaix" ¢ = y" b, and the solutions are optimal by Theorem 4.4.

So in order to derive a contradiction, suppose that the sy$fel4), (4.15), and (4.16) has no
nonnegative solution. We will now manipulate this systenabfining a matrixA” and new vectors
X, b/ so that we can apply Theorem 4.5. Writing out the three inétigmtomponentwise yields:

m
(4.17) ina;j <b; forj=1,...,n,
i=

n
(4.18) Zyj(—a;j)g—ci fori=1,....m,
=1

m

n
(4.19) yibi — ) x¢ <O0.
2024



15

Now construct thém-+n+ 1) x (m+n+ 1) matrix A’ as follows:
ai’j =gjfor1<i<mand1<j<n,

allj = —a;i form+1<i<m+nandn+1< J <n4+m,

a;n+n+1,m+n+1 =1,
aj; = 0 otherwise.
Letx' be the(m+ n+ 1)-vector where
X =xforl<i<m,
X =Yi_mform+1<i<m+n,

n m

XmntLmin 1 = D yibj— lei Gi-
=1 i=

Finally, letb’ be the(m+ n+ 1)-vector defined by
bi =bjfor1<i<n,
bl = —ci_nforn+1<i<m+n,

’ =0
mH-n+-1,m4+-n+1 —

It is clear that the system of inequalities (4.17), (4.184 &.19) is equivalent to the statement
XTA < b'T. If this inequality has no nonnegative solutiofisthen Theorem 4.5 says thaly > 0
andb’Ty < 0 are both satisfied by a nonnegative vegtag R(M+1).

Now letz be then-vector whereg =y;, and letw be them-vector such thaty; =y, .. Then the
following inequalities hold:

n
szaij >0 fori=1,....m
=1
m
—Zwia” >0 forj=1,...,n,
=

n m
z zibj — leiCi < 0.
= =

Now let

n .
z I Wheret = max{c; : ¢ > 0}
if at least one of thej's is posmve and letn; = 1 otherwise. Also, let
— Zl WiBii \whereb = min{b; : bj < 0}

if at least one of théj’s is negative, and laty, = 1 otherwise.
Now define® = min{m, mp}. ThenB s clearly nonnegative, and the following inequalitieschol

(4.20) Az> e,
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(4.21) wA<Bb,

(4.22) Z’b—w'c<O.

If @ =0, then combining equations (4.14), (4.15), (4.20), and (4y&dds 0< x" Az< z"b, and
0> w'Ay > w'c. This implies that" b > w' ¢, which contradicts (4.22).
So06 must be positive and//8 andz/0 are a pair of feasible solutions to the LPP of (4.14) and
(4.15). So Lemma 4.3 says that
w z
(6 S
orw'c < z'b, which again contradicts (4.22). It follows that the oridisat of inequalities (4.14),
(4.15), and (4.16) has a solution. By our above reasoningstilution provides the desired pair of
optimal vectors and the values of the two LPP’s are the same. ([l

)'e<(3)'h,

We have already shown that any general LPP can be transfamteedn equivalent standard
LPP. So the Duality Theorem will also apply to general LPPige can show that the dual of the
general LPP is equivalent to the dual of the correspondigdstrd LPP.

Theorem 4.7. The duality theorem holds for the general problem.

Proof. Suppose we are looking for a vectoe R™ such that
m

(4.23) leici is a maximum
=
subject to
xi >0 foriel,
(4.24) x'al <bj forjed

x'al =bj forjeJ.
Now for eachi € I, introduce two new nonnegative variabl¢andx’ and consider the standard
problem of
maximizing inci + Z Xici — z x'cj
e iel’ iel’
subject to
inauj + 3 xaj— Y xa; <bj jeJ,
e iel’ iel’
inauj +3 Xaj - Y Ka; <b  jel,
e iel’ iel’
—inaij -> Xiaij + zxi”aij <—bj jel.
e iel’ iel’
The dual of this standard problem is to find nonnegative nuswefor j € J, andy;,y] for
j € Y such that

(4.25) 2 yibit 3 yibj— > vib
2 | |

jeJ jed
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is a minimum subject to

ZW%+Z%%—ZW%ZQ icl,
Je i

jey jey
(4.26) ijjaij + 5 Yiaj— Y yja; 26 i€l
J€ jeJ jey
—ZW%—Z%%+ZW%2—qieK
J€ jeJ jer

Now the dual of problem (4.23), (4.24) is by definition thafiofling a vectoz € R" which

n
minimizes % zjb
=1

subject to

zj >0, forje],
n
ajzj > ¢, foriel,

=1

n
ajzy=g¢, foriel’
=1

J

By the same reasoning used earlier in this sectigny,,y”) is a solution of the problem (4.25),
(4.26) if and only ifzis a solution of this problem, whegg=y; for j € Jandz; =y, —yj for j € J';
so the problems are equivalent. It follows that if the oragiproblem and its dual are feasible, the
new equivalent standard problems are also feasible. Butftbemthe standard duality theorem
just proven the dual standard problems have equal valuebemzk so do the original problems,
completing the proof. O

4.3. Equivalence Between Solving Games and Programming Problemé.et” be a two-player
game with payoff matriceB andC (I won’t useA since it already has an interpretation in linear
programming), and leX andY be the sets of mixed-strategy vectors. Given a fixed mixextesty

y €Y, a best response of player 1 is a vectar X that maximizes the expressiah(By). That is,

X is a solution to the LPP

(4.27) maximizex' (By)
subject to
(4.28) x>0,

1 x=1.

It is easy to see this satisfies the definition of a general LRfPav= By, b= 1, andA= 1] The
dual of this LPP (again assumings fixed) is to find a variable € R that

(4.29) minimizesu
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subject to
u>0,

(4.30) 1nu > By.
Both LPP’s are clearly feasible (pick amye X and any positival exceeding the largest entry of
By), so by the duality theorem they have the same optimal value.

Now supposé is a zero-sum game. Player 2, when chooginmust assume that his opponent
plays rationally and maximizes' By. This maximum payoff to player 1 is the optimal value of
the LPP (4.27), (4.28), which is equal to the optimal value the dual LPP (4.29), (4.30). Then

player 2’s goal is to choosgthat minimizes the value af satisfying (4.30). Now define vectors
y, b, ¢/, and matrixA’ as follows. Lety’ be the(n-+ 1)-vector where

Yi=yjfori<j<n,
Y1 =U.
Chooseb’ € R™? such thath{ = 0 if 1 <i < nandbj,, = 1. Let ¢ € R™2 wherec/ = 0 for
1<i<m+1andg,, ,=1 And defineA’ € RMM2x("+1) gych that
a; =bjj forl<i<mi1<j<n,
g =-1forl<i<m+1j=n+1,
a; =0 fori=m+4+1,1<j<n,
a; =1 fori=m+21<j<n,
a; =0 fori=m+2j=n+1
Then the LPP (4.29), (4.30) is equivalent to findifghat minimizes/Tb’ subject to
ay <c for1<i<m+1,
a§n+2§/ = Cmy2,
wherea] denotes thé-th row of A'. Notice that we even incorporated the fact tifat Y into A
andc’. Here we také = m+ 1, so that only the final constraing € Y) is an equality. So in the case
of a zero-sum game, the constraints of (4.30) are linearandy even ify is treated as a variable

(whereas before we assumgdas fixed).
So by the above reasoning, a minimax stratggy player 2 is a solution to the LPP

(4.31) rlwru subject tol,y=1,1wu—By> 0,y > 0.

The dual of the LPP (4.31) then has the form
rplexlnv subject tolyx = 1,1v— x'B< 0,x> 0,

wherev € R. This LPP similarly describes the problem of finding a maxistimtegyx for player

1. By the duality theorem, both of these problems have saistiso the minimax theorem states
that (x,y) is a solution to the pair of dual LPP’s if and only(i,y) is a Nash equilibrium. This
allows us to reformulate the problem of finding a Nash equititn of a zero-sum game as a pair
of dual LPP’s.
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Even ifl" is not zero-sum, a best responxsaf player 1 to the mixed strategyof player 2 is still
a solution to the LPP (4.27), (4.28). By the duality theorergasible solutiorx is optimal if and
only if there is a dual solution satisfyingl,u > By andx' (By) = u. Sincex' 1, = 1, this is the
same ax' (By) = (x' 1m)u, or equivalently

(4.32) X (1mu—By) = 0.

Because the vectorsand 1,u — By are nonnegative, (4.32) states that both vectors cannet hav
positive components in the same position (at least one of timeist have a zero entry at each
position). So pure strategyin S is a best response wif and only if thei-th component of
1,u—Byis zero.

For player 2, strategyis a best response xdf and only if it maximizes(x" C)y subject toy € Y.
The dual of this LPP is to minimizesubject tol,,v > x' C. Here, a paip, v of feasible solutions is
optimal if and only if

(4.33) y' (1lv—xTC) =0.
Combining these results shows the following:

Theorem 4.8. The gamd = (A,B) has the Nash equilibrium (x,y) if and only if for suitable/u

1x=1

1y=1

(4.34) 1mu— Ay > 0O
1v—x'B>0

X,y >0

and (4.32) (4.33)hold.

Cottle (1992) defineslanear complementarity problei.CP) as follows: to find a vectae R™
given a vectog € R" and matrixM € R"™" such that

(4.35) z>0
(4.36) q+Mz>0
(4.37) Z' (q+Mz) = 0.

A vectorz satisfying (4.35) and (4.36) is callédasible and a vector satisfying (4.37) is called
complementary The LCP is therefore to find a vector that is both feasible andptementary;
such a vector is calledsolutionof the LCP.

Now consider the LCP witM, q, andz defined as follows. Lef = 1y,,n. Let zbe the(m+ n)-
vector wheregg = x; for 1 <i < mandz = yi_mform+1 <i < m+n. And letM ¢ R(mtn)x(m+n)
be defined as follows:

mj=—agjforl<i<mm+1<j<m+n,
mj =—bjiform+1<i<m+nl<j<m,
mij = 0 otherwise
In the remainder of this paper, we will denote the LCP just dbed by(qg,M).
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Theorem 4.9. There exist mappings between the set of solutignsu, v) of the problem in The-
orem 4.8 and the set of nonzero solutigrsy’) of the LCP(q,M) defined by

(4.38) (X,¥,u,v) — (x/v,y/u) and

X ¥y 1 1
4.39 X.y) — A .
(4.39) 0¢Y) (ﬂnx’ Ty’ Ty 1rTnX’>

Proof. Supposé€x,y,u,V) is a solution to the problem in Theorem 4.8, andjéty’) = (x/v,y/u).
If we suppose without loss of generality that all element®\@&nd B are positive, then both
andv must be positive and (4.35) is satisfied. It is clear that- Ay > 0 iff 1,u— Ay > 0 and
1n—BX > 0iiff 1,v—Bx> 0. So (4.36) is satisfied. Similarlx™ (1 — Ay) = 0 iff (4.32) holds
andy’™ (1, — BX) = 0iff (4.33) holds. The other direction is similar. O

So if we can solve the LCRg,M) to obtain a solutior{X,y), all we need to do is normalize
both vectors to obtain a solution to the original problem.

In this section | have shown that finding a Nash equilibriumadfvo-player zero-sum game
can be reduced (in polynomial-time) to solving a pair of dursdar programs. There are known
polynomial-time algorithms for solving linear program®ésthe ellipsoid method in Chvatal,
1983). In practice, the simplex algorithm (which can be fbimany optimization or operations
research textbook) also solves linear programs efficigaltigough it runs in worst-case exponen-
tial time. In section 6 we will show how the Lemke-Howson altjon gives a solution to the LCP.
Unlike linear programming problems, there are currentlyknown polynomial time algorithms
for solving LCP’s, and the Lemke-Howson algorithm runs in starase exponential time.

5. THE LEMKE-HOWSONALGORITHM

In this section | will present the Lemke-Howson algorithmdomputing a Nash equilibrium in
any two-player strategic-form game. This section is base&lwapely (1974) and von Stengel’s
(2002) expositions of Lemke’s original work. Suppdses a two-player strategic-form game with
payoff matricesA andB. For notational convenience, I8 = {1,.... m}, S ={m+1....m+
n}, andS' = § US,. Mixed strategies are represented by vectofs (X1, ...,xm) € 21 andy =
(Ym+1,---, Ymen) € Zo. Geometrically, the set§; andX, are simplexes of dimensiam— 1 and
n— 1 respectively.

Now define regioni'{ in 21 for k e S* as follows:

L ={xe3Z1:x=0}forieS,

Zi:{XEZli bijxi = max) byx}forjeS.
i€ €S i€
The setszi where j € S (some of which may be empty) consist of all of player 1's sigas
to which pure strategy is a best response for player 2 (although it might not be thguenbest
response). Since there is always at least one pure stragsgiydsponse for player 2 to any strategy
of player 1, they cover all af;.
Define thelabel of x € Z; to be the nonempty set

L'(x) = {k: x e 5K}.
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Define region§i2 andzg and the label” (y) similarly. Also define the label of the paix,y) € =*
to beL(x,y) = L'(x) UL"(y). (x,y) is completely labeled L(x,y) = S, andk-almost completely
labeledif L(x,y) = S" — {k} for somek € S.

Lemma 5.1. The profile(x,y) € X is a Nash equilibrium iffx,y) is completely labeled.

Proof. Suppos€x,y) is a Nash equilibrium and letc S be arbitrary. Ifi is not in the support of
X, thenx; = 0. Sox € =) — i€ L'(x) —ie€L(xy). If i isin the support ok, theni must be a best
response ty and hencey € 3,; so again we havee L(x,y). Similar logic shows that € L(x,y)
for all j € S. So(x,y) is completely labeled. Now suppoéey) is completely labeled. Then
for eachi € § eitheri € Zil ori e Ziz- The first case implies thatis not in the support o%, and
the second implies thatis a best response {0 So every strategy in the support fs a best
response tg. Similarly every strategy in the supportyis a best response 10 So(x,y) is a Nash

equilibrium by Theorem 1.5. O
Consider the game defined by the following two matrices:
06 10
(5.2) A=|25| B=|02].
33 43
x1 Ve
© 2
@
® @
@ Y4

X2

FIGURE 1. Mixed strategy setX (left) andY (right) for the game (5.1).

Figure 1 shows the mixed strategy s&tsandY of this game. In the left diagram, the large
equilateral triangle with blackened edges representseth¥ of possible mixed strategies, while
the non-darkened lines denote the axesf pure-strategies. The labels 1-5 are drawn as circled
numbers. Labels 1, 2, and 3 represent pure strategies @rpglaand are marked in the left diagram
when the corresponding strategy has probability zero amldeimight diagram when they are best
responses to the strategies of player 2. The pure stratefEayer 2 are similarly labeled by 4
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and 5. One can determine the labels of any mixed strategy égkatng which labels are adjacent
to it in the diagram. The nodes denote strategiesX andy € Y that have the maximum number
of labels in their respective strategy sets.

Itis not difficult to apply Lemma 5.1 to find the equilibria &fi$ game using Figure 1. The equi-
libria are(x%, y*) = ((0,0,1), (1,0)), wherex! has the labels 1, 2, 4 (ayd has the remaining labels
3and 5),(x%,y?) = ((0,3,3),(4,3)), with labels 1, 4, 5 fox?, and(x3,y%) = ((3, 3,0), (3. %)) with
labels 3, 4, 5 fox®.

This geometric-qualitative inspection is effective at firgdequilibria of games of size up to
3 x 3. It works by inspecting any pointe 21 with mlabels and checking if there is a pont
having the remaining labels. A game is calledondegeneratd any x € 21 has at mosin labels
and anyy € 3, has at mosh labels. In the remainder of this section we will assume fhsdtisfies
this nondegeneracy assumption. The following informatwasion explains why “most” games
are nondegenerate, so that this assumption does not pagefecant limitation. Notice that every
additional label imposes an additional equation that iguwatiuces the dimension of the set of
points having these labels by one. Since the completX $ets dimensiomm— 1, we expect no
points to have more tham labels. This reasoning will only fail in exceptional circatances
if there is a special relationship between the elementé of B. This suggests the following
equivalent definition of nondegeneracy, which is similathtat used by Shapely (1996):

Lemma 5.2. For any xe Z; with set of labels K and g X, with set of labels Lthe sef{x € Z; :
K C L'(X)} is convex and has dimension+iK|, and the se{y € 2, : L C L"(y')} is convex and
has dimension A |L|.

A convex seiX hasdimension d> 0 iff there existd + 1 linearly independent points
P1,...,Pd+1 € X such that

d+1
X ={o1p1+...+0g1Pds1: G >0, Zlai =1},
i=

andX is empty if its dimension is negative. A proof of this resdiveell as several other equivalent
definitions of nondegeneracy can be found in von Stengelgj199

As an obvious corollary, the set of elementsgfwith a given seK of mlabels is either empty
or contains a single element (and similarly for elementszinvith a given set oh labels). Also,
let x € 21 containm labels, and leK be a subset ah— 1 of these labels. Sinceclearly contains
all of these labels, Lemma 5.2 asserts that the set of elenoéh containing all the labels iK
is one-dimensional. So there existss X; such that the set of elements containing all labels in
equals

{X'=ax+(1-a)x :0<a <1}.

It is clear thatX must be an endpoint of this line segment because eithengetti- 1 causes a
component ok” to be negative or because stratggyf player 2 is no longer a best respons&’to
where| € K. The first case implies that an additional element’ohas become zero at=1, in
which cased hasm labels. The second case implies that there is an elefher®, — K such that
j’ is a best response 1§ whena > 1, but not whena < 1. So j and j’ are both best responses
whena = 1, andx’ hasm labels. So in either casé must contain an additionaf-th label, just as
x does. It follows that there are exactly two element& pthat contairmlabels, which include the
m— 1 labels inK. Similar logic holds for ally € %, containingn labels.



23

Lemma 5.3. In a nondegenerate game only finitely many point&irhave m labels and only
finitely many points irx; have n labels.

Proof. Let K andL be subsets o8* with |K| = mand|L| = n. There are only finitely many such
pairs (K,L). Consider the set of points ¥y having the labels iK, and the set of points il
having the labels in.. By the above lemma, these sets are empty or singletons. Scetired
conclusion follows. O

We can now define two grapl@& = (V1,E;) andGy = (Vo, Ez) as follows. LetG; be the graph
whose vertices are the points 21 that have exactlyn labels, with an additional verted; that
has all labels in S;. Any two such vertices andx’ are joined by an edge if they differ in exactly
one label (and have the oth@ar 1 labels in common). Similarly, |&b, be the graph with vertices
y € 2, that haven labels, with the extra verte®, having all labels € S, and edges joining those
vertices that hava — 1 labels in common. Thproduct graph G= (V,E) = G; x G, has vertices
(x,y) € V1 x V. There is an edge between two verti¢esy) and(X,Y) iff y=y and{x,x'} € E,
orx=X and{y,y'} € Ex.

The Lemke-Howson algorithm can be defined in terms of thesehg. Define

P={(xy) eV:L(xy) =S},

and for eaclk € S* let

PK={(xy) €V:L(xy) 2 S —{k}}.
These are the node pairs that are completekralmost completely labeled; note tHzlt > P, and
thatk # | impliesP*NP' = P. It is clear from the nondegeneracy assumption and Lemman&t1 t
the members dP are the Nash equilibria ¢f and the node paii0;,02). The following two results
follow pretty much directly from the discussion followinggelnma 5.2:

Lemma 5.4. For each ke S*, any completely labeletk,y) € V is adjacent to exactly one vertex
pair (X,y) €V that is belongs to '®

Proof. Everyk € S must be a label of eitherory (and not both). Ik is a label ofx, we know that
there is a unique elemexte Z; that shares the othen— 1 labels ofx and also has am-th label:
soX is a vertex ofG adjacent tax. So (X,y) is the only vertex ofG that isk-almost completely
labeled and adjacent {&,y). Similarly if y has labek, then the unique adjacent vertex@wiill
be(x,y). O

Lemma 5.5. For each ke S¢, any vertex(x,y) in G that belongs to — P is adjacent to exactly
two vertices that belong toP

Proof. Let h denote the unique duplicate label thaandy have in common. We know there is
exactly one vertex’' in G; adjacent tox that shares the othen— 1 labels (excludindh), and
exactly one vertey in G adjacent toy that shares the other— 1 labels. Sax,y'), and(X,y)
are both adjacent t(x,y) and are alsd-almost completely labeled. If instead we omit a label
from x or y that is not the shared label, then it will be impossible taoba vertex that ik-almost
completely labeled: so there are only two such vertices. O

These results suggest the following strategy for finding shiNsguilibrium if we are given some
completely labeled vertexof G. First, pick ak € S* and travel to the uniquie-almost completely
labeled vertex/ that is adjacent tw. If V' is completely labeled, then it is either an equilibrium or it
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is (01,02). Otherwisey must be adjacent to one othHealmost completely labeled vertex besides
V: S0 we can continue this process indefinitely until we arav@ completely labeled vertenx
which has only on&-almost completely labeled neighbor. It can easily be shioyimduction that
this path has no cycles; so this strategy determines a umpigiieto a completely labeled vertex,
which is either a Nash equilibrium @01,0,). If we start at the known completely-labeled vertex
(01,02), then the path must terminate at a Nash equilibrium. Thisrdlgo was discovered by
Lemke and Howson (1964).

FIGURE 2. The graph$s; andG; for the game (5.1).

Figure 2 demonstrates the algorithm on the game (5.1) definede withk = 2. The algorithm
starts withx = (0,0,0) andy = (0,0). Step I: sincex contains label 2y will remain the same and
we must switchx in G;. It is clear that we must changeto (0,1,0), which causes label 5 to be
duplicated. Step II: dropping label 5 &, changes to (0,1), which picks up label 1. Step lII:

dropping label 1 inG; changex to (%, %,O), which duplicates label 4. Step IV: dropping label 4

in G, changey to (%, %), which has the missing label 2. So the algorithm terminatéseaNash

equilibrium((3,1,0),(3,%)). Similarly, steps V and V1 in the figure join the equilibra!, y!) and
(x2,y?) on a 2-almost completely labeled path.

In addition to its computational power, the Lemke-Howsogoakhm also provides an alter-
native constructive proof that every nondegenerate gameics an equilibrium, independent of
Nash’s result. In fact, it shows that the number of equidilimiany game must be odd. For, consider
the set of alk-almost completely labeled vertices @fand the edges that connect them, for some
fixedk. Itis clear that this set of vertices and edges consists @idigpaths and cycles. The cycles
consist solely of elements & — P, and the paths have completely labeled vertices as endpoints
It follows that there are an even number of completely ladbetertices, and sincf;,0,) is the
only one that is not an equilibrium, the number of Nash elgudi must be odd. Unfortunately,
the Lemke-Howson algorithm cannot, in general, find all Neghilibria of a given game. That
is, it is possible that some equilibria are not endpointshefkkalmost completely labeled path
from (01,07) for all k. McKelvey and McLennan (1996) discuss some techniques fdmfgnall
equilibria of a game, which turns out to be much more diffithéin finding a single equilibrium.
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6. SOLVING THE LCP

In the previous section we presented the Lemke-Howson geeigadly. In this section we show
that it can also be interpreted algebraically as a procefdurfinding a solution to the LCPg, M)
presented in section 4. Let

(6.1) PL={XeRM:X >0X"TB<1,},

6.2) P={y €R":y > 0,AY < In}.

Then by the analysis at the end of section 4, the elemenB,6f {0}) x (P, — {0}) are feasible
solutions to the LCRq, M).
P1 x Py is the polyhedron defined by

(6.3) A)/—f—r =1m
(6.4) B'X +s= 1y

with X',y r,s> 0, wherer ¢ RM ands < RN are vectors oflackvariables. The system (6.3), (6.4)
is of the form

(65) Cz= q,

whereC, g, andz are defined as follows is the Zm+ n)-vector of nonnegative variables defined
by

z =y forl<i<n,

z =X_pform+1<i<m+n,

Z =Ti_(mtn) form+n+1<i<2m+n,

Z = S_(2m+n) for2m+n+1<i<2m-+2n.

Cis the(m+n) x 2(m+n) matrix defined by

~_|AO0ImO
C_[OBTonJ’

wherely denotes then x midentity matrix, and,, denotes tha x nidentity matrix. Andq= 1mn.
Now let us assume that all rows éfare distinct and all rows dB" are distinct. If this were
not the case, then one player would have several “identstedtegies in the sense that he would
receive the same payoff playing either one no matter whabpgonent played. Thus we lose
nothing my eliminating these redundant strategies. Urluisrassumption, it is clear that matrix
C has full rank equal tan+ n (the number of rows). Sq belongs to the space spanned by the
columnsC; of C. A basisp is given by a basi§C;|j € B} of this column space, so that the square
matrix Cg formed by these columns is invertible. The correspondiiagic solutionis the unique
vectorzg = (zj)jep With Cgzg = g, where the variableg; for j € 3 are calledbasic variables
andz; = 0 for all nonbasic variables;zj ¢ B, so that (6.5) holds. The solution is unique since
Cg is invertible. If this solution also satisfies> 0, then the basi§ is calledfeasible If B is
a basis for (6.5), then the corresponding basic solutionbearead directly from the equivalent
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systemCy cz= Cy 1g, called atableay since the columns Uiy IC for the basic variables form
the identity matrix. The tableau is equivalent to the system

(6.6) Zp = c[;lq — g calcj Z;,
7B

which shows how the basic variables depend on the nonbasabies.

Pivotingis a change of the basis where a nonbasic variapfer somej not in 3 entersand
a basic variablg; for somei in (3 leavesthe set of basic variables. The pivot step is possible if
and only if the coefficient of; in thei-th row of the current tableau is nonzero, and is performed
by solving theith equation forz; and then replacing; by the resulting expression in each of the
remaining equations.

For a given entering variabig, the leaving variable is chosen to preserve feasibility eftibsis.

Let the components @tB‘lq beg; and ofCL;le bet;j, fori € B. Then the largest value af such
thatzg = Cglq — c§1cj 2z >0in (6.6) is

(6.7) min{aq; /cij[i € B,Tij > O}

This is called aninimum ratio test The following lemma says that the minimum in (6.7) will be
unique and determines the leaving variahleniquely under the nondegeneracy assumption. After
pivoting, the new basis BU{j} —{i}.

Lemma 6.1. The gamd determined by A and B is nondegenerate if and only if all beai@bles
have positive values in any basic feasible solutio(6t8)and (6.4)

| won’t give a proof of this equivalence, and refer the readeron Stengel (1996).

The choice of the entering variable depends on the solugamsought. The Simplex method
for linear programming is defined by pivoting with an entgrivariable that improves the value
of the objective function. In the system (6.3), (6.4), we laking for acomplementargolution
where

(6.8) XTr=0,yTs=0;

this implies that(X,y) is a solution of the LCRq,M), and therefore that its normalization is
a Nash equilibrium by Theorem 4.8. In a basic solution to)(6@.4), every nonbasic variable
has value zero. Hence, each basis defines a vertéwdtfich is labeled with the indices of the
nonbasic variables. The variables of the system corerimplementarpairs(x;, r;) for the indices

i € M and(yj,s;) for j € N. Recall that the Lemke-Howson algorithm follows a path of tohs
that have all labels it U S except for a missing labéd. Thus ak-almost completely labeled
vertex is a basis that has exactly one basic variable frorh eamplementary pair, except for a
pair of variables(xy,ry) (if k € M) or (yk, ) (if k € N) that are both basic. Correspondingly,
there is another pair of complementary variables that atte fi@nbasic, representing the duplicate
label. One of them is chosen as the entering variable, depgod the direction of the path being
computed. The two possibilities represent the twalmost completely labeled edges incident
to that vertex. The algorithm is started with all componesfts ands as basic variables and
nonbasic variableg(,y") = (01,02). This initial solution satisfies (6.8) and represents thificl
equilibrium.
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Algorithm 6.2. (Complementary pivoting.) For a bimatrix game with positiag@f matrices AB
compute a sequence of basic feasible solutions to the sy8t8)n(6.4) as follows.

(a) Initialize with basic variables &= 1y,s= 1n. Choose ke S U S, and let the first entering
variable be ifk € Sy and yf ifk € S.

(b) Pivot such as to maintain feasibility using the minimuatia test.

(c) If the variable zthat has just left the basis has indexialt. Then(6.8) holds and(x,y) defined
by the mapping in Theorem 4.9 is a Nash equilibrium. Otherwisepse the complement ¢fas
the next entering variable and go to (b).

Now we will demonstrate Algorithm 6.1 for the example of the\pous section. The initial
basic solution in the form (6.6) is given by

M= 1—6%3
(6.9) r2=1-2y,— 5
rg=1-3y,—3y:.
and
(6.10) s=1-x]—4x;

S5 =1—2%,—3x%;.

Pivoting can be performed separately for these two syst@me they have no variables in com-
mon. With the missing label 2 as in Figure 2, the first entesiagable isx,. Then the second
equation of (6.10) is rewritten a§ = %— %xg — %55, andss leaves the basis. Next, the comple-
menty; of s5 enters the basis. The minimum ratio (6.7) in (6.9) is 1/6 hedrt; leaves the basis

and (6.9) is replaced by the system

1 1
=——=r
Ys 6 6 '
1 5
(6.11) r,= 6—2)/4+ér1
1 1
rg= §—3y21+ érl.

Then the complemeng of r1 enters the basis ared leaves, so that the system replacing (6.10) is
now

(6.12) X =1—aX—s4
1 3 1
%=572%7 5%

With y, entering, the minimum ratio (6.7) in (6.11) is 1/12, whesdeaves the basis and (6.11) is
replaced by

1 1
=5 6"
1 5 1
(6.13) )/4 = 1—2+ 1—2r1— El’z
1 3 3
f3=—-—-I1— =l

4 4 2
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Then the algorithm terminates since the variablevith the missing label 2 as index, has become
nonbasic. The solution defined by the final systems (6.12)@4@®), with the nonbasic variables
on the right hand side equal to zero, satisfies (6.8). Renaimglx' andy by the mapping in
Theorem 4.9 gives the equilibriutw,y) = (x3,y°) mentioned after example (5.1), with payoffs 4
to player 1 and 2/3 to player 2.

7. CONCLUSION

We have seen that a two-player zero-sum game in strategit-dan be solved in polynomial
time by converting it to a pair of dual linear programs, anceaegal two-player game in strategic
form can be solved by the Lemke-Howson Algorithm, which rim&orst-case exponential time.
It turns out that these are among the most efficient knownrighgos for solving these problems,
and it still remains an important open question whethertlegist polynomial-time algorithms for
finding a Nash equilibrium in any finite strategic-form gaméés not been proven to be NP-hard).
It is surprising that so little is known about the complexafythis problem, despite the fact that a
solution is guaranteed to exist by the Nash Existence Thedrefact, Berkeley Professor Christos
Papadimitriou (2001) stated, “the complexity of finding asNaquilibrium is in my opinion the
most important concrete open question on the boundary ad&y/fo

While the results presented in this paper are very powellfigly bnly represent the simplest
computational problems in game theory. We only looked at phayer games, rather than
player games; we assumed all games were nondegenerate;lyweoomputed Nash equilibria,
rather than other equilibrium refinements; we only compatsihgle Nash equilibrium, rather than
multiple or all equilibria; we only considered games in &gac-form, rather than more powerful
models such as extensive form and sequence form; and we on$ydered two particular linear
techniques, rather than other algorithms. These are allasting and very important questions,
which unfortunately | do not have time to address in this papel refer the reader to McKelvey
(1996) and von Stengel (2002). However, many of these reismiblve relatively simple extensions
of the Lemke-Howson algorithm and other techniques deeslap this paper, and it should not be
too difficult to understand them after this introduction.
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