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ABSTRACT

Game theory has been studied by economists and applied mathematicians for almost a century,
and recently computer scientists have increasingly been interested in the field as well. This is
a very important addition, as algorithmic and complexity issues must be addressed in order to be
able to apply classical theoretical results. In particular, the Nash Existence Theorem, while of great
theoretical interest, would be of limited practical use without efficient methods for actually finding
equilibria. This paper begins by defining basic game theory concepts and presenting proofs of
some classical results, including Nash’s theorem and the Minimax Theorem. Section 4 begins with
a discussion of the linear programming. I prove some preliminary results leading up to the Duality
Theorem, and then show that every zero-sum game can be reduced to a pair of dual linear programs.
Next I show that any two-player game can be reduced to anothertype of optimization problem
called a linear complementarity problem. Section 5 presents the Lemke-Howson algorithm – which
computes a Nash equilibrium in any two-player game – from a geometric perspective. In section
6, I show that the algorithm can also be interpreted algebraically to give a solution to the linear
complementarity problem.
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1. INTRODUCTION

A game is any social situation involving the interaction of two or more individuals. While tic-tac-
toe, chess, and rock-paper-scissors are more traditional examples of games in the everyday usage
of the term, games do not need to have such a recreational nature; military strategy, biological
competition, and voting are examples of games with more “real-world” applications. Myerson
(2004) defines game theory as “the study of mathematical models of conflict and cooperation
between intelligent rational decision-makers.” Game theory has been successfully applied to every
social science discipline, the life sciences, and to many common, everyday situations. In addition,
it has been a major area of study for mathematicians, economics, and more recently computer
scientists.

Because of the field’s widespread applicability and the variety of mathematical and computa-
tional issues it encompasses, it is hard to place game theorywithin any single discipline (although it
has traditionally been viewed as a branch of economics). While the field is clearly benefitting from
being analyzed from many different perspectives, it is alsoimportant to make sure that it doesn’t
become disorganized as a result. When I started doing research for my thesis, I was surprised at
how difficult it was to find a basic introduction to the fundamental mathematical and computational
results. I had to turn to game theory textbooks for proofs of classical results, operations research
and optimization books for results in linear programming and linear complementarity, and more
recent computer science and economics papers for algorithms and complexity results. Thus, the
major contribution of this paper is to present the basic mathematical and computational results
related to computing Nash equilibria in a coherent form thatcan benefit people from all fields.

In terms of background, no knowledge of game theory or optimization theory is necessary, and
very little specific mathematical knowledge is assumed. However, a general mathematical maturity
is necessary and familiarity with linear algebra and real analysis would be helpful.

In addition to my advisor Avi Pfeffer, I would also like to thank Daniel Goroff and David Parkes
for taking the time to meet with me and suggesting useful references.

2. GAME THEORY BACKGROUND

In the introduction I mentioned that game theorists generally assume all players arerational
and intelligent. We will make these two assumptions throughout this paper. Adecision-maker is
rational if he makes decisions in pursuit of maximizing his own well-being. Without getting too
involved in the technical foundations of decision theory, we assume that each player’s well-being
can be formally measured by autility scale and that each player’s goal is to maximize his expected
utility. A player is intelligent if he knows everything that we – as outside observers – know about
the game and he can make any inferences about the situation that we can make. For example,
he is aware of the possible strategies available to all players and the payoffs associated with each
outcome.

Definition 2.1. A strategic-form (or normal-form) game is anyΓ of the form

Γ = (N,(Si)i∈N,(ui)i∈N),

where N is a nonempty set, and for each i in N, Si is a nonempty set and ui is a function from
× j∈NSj into the set of real numbersR.
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N denotes the set of players in the gameΓ. For each playeri ∈ N, Si is the set ofstrategies(or
pure-strategies) available to playeri. A strategic-form game isfinite if the set of playersN and all
the strategy setsSi are finite. LetN = {1,2, ..., I}, so that players are denoted by positive integers,
and for eachi ∈ N let Si = {si1,si2, . . . ,siki}. Often, I will slightly abuse this notation by lettingsi
be an arbitrary element ofSi. This paper is only concerned with finite strategic-form games. Two
player strategic-form games are often depicted using twom×n matricesA andB, wherem= k1,
n = k2, ai j = u1(s1i,s2 j), andbi j = u2(s1i ,s2 j). For this reason, two-player strategic-form games
are also known asbimatrix games.

When dealing with bimatrix games, we will sometimes assume that all entries of the payoff
matrices are positive. Informally, we can always make this assumption without loss of generality
because we can always add a sufficiently large number to all payoffs such that all payoffs become
positive and the new game is fundamentally the same as the oldone. In particular, both games
have the same Nash equilibria (defined later in this section). The proof of this result is trivial, and
I will omit it. Unless otherwise specified, assume all payoffmatrices contain positive entries.

A strategy profileis a possible combination of strategies that the players inN might choose,
where each playeri chooses one pure-strategy inSi. S= × j∈NSj denotes the set of all possible
strategy profiles. Lets= (s1,s2, . . . ,sI ) denote an arbitrary element ofS. For any strategy profile
s∈ S, let ui(s) = ui(s1, . . . ,sI ).

I will refer to all players other than a given playeri as “playeri’s opponents” and denote them by
“−i.” This does not mean that the other players are all trying to “beat” playeri; they are trying to
maximize their individual utility functions, which may or may not coincide with decreasing player
i’s utility. Let ui(si ,s−i) denote the utility payoff to playeri when he plays strategysi ∈ Si and his
opponents together plays−i ∈ ×k∈N,k6=iSk.

In a two-playerzero-sumgame, maximizing one’s utility is equivalent to minimizingthe other
player’s utility: that is,u2(s) = −u1(s) for all s∈ S. So in matrix formB = −A, and the game is
fully specified just by the matrixA. We will assume without loss of generality that all entries ofA
are positive in a zero-sum game (and therefore all entries ofB are negative).

To demonstrate the definition of a strategic-form game, consider the following example of Rock-
Paper-Scissors. Since there are two players,N = {1,2}. Each player has three available strategies:
Rock (R), Paper (P), and Scissors (S). SoS1 = S2 = {R,P,S}. Assume that the winner gains 1 unit
of utility, the loser loses 1 unit of utility, and that utility does not change for either player in a tie.
We can imagine that the loser pays the winner one dollar each round, in which case each unit of
utility corresponds to a dollar. Then

u1(R,S) = u1(S,P) = u1(P,R) = u2(S,R) = u2(P,S) = u2(R,P) = 1

u1(S,R) = u1(P,S) = u1(R,P) = u2(R,S) = u2(S,P) = u2(P,R) = −1

u1(R,R) = u1(P,P) = u1(S,S) = u2(R,R) = u2(P,P) = u2(S,S) = 0.

Notice thatui is specified for each strategy profile and for each player. It is clear that Rock-Paper-
Scissors is a zero-sum game and is fully specified by the matrix

A =





0−1 1
1 0−1

−1 1 0



 .
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Definition 2.2. Given a strategic-form gameΓ = (N,(Si)i∈N,(ui)i∈N), a mixed strategy σi for
player i is a probability distribution over pure strategies. That is, it is a mapσi : Si → R such that
σi(si) ≥ 0 for each si ∈ Si and ∑

si∈Si

σi(si) = 1.

Pure strategies are a trivial subset of mixed strategies. I will denote the set of playeri’s possible
mixed strategies byΣi, and the space of mixed-strategy profiles byΣ = ×iΣi , with an individual
element ofΣ denoted byσ = (σ1, . . . ,σI ). In a two-player game, we can equivalently represent
a mixed strategy for player 1 by a vectorx ∈ R

m, wherexi = σ1(s1i), and a mixed strategy for
player 2 by a vectory∈ R

n, wherey j = σ2(s2 j). In this case, letX = Σ1 andY = Σ2 for notational
convenience.

The payoffs to a profile of mixed strategies are the expected values of the corresponding pure-
strategy payoffs. So playeri’s payoff to profileσ is

∑
s∈S

(
I

∏
j=1

σ j(sj))ui(s),

which I will denote byui(σ). Notice thatui has been defined in several different ways; however, it
will be clear by the number and type of arguments which definition applies in a given context. For
anyτi in Σi , let (τi ,σ−i) denote the mixed-strategy profile in which playeri playsτi and all other
players play the same strategy as inσ.

A very natural question to ask about a game is how it should be played, or what strategies are in
some sense “optimal.” While there are several reasonable criteria for judging whether a strategy is
“optimal,” the concept of a Nash equilibrium solution has come to dominate much of game theory
literature for several reasons.

Definition 2.3. A mixed-strategy profileσ∗ of Γ is aNash equilibrium iff ui(σ∗
i ,σ∗

−i)≥ ui(σi ,σ∗
−i)

for all σi ∈ Σi , for all i ∈ N.

A Nash equilibrium is a profile of strategies such that each player’s strategy is an optimal re-
sponse to the other players’ strategies. That is, no player can profit by deviating unilaterally from
his strategy assuming his opponents’ strategies remain fixed. If we suppose that an external ob-
server – such as a social planner – publicly specificies a mixed strategy for each player before the
game is actually played, then one would expect this profile tobe followed if and only if no player
could increase his utility by playing a different strategy.Equivalently, we could imagine that the
players are allowed to communicate with each other and assign a mixed strategy to each player
before playing. Then we expect the strategy profile would actually be played if and only if it is
a Nash equilibrium. As with any possible solution concept, there are some obvious drawbacks of
the Nash equilibrium. First, it might seem unrealistic to assume that each player “knows” what
strategy each of his opponents will play in advance and that he can change his strategy without
having any effect on his opponents’ strategies. In this sense the the concept of Nash equilibria
might seem to require too much.

Additionally, many games have multiple Nash equilibria, and it can be difficult to predict which
one will (or should) be played. Most critics have supported the latter objection, and several refine-
ments of the Nash equilibrium have been proposed, such as stable, perfect, and proper equilibria.
In certain situations, different equilibrium concepts might have more natural interpretations than
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others. For those interested, Fudenberg and Myerson provide an analysis of several solution con-
cepts, and McKelvey and von Stengel discuss methods for extending the algorithms discussed in
this paper to find various equilibrium refinements. This paper will focus exclusively on techniques
for computing Nash equilibria – which has been widely accepted as the “standard” solution con-
cept in game theory. In section 3 we will prove Nash’s famous result stating that every finite
strategic-form game contains at least one Nash equilibrium. One problem with the various equi-
librium refinements is that some of them are not guaranteed toexist in a given game, making them
less desirable general solution concepts. In this paper, I will sometimes refer to Nash equilibria
just as “equilibria.”

The following lemma shows that the highest expected utilitythat any player can obtain against
any combination of other players’ mixed strategies does notdepend on whether he uses mixed or
only pure strategies.

Lemma 2.4. For anyσ in Σ and any player i in N,

max
si∈Si

ui(si,σ−i) = max
τi∈Σi

ui(τi,σ−i).

Proof. Let A = max
si∈Si

ui(si ,σ−i) andB = max
τi∈Σi

ui(τi ,σ−i). It is clear thatB≥ A, since pure strategies

are a subset of mixed strategies. IfB > A, then there existsτi ∈ Σi such thatui(τi ,σ−i) > A.
Supposeui(s∗i ,σ−i) = A, wheres∗i ∈ Si. Thenui(si,σ−i) ≤ ui(s∗i ,σ−i) for all si ∈ Si. So

ui(τi ,σ−i) = ∑
si∈Si

τi(si)ui(si,σ−i) ≤ ∑
si∈Si

τi(si)ui(s
∗
i ,σ−i).

= ui(s
∗
i ,σ−i) ∑

si∈Si

τi(si) = ui(s
∗
i ,σ−i).

This contradicts the fact thatui(τi ,σ−i) > A. SoA = B. �

The following theorem shows that the optimal mixed strategies for each player are the strategies
that assign positive probability only to his optimal pure strategies. Thus, it provides an equivalent
definition of Nash equilibria which turns out to be quite useful.

Theorem 2.5.The mixed strategyσ is a Nash equilibrium ofΓ if and only ifσi(si) > 0 implies si ∈
argmaxci∈Si ui(ci,σ−i), for all i ∈ N and si ∈ Si .

Proof. Supposeσ is a Nash equilibrium ofΓ, and letA = argmaxci∈Si ui(ci ,σ−i). Suppose there
exists a playeri and a pure strategysi ∈ Si such thatσi(si) > 0 andsi /∈ A. Supposedi ∈ A. Then
ui(di ,σ−i) > ui(si,σ−i). Defineρi ∈ Σi as follows:ρi(ci) = σi(ci) if ci 6= si or di, ρi(si) = 0, and
ρi(di) = σi(di)+ σi(si). So ρi is the same strategy asσi except with all of the weight given tosi
shifted todi . Then

ui(ρi ,σ−i) = ui(σi ,σ−i)−σi(si)ui(si ,σ−i)+σi(si)ui(di ,σ−i) > ui(σi ,σ−i).

Soσi is not a best response of playeri to σ−i. This contradicts the fact thatσ is a Nash equilibrium,
and we have a contradiction.

Conversely, pickσ ∈ Σ and suppose that for alli ∈ N andsi ∈ Si , σi(si) > 0 impliessi ∈ A. If
σ is not a Nash equilibrium, then by the previous lemma for anysi ∈ A we haveu = ui(si,σ−i) >
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ui(σi ,σ−i). By assumption,

ui(σi,σ−i) = ∑
si∈Si

σi(si)ui(si,σ−i) = ∑
si∈A

σi(si)ui(si,σ−i) = u.

Sou > u, which is a contradiction. Soσ is a Nash equilibrium. �

Thesupportof a mixed strategyσi is the set of pure strategiessi ∈ Si for which σi(si) > 0. The
following example illustrates how Theorem 1.5 can be helpful in computing equilibria.

Example 2.6.The unique equilibrium of rock-paper-scissors is((1
3, 1

3, 1
3),(1

3, 1
3, 1

3)).

Proof. First we must show that this profile is a Nash equilibrium. Suppose player 1 could profit by
deviating to the profileσ1 = α1R+β1P+ γ1S. Player 1’s new payoff would be

β1− γ1

3
+

γ1−α1

3
+

α1−β1

3
= 0.

So any deviation will produce the same payoff. Similarly, player 2 cannot profitably deviate from
his strategy. So the given profile is an equilibrium.

Now suppose there is another equilibrium in which each player plays the strategyσi = αiR+
βiP+ γiS. Supposeβ1 = γ1 = 0. Then ifβ2 < 1 it is clear that player 2 can do better by playing
P. But if player 2 playsP, player 1 can do better by playingS thanR. Therefore, there is no
Nash equilibrium in which player 1 playsR with probability 1. Similar logic shows that in a Nash
equilibrium both player’s supports must contain more than one pure strategy.

Now suppose there is an equilibrium in which player 1’s support contains two strategies: without
loss of generality assumeγ1 = 0, andα1,β1 > 0. By Theorem 1.5, it follows thatu1(R,σ2) =
u1(P,σ2) >= u1(S,σ2). This impliesγ2−β2 = α2− γ2 ≥ β2−α2. The first two equalities imply
that α2 + β2 = 2γ2. Sinceα2 + β2 + γ2 = 1, it follows that γ2 = 1/3. Similarly, it follows that
α2 ≥ 1/3 andβ2 ≥ 1/3, and therefore thatα2 = β2 = γ2 = 1/3. So player 2’s expected payoff is
−β1

3 + α1
3 − α1

3 + β1
3 = 0. However, if player 2 instead played the pure strategyP, then his expected

payoff would beα1 > 0. Similar logic shows that both player’s supports must contain all three
strategies.

By Theorem 1.5,u1(R,σ2) = u1(P,σ2) = u1(S,σ2), which impliesα2 = β2 = γ2 = 1/3 from the
above analysis. Similarly we haveu2(R,σ1) = u2(P,σ1) = u2(S,σ1) and thereforeα1 = β1 = γ1 =
1/3. So the Nash equilibrium is unique. �

3. NASH EXISTENCE THEOREM

In this section we prove the general existence theorem of Nash (1950):

Theorem 3.1.Every finite strategic-form game has a mixed-strategy equilibrium.

Notice that the theorem refers to mixed strategies, and every finite game does not need to contain
a pure-strategy Nash equilibrium (as the rock-paper-scissors example demonstrated). Most of the
definitions and results in this section are based on section 3.12 of Myerson (2004).

For any finite setM, let R
M denote the set of all vectors of the form(xm)m∈M such thatxm ∈ R

for eachm in M. We can equivalently define ofRM to be the set of all functions fromM into the
set of real numbersR; in this case I’ll write them-component ofx∈ R

M asx(m) instead ofxm. It
is clear thatRM is a finite-dimensional vector space.
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Let T be a subset ofRM. T is convexiff λx+(1−λ)y ∈ T for all vectorsx,y ∈ T and every
λ ∈ R such that 0≤ λ ≤ 1. T is closediff lim

j→∞
x( j) ∈ T for every convergent sequence of vectors

(x( j))∞
j=1 such thatx( j) ∈ T for every j. T is boundediff there exists some positive real number

K such that ∑
m∈M

|xm| ≤ K for every vectorx∈ T.

A point-to-setcorrespondence G: X → 2Y is a mapping that sends each pointx ∈ X to a set
G(x)⊂Y. Suppose thatX andY are normed linear spaces, so that the concepts of convergence and
limits are defined for sequences inX andY. A correspondenceG : X →Y is upper-hemicontinuous
if and only if, for every sequence(x( j),y( j))∞

j=1, if x( j) ∈ X andy( j) ∈ G(x( j)) for every j, and
the sequence(x( j))∞

j=1 converges to some pointx, and the sequence(y( j))∞
j=1 converges to some

pointy, theny∈G(x) . ThusG : X →Y is upper-hemicontinuous iff the set{(x,y)|x∈X,y∈G(x)}
is a closed subset ofX ×Y. In particular, if g : X → Y is a continuous function fromX to Y
and G(x) = {g(x)} for every x in X, thenG : X → Y is an upper-hemicontinuous point-to-set
correspondence. So upper-hemicontinuous correspondences can be viewed as a generalization of
continuous functions.

A fixed pointof a point-to-set correspondenceF : T → T is anyx∈ T such thatx∈ F(x). I will
now state the Kakutani fixed point theorem, which is central to the proof of Nash’s theorem. A
proof can be found in Scarf (1973).

Theorem 3.2.Kakutani Fixed-Point Theorem. Let T be a nonempty, convex, bounded, and closed
subset of a finite-dimensional vector space. Let F: T → T be an upper-hemicontinuous point-to-
set correspondence such that, for F(x) is a nonempty convex subset of T for each x∈ T. Then F
has a fixed point.

To see how the various assumptions in the theorem come into play, consider the following ex-
ample. Let

T = [0,1] = {x∈ R|0≤ x≤ 1},

and letF1 : T → T be defined as

F1(x) = {1} if 0 ≤ x≤ 0.5,

= {0} if 0.5 < x≤ 1.

ThenF1 has no fixed points, and it satisfies all of the assumptions of the Kakutani fixed-point
theorem except for upper-hemicontinuity. Specifically, the setT ′ = {(x,y)|x∈ S,y∈ F1(x)} is not
closed at(0.5,0) since

lim
x→0.5+

(x,F1(x)) = (0.5,0),

but(0.5,0) /∈ T ′. To satisfy upper-hemicontinuity, we must extend this correspondence toF2 : T →
T, where

F2(x) = {1} if 0 ≤ x < 0.5,

= {0,1} if x = 0.5,

= {0} if 0.5 < x≤ 1.
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F2 now satisfies all of the assumptions of the Kakutani fixed-point theorem except convex-
valuedness, becauseF2(0.5) is not a convex set. In particular, 0,1∈ F2(0.5), but if we setλ = 0.5
thenλ ∗0+ λ ∗1 = 0.5 /∈ F2(0.5). To satisfy convex-valuedness, we must extend the correspon-
dence toF3 : T → T, where

F3(x) = {1} if 0 ≤ x < 0.5,

= [0,1] if x = 0.5,

= {0} if 0.5 < x≤ 1.

F3 now satisfies all the assumptions of the Kakutani fixed-pointtheorem and has 0.5 as a fixed
point, since 0.5∈ F3(0.5).

We can now prove the Nash existence theorem.

Proof. Let Γ = (N,(Si)i∈N,(ui)i∈N). Consider the setΣ = ×i∈NΣi of all mixed-strategy profiles.Σ
is clearly nonempty sinceSi is nonempty for each playeri. Supposeσ andτ are elements ofΣ
and letλ be a real number in[0,1]. Thenπ = λσ +(1−λ)τ corresponds to the profile in which
each playeri plays the mixed strategyπi = λσi + (1− λ)τi . For each playeri, we know that
∑si∈Si

σi(si) = 1 and∑si∈Si
τi(si) = 1. It follows that

∑
si∈Si

(λσi(si)+(1−λ)τi(si)) = λ+(1−λ) = 1.

Sinceσi(si) andτi(si) are nonnegative for everyi ∈ N andsi ∈ Si , it follows that πi(si) ≥ 0 for
eachi ∈ N andsi ∈ Si . Therefore,λσ +(1−λ)τ ∈ Σ, andΣ is convex.Σ is a subset of the finite-
dimensional vector spaceRM, whereM = S. Σ is bounded since

∑
m∈M

|σ(m)| = ∑
i∈N,si∈Si

σi(si) = I .

To see thatΣ is a closed subset ofRM, let (σ j)∞
j=1 be a convergent sequence of vectors such that

σ j ∈ Σ for every j. This sequence converges to some limitρ ∈ R
M. Supposeρ /∈ Σ. Then either

ρi(si) < 0 for somei ∈ N andsi ∈ Si, or ∑
si∈Si

ρi(si) 6= 1 for somei ∈ N. Suppose we are using the

1-norm inR
M, where||σ|| = ∑

i∈N,si∈Si

|σi(si)|. In the first case, letk = ρi(si) < 0 for somei ∈ N.

Then
||ρ−σ j || ≥ |σ j

i (si)−ρi(si)| ≥ −k

for eachσ j in our sequence, and the sequence cannot converge toρ. In the second case, let
c = ∑

si∈Si

ρi(si)−1 6= 0. If c > 0 then

||ρ−σ j || ≥ ∑
si∈Si

|ρi(si)−σ j
i (si)| ≥ ∑

si∈Si

|ρi(si)|− ∑
si∈Si

|σ j
i (si)| = c.

Similar logic shows that||ρ−σ j || ≥ −c if c < 0, and in either case we have a contradiction. Soρ
must lie inΣ, and it follows thatΣ is closed.

For anyσ ∈ Σ and any playerj in N, let

Rj(σ− j) = argmaxτ j∈Σi u j(τ j ,σ− j).
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Then Rj(σ− j) is the set of playerj ’s best responses inΣ j to the combinationσ− j of mixed-
strategies of his opponents. By Theorem 2.5,Rj(σ− j) is the set of allρ j ∈ Σ j such that

ρ j(sj) = 0 for everysj such thatsj /∈ argmaxd j∈Sj u j(d j ,σ− j).

Rj(σ− j) is nonempty since it includes every pure strategysj in argmaxd j∈Sj u j(d j ,σ− j), which is
nonempty. Supposeρ j andτ j are elements ofRj(σ− j), and letλ be a real number in [0,1]. Let

π j = λρ j +(1−λ)τ j .

By previous analysisπ j ∈ Σ j . For everysj ∈ Sj such thatsj /∈ argmaxd j∈Sj u j(d j ,σ− j), we know
that ρ j(sj) = τ j(sj) = 0. It follows thatπ j(sj) = 0 also, and therefore thatπ j ∈ Rj(σ− j). So
Rj(σ− j) is convex.

Let R : Σ → Σ be the point-to-set correspondence such that

R(σ) = × j∈NRj(σ− j) for eachσ ∈ Σ.

ThenR(σ) = {τ∈ Σ|τ j ∈Rj(σ− j) for every j ∈N}. For eachσ∈ Σ, R(σ) is nonempty and convex,
because it is the Cartesian product of nonempty convex sets.

To show thatR is upper-hemicontinuous, suppose that(σk)∞
k=1 and(τk)∞

k=1 are convergent se-
quences whereσk ∈ Σ andτk ∈R(σk) for all k, σ = lim

k→∞
σk, andτ = lim

k→∞
τk. These conditions imply

that, for every playerj ∈ N and everyρ j ∈ Σ j ,

u j(τk
j ,σ

k
− j) ≥ u j(ρ j ,σk

− j) for all k.

Taking the limit on the left yields

lim
k→∞

u j(τk
j ,σ

k
− j) = lim

k→∞ ∑
sj∈Sj

τk
j(sj)u j(sj ,σk

− j)

= lim
k→∞ ∑

sj∈Sj ,s− j∈S− j

τk
j(sj)σk

− j(s− j)u j(sj ,s− j)

= u j(τ j ,σ− j).

Similarly, limk→∞ u j(ρ j ,σk
− j) = u j(ρ j ,σ− j). It follows that for everyj in N andρ j in Σ j ,

u j(τ j ,σ− j) ≥ u j(ρ j ,σ− j).

Soτ− j ∈ Rj(σ− j) for every j in N, and thereforeτ ∈ R(σ). Thus,R : Σ → Σ is an upper-
hemicontinuous correspondence.

By the Kakutani fixed-point theorem, there existsσ ∈ Σ such thatσ ∈ R(σ). So σ j ∈ Rj(σ− j)
for every j in N, and henceσ is a Nash equilibrium ofΓ. �

This theorem has an important consequence in two-player zero-sum games, known as theMin-
imax Theorem. Consider the zero-sum game defined by the following payoff matrix for player
1:

H T
H -2 -4
T 3 5
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It can easily be calculated that the unique Nash equilibriumis (T,H). The same conclusion could
also be obtained by the following intuition. First note thatthe minimum payoff in row 1 is -4,
while the minimum payoff in row 2 is 3. These payoffs represent the smallest payoff that player
1 can guarantee himself from each of his two available pure strategies. Knowing that player 2’s
goal is to minimize his utility, it seems logical for player 1to prefer the strategy that achieves the
maximum of these two minimum payoffs; choosing pure strategy T will guarantee that he will
obtain at least 3, while choosing H will only guarantee him -4. Similarly, player 2 observes that
the maximum payoff (to player 1) in column 1 is 3, while the maximum payoff in column 2 is 5.
These represent the largest payoffs player 2 can guarantee player 1 will receive from each of his
pure strategies. By similar reasoning, he prefers the minimum of these two payoffs; choosing pure
strategy H will prevent player 1 from getting any more than this minimum amount. Thus, we will
expect that (T,H) will be played, since the payoff is simultaneously a maximum of row minimums
as well as a minimum of column maximums. We will call a strategy for player 1 that maximizes
his expected minimum payoff amaximin strategyfor player 1 (hereT), and a strategy for player 2
that minimizes player 1’s expected maximal payoff aminimax strategyfor player 2 (hereH).

Theorem 3.3.σ = (σ1,σ2) is a Nash equilibrium ofΓ if and only if both of the following conditions
hold:

(3.1) σ1 ∈ argmaxτ1∈Σ1 min
τ2∈Σ2

u1(τ1,τ2),

(3.2) σ2 ∈ argminτ2∈Σ2 max
τ1∈Σ1

u1(τ1,τ2).

Furthermore, ifσ is an equilibrium then

(3.3) u1(σ) = max
τ1∈Σ1

min
τ2∈Σ2

u1(τ1,τ2) = min
τ2∈Σ2

max
τ1∈Σ1

u1(τ1,τ2).

Proof. Supposeσ is a Nash equilibrium. Then

u1(σ) = max
τ1∈Σ1

u1(τ1,σ2) ≥ max
τ1∈Σ1

min
τ2∈Σ2

u1(τ1,τ2) ≥ min
τ2∈Σ2

u1(σ1,τ2) = u1(σ),

where the final equality follows from the fact that player 2’sutility is maximized when player 1’s
utility is minimized. Similarly, we have

u1(σ) = min
τ2∈Σ2

u1(σ1,τ2) ≤ min
τ2∈Σ2

max
τ1∈Σ1

u1(τ1,τ2) ≤ max
τ1∈Σ1

u1(τ1,σ2) = u1(σ).

So all of the expressions are equal, which shows (3.3). (3.1)and (3.2) follow from the fact that

(3.4) min
τ2∈Σ2

u1(σ1,τ2) = max
τ1∈Σ1

min
τ2∈Σ2

u1(τ1,τ2)

and

(3.5) max
τ1∈Σ1

u1(τ1,σ2) = min
τ2∈Σ2

max
τ1∈Σ1

u1(τ1,τ2).

Conversely, suppose thatσ1 andσ2 satisfy (3.1) and (3.2). (3.1) implies that (3.4) holds and
(3.2) implies that (3.5) holds. SinceΓ has an equilibrium by Theorem 3.1, the final equality in
(3.3) still holds. So all four expressions in (3.4) and (3.5)are equal. So

u1(σ) ≥ min
τ2∈Σ2

u1(σ1,τ2) = max
τ1∈Σ1

u1(τ1,σ2) ≥ u1(σ).
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It follows that all of these expressions are equal, andσ is a Nash equilibrium ofΓ. �

Notice that the assumption that an equilibrium exists was necessary to prove the converse.

4. LINEAR PROGRAMMING AND COMPLEMENTARITY

4.1. Linear Programming. From now on our goal will be to find a single Nash equilibrium ofa
given two-player game: we will refer to this as “solving” thegame. In this section we will present
two types of problems from mathematical programming calledthe linear programming problem
(LPP) and the linear complementarity problem (LCP). We will then show that the problem of
solving a zero-sum game is equivalent to solving a LPP and solving a general two-player game is
equivalent to solving a LCP; hereequivalencemeans that there are mappings between the solution
sets of the two problems (solving one problem allows us to easliy solve the other, and vica versa).

Linear programming deals with finding a vector in a real vector space that maximizes (or mini-
mizes) a given linear function subject to a set of linear constraints. We will call a LPPstandardif
all of the constraints are inequalities, andgeneralif they include both inequalities and equalities. It
turns out that both of these forms are equivalent, where equivalence here means that the programs
have equal values (defined below). One direction is trivial,since standard problems are a subset
of general problems; the first major result of this section will be to show that a general LPP can
be transformed into an equivalent standard LPP. This transformation is important because solving
zero-sum games can naturally be formulated as solving a general LPP, but it is easier to prove
results about standard LPP’s than general LPP’s.

Assume that all vectors in this section are column vectors. Equalities and inequalities between
two vectors apply to all components of the given vectors. That is, if x andy belong toRm thenx= y
meansxi = yi for 1≤ i ≤ m. The vector0 denotes the vector of zeroes of appropriate dimension,
and1m denotes them-vector consisting of all ones.

Definition 4.1. Suppose A∈R
m×n, b∈R

n, and c∈R
m. A standard linear programming problem

is that of finding a nonnegative vector x= (xi) ∈ R
m that either maximizes or minimizes the given

linear function

(4.1)
m

∑
i=1

xici

subject to the inequalities

(4.2)
m

∑
i=1

xiai j ≤ b j , j = 1, . . . ,n.

The vectorx ∈ R
m is feasibleif it satisfies (4.2), and a linear program isfeasibleif it has a

feasible solution. A feasible solution which maximizes (orminimizes) (4.1) is called anoptimal
solution. The optimal value of the function (4.1) is called thevalueof the linear program.

Assuming that the preceding LPP is a maximization problem, define the following minimization
problem to be itsdual: to find a nonnegative vectory = (y j) ∈ R

n that minimizes

n

∑
j=1

y jb j
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subject to the inequalities

(4.3)
n

∑
j=1

y jai j ≥ ci, i = 1, . . . ,m.

Now letM = {1, . . . ,m} andN = {1, . . . ,n}. Let I be a subset ofM and letI ′ = M− I . Similarly,
let J be a subset ofN and letJ′ = N−J. Then thegeneral maximum LPPis to find a vectorx∈ R

m

such that
m

∑
i=1

xici is maximized

subject to
xi ≥ 0, i ∈ I ,

m

∑
i=1

ai j xi ≤ b j , j ∈ J,

m

∑
i=1

ai j xi = b j , j ∈ J′.

This problem has the following dual: to find a vectory∈ R
n such that

n

∑
j=1

y jb j is minimized

subject to
y j ≥ 0, j ∈ J

n

∑
j=1

ai j y j ≤ ci, i ∈ I ,

n

∑
j=1

ai j y j = ci, i ∈ I ′.

Lemma 4.2. Any general maximum problem can be transformed to a standardmaximum problem
that has the same solutions.

Proof. Consider the general problem of finding anm-vectorx such that

(4.4) xTc is a maximum

subject to

xTa j ≤ b j for j ∈ J,(4.5)

xTa j = b j for j ∈ J′,(4.6)

wherea j denotes thej ’th column of matrixA.
We first obtain constraints involving only inequalities by replacing the equations in (4.6) by the

inequalities

xTa j ≤ b j ,(4.7)

−xTa j ≤ −b j .(4.8)
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It is clear thatxTa j = b j if and only if both of the above inequalities hold.
Next, introduce new unknown nonnegativem-vectorsx′ = (x′i) andx′′ = (x′′i ) and replace in-

equalities (4.5), (4.7), and (4.8) with

(x′−x′′)Ta j ≤ b j for j ∈ J,

(x′−x′′)Ta j ≤ b j for j ∈ J′,(4.9)

−(x′−x′′)Ta j ≤−b j for j ∈ J′,

requiring that

(4.10) (x′−x′′)Tc be a maximum.

Then it is clear that the vectorz= (x′,x′′) maximizes (4.10) subject to (4.9) if and only if the vector
x = x′−x′′ solves the original problem, and that these solutions have the same values. So we have
transformed the general problem to an equivalent standard problem. �

I will now prove some results about standard LPP’s, culminating in the Duality Theorem.

Lemma 4.3.Let x be a feasible solution of a standard maximization problem and let y be a feasible
solution of the dual problem. Then

m

∑
i=1

xici ≤
n

∑
j=1

y jb j .

Proof. Multiplying the j-th inequality of (4.2) byy j and summing overj gives

n

∑
j=1

y jb j ≥
n

∑
j=1

(y j

m

∑
i=1

xiai j ) =
m

∑
i=1

n

∑
j=1

xiy jai j .

Similarly, multiplying thei-th inequality of (4.3) byxi and summing overi gives
m

∑
i=1

xici ≤
m

∑
i=1

(xi

n

∑
j=1

y jai j ) =
m

∑
i=1

n

∑
j=1

xiy jai j .

Combining these two equations gives the desired result. �

Theorem 4.4. If there exist feasible solutions x and y for the standard maximum problem and its
dual such that

(4.11)
m

∑
i=1

xici =
n

∑
j=1

y jb j ,

then the solutions are optimal.

Proof. Supposex′ = (x′i) is another feasible solution of the standard maximization problem. Then
from the previous lemma we have

m

∑
i=1

x′ici ≤
n

∑
j=1

y jb j .
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Combining this with equation (4.11) gives
m

∑
i=1

x′ici ≤
m

∑
i=1

xici.

Sox is an optimal solution. An identical argument proves the optimality of y. �

The following theorem follows from some basic linear algebra results. A proof can be found in
Gale (1989), and I will omit it:

Theorem 4.5.Let A∈ R
m×n,b∈ R

n, and let x∈ R
m, y∈ R

n be vectors of unknowns. Then exactly
one of the following alternatives holds. Either the equation

(4.12) xTA≤ bT

has a nonnegative solution, or the inequalities

(4.13) Ay≥ 0 bTy < 0

have a nonnegative solution.

4.2. The Duality Theorem.

Theorem 4.6. Duality Theorem. If both a standard LPP and its dual are feasible, then both have
optimal vectors and the values of the two programs are the same.

Proof. Suppose that a standard maximum problem and its dual are feasible. This means that we
have nonnegative solutionsx andy to the inequalities

(4.14) xTA≤ bT

(4.15) Ay≥ c.

By Lemma 4.3, we know that ifx andy satisfy these two inequalities then they also satisfyxTc≤
yTb. So if we can find a solution(x,y) of (4.14) and (4.15) that also satisfies

(4.16) xTc−yTb≥ 0,

then it follows thatxTc = yTb, and the solutions are optimal by Theorem 4.4.
So in order to derive a contradiction, suppose that the system (4.14), (4.15), and (4.16) has no

nonnegative solution. We will now manipulate this system bydefining a matrixA′ and new vectors
x′, b′ so that we can apply Theorem 4.5. Writing out the three inequalities componentwise yields:

(4.17)
m

∑
i=1

xiai j ≤ b j for j = 1, . . . ,n,

(4.18)
n

∑
j=1

y j(−ai j ) ≤−ci for i = 1, . . . ,m,

(4.19)
n

∑
j=1

y jb j −
m

∑
i=1

xici ≤ 0.
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Now construct the(m+n+1)× (m+n+1) matrix A′ as follows:

a′i j = ai j for 1≤ i ≤ mand 1≤ j ≤ n,

a′i j = −a ji for m+1≤ i ≤ m+n andn+1≤ j ≤ n+m,

a′m+n+1,m+n+1 = 1,

a′i j = 0 otherwise.

Let x′ be the(m+n+1)-vector where

x′i = xi for 1≤ i ≤ m,

x′i = yi−m for m+1≤ i ≤ m+n,

x′m+n+1,m+n+1 =
n

∑
j=1

y jb j −
m

∑
i=1

xici.

Finally, letb′ be the(m+n+1)-vector defined by

b′i = bi for 1≤ i ≤ n,

b′i = −ci−n for n+1≤ i ≤ m+n,

b′m+n+1,m+n+1 = 0.

It is clear that the system of inequalities (4.17), (4.18), and (4.19) is equivalent to the statement
x′TA′ ≤ b′T . If this inequality has no nonnegative solutionsx′, then Theorem 4.5 says thatA′y′ ≥ 0
andb′Ty′ < 0 are both satisfied by a nonnegative vectory′ ∈ R

(m+n+1).
Now let z be then-vector wherezi = y′i, and letw be them-vector such thatwi = y′i+n. Then the

following inequalities hold:

n

∑
j=1

zjai j ≥ 0 for i = 1, . . . ,m,

−
m

∑
i=1

wiai j ≥ 0 for j = 1, . . . ,n,

n

∑
j=1

zjb j −
m

∑
i=1

wici < 0.

Now let

m1 =
n

∑
j=1

zjai j

c
wherec = max{ci : ci > 0}

if at least one of theci ’s is positive, and letm1 = 1 otherwise. Also, let

m2 =
m

∑
i=1

wiai j

b
whereb = min{bi : bi < 0}

if at least one of theb j ’s is negative, and letm2 = 1 otherwise.
Now defineθ = min{m1,m2}. Thenθ is clearly nonnegative, and the following inequalities hold:

(4.20) Az≥ θc,
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(4.21) wTA≤ θbT ,

(4.22) zTb−wTc < 0.

If θ = 0, then combining equations (4.14), (4.15), (4.20), and (4.21) yields 0≤ xTAz≤ zTb, and
0≥ wTAy≥ wTc. This implies thatzTb≥ wTc, which contradicts (4.22).

Soθ must be positive andw/θ andz/θ are a pair of feasible solutions to the LPP of (4.14) and
(4.15). So Lemma 4.3 says that

(
w
θ

)Tc≤ (
z
θ
)Tb,

or wTc≤ zTb, which again contradicts (4.22). It follows that the original set of inequalities (4.14),
(4.15), and (4.16) has a solution. By our above reasoning, this solution provides the desired pair of
optimal vectors and the values of the two LPP’s are the same. �

We have already shown that any general LPP can be transformedinto an equivalent standard
LPP. So the Duality Theorem will also apply to general LPP’s if we can show that the dual of the
general LPP is equivalent to the dual of the corresponding standard LPP.

Theorem 4.7.The duality theorem holds for the general problem.

Proof. Suppose we are looking for a vectorx∈ R
m such that

(4.23)
m

∑
i=1

xici is a maximum

subject to

xi ≥ 0 for i ∈ I ,

xTa j ≤ b j for j ∈ J(4.24)

xTa j = b j for j ∈ J′.

Now for eachi ∈ I ′, introduce two new nonnegative variablesx′i andx′′i and consider the standard
problem of

maximizing∑
i∈I

xici + ∑
i∈I ′

x′ici − ∑
i∈I ′

x′′i ci

subject to

∑
i∈I

xiai j + ∑
i∈I ′

x′iai j − ∑
i∈I ′

x′′i ai j ≤ b j j ∈ J,

∑
i∈I

xiai j + ∑
i∈I ′

x′iai j − ∑
i∈I ′

x′′i ai j ≤ b j j ∈ J′,

−∑
i∈I

xiai j − ∑
i∈I ′

x′iai j + ∑
i∈I ′

x′′i ai j ≤−b j j ∈ J′.

The dual of this standard problem is to find nonnegative numbers y j for j ∈ J, andy′j ,y
′′
j for

j ∈ J′ such that

(4.25) ∑
j∈J

y jb j + ∑
j∈J′

y′jb j − ∑
j∈J′

y′′j b j
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is a minimum subject to

∑
j∈J

y jai j + ∑
j∈J′

y′jai j − ∑
j∈J′

y′′j ai j ≥ ci i ∈ I ,

∑
j∈J

y jai j + ∑
j∈J′

y′jai j − ∑
j∈J′

y′′j ai j ≥ ci i ∈ I ′,(4.26)

−∑
j∈J

y jai j − ∑
j∈J′

y′jai j + ∑
j∈J′

y′′j ai j ≥−ci i ∈ I ′.

Now the dual of problem (4.23), (4.24) is by definition that offinding a vectorz∈ R
n which

minimizes
n

∑
j=1

zjb j

subject to

zj ≥ 0, for j ∈ J,
n

∑
j=1

ai j zj ≥ ci, for i ∈ I ,

n

∑
j=1

ai j zj = ci, for i ∈ I ′.

By the same reasoning used earlier in this section,(y,y′,y′′) is a solution of the problem (4.25),
(4.26) if and only ifz is a solution of this problem, wherezj = y j for j ∈ J andzj = y′j −y′′j for j ∈ J′;
so the problems are equivalent. It follows that if the original problem and its dual are feasible, the
new equivalent standard problems are also feasible. But thenfrom the standard duality theorem
just proven the dual standard problems have equal values andhence so do the original problems,
completing the proof. �

4.3. Equivalence Between Solving Games and Programming Problems.Let Γ be a two-player
game with payoff matricesB andC (I won’t useA since it already has an interpretation in linear
programming), and letX andY be the sets of mixed-strategy vectors. Given a fixed mixed-strategy
y∈Y, a best response of player 1 is a vectorx∈ X that maximizes the expressionxT(By). That is,
x is a solution to the LPP

(4.27) maximizexT(By)

subject to

x≥ 0,(4.28)

1T
mx = 1.

It is easy to see this satisfies the definition of a general LPP with c = By, b = 1, andA = 1T
m. The

dual of this LPP (again assumingy is fixed) is to find a variableu∈ R that

(4.29) minimizesu
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subject to

u≥ 0,

1mu≥ By.(4.30)

Both LPP’s are clearly feasible (pick anyx∈ X and any positiveu exceeding the largest entry of
By), so by the duality theorem they have the same optimal value.

Now supposeΓ is a zero-sum game. Player 2, when choosingy, must assume that his opponent
plays rationally and maximizesxTBy. This maximum payoff to player 1 is the optimal value of
the LPP (4.27), (4.28), which is equal to the optimal valueu of the dual LPP (4.29), (4.30). Then
player 2’s goal is to choosey that minimizes the value ofu satisfying (4.30). Now define vectors
y′, b′, c′, and matrixA′ as follows. Lety′ be the(n+1)-vector where

y′j = y j for 1≤ j ≤ n,

y′n+1 = u.

Chooseb′ ∈ R
n+1 such thatb′i = 0 if 1 ≤ i ≤ n andb′n+1 = 1. Let c′ ∈ R

m+2 wherec′i = 0 for
1≤ i ≤ m+1 andc′m+2 = 1. And defineA′ ∈ R

(m+2)×(n+1) such that

a′i j = bi j for 1≤ i ≤ m,1≤ j ≤ n,

a′i j = −1 for 1≤ i ≤ m+1, j = n+1,

a′i j = 0 for i = m+1,1≤ j ≤ n,

a′i j = 1 for i = m+2,1≤ j ≤ n,

a′i j = 0 for i = m+2, j = n+1.

Then the LPP (4.29), (4.30) is equivalent to findingy′ that minimizesy′Tb′ subject to

a′iy
′ ≤ c′i for 1≤ i ≤ m+1,

a′m+2y′ = cm+2,

wherea′i denotes thei-th row of A′. Notice that we even incorporated the fact thaty′ ∈ Y into A′

andc′. Here we takeI = m+1, so that only the final constraint (y∈Y) is an equality. So in the case
of a zero-sum game, the constraints of (4.30) are linear inu andy even ify is treated as a variable
(whereas before we assumedy was fixed).

So by the above reasoning, a minimax strategyy of player 2 is a solution to the LPP

(4.31) min
u,y

u subject to1ny = 1,1mu−By≥ 0,y≥ 0.

The dual of the LPP (4.31) then has the form

max
v,y

1nv subject to1mx = 1,1nv−xTB≤ 0,x≥ 0,

wherev∈ R. This LPP similarly describes the problem of finding a maximinstrategyx for player
1. By the duality theorem, both of these problems have solutions; so the minimax theorem states
that (x,y) is a solution to the pair of dual LPP’s if and only if(x,y) is a Nash equilibrium. This
allows us to reformulate the problem of finding a Nash equilibrium of a zero-sum game as a pair
of dual LPP’s.
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Even ifΓ is not zero-sum, a best responsex of player 1 to the mixed strategyy of player 2 is still
a solution to the LPP (4.27), (4.28). By the duality theorem, afeasible solutionx is optimal if and
only if there is a dual solutionu satisfying1mu≥ By andxT(By) = u. SincexT1m = 1, this is the
same asxT(By) = (xT1m)u, or equivalently

(4.32) xT(1mu−By) = 0.

Because the vectorsx and1mu−By are nonnegative, (4.32) states that both vectors cannot have
positive components in the same position (at least one of them must have a zero entry at each
position). So pure strategyi in S1 is a best response toz if and only if the i-th component of
1mu−By is zero.

For player 2, strategyy is a best response tox if and only if it maximizes(xTC)y subject toy∈Y.
The dual of this LPP is to minimizev subject to1nv≥ xTC. Here, a pairy,v of feasible solutions is
optimal if and only if

(4.33) yT(1T
n v−xTC) = 0.

Combining these results shows the following:

Theorem 4.8.The gameΓ = (A,B) has the Nash equilibrium (x,y) if and only if for suitable u,v,

1T
mx = 1

1T
n y = 1

1mu−Ay≥ 0(4.34)

1nv−xTB≥ 0

x,y≥ 0

and (4.32), (4.33)hold.

Cottle (1992) defines alinear complementarity problem(LCP) as follows: to find a vectorz∈R
m

given a vectorq∈ R
n and matrixM ∈ R

n×n such that

z≥ 0(4.35)

q+Mz≥ 0(4.36)

zT(q+Mz) = 0.(4.37)

A vectorz satisfying (4.35) and (4.36) is calledfeasible, and a vector satisfying (4.37) is called
complementary. The LCP is therefore to find a vector that is both feasible and complementary;
such a vector is called asolutionof the LCP.

Now consider the LCP withM, q, andz defined as follows. Letq = 1m+n. Let z be the(m+n)-
vector wherezi = xi for 1≤ i ≤ mandzi = yi−m for m+1≤ i ≤ m+n. And letM ∈ R

(m+n)×(m+n)

be defined as follows:

mi j = −ai j for 1≤ i ≤ m,m+1≤ j ≤ m+n,

mi j = −b ji for m+1≤ i ≤ m+n,1≤ j ≤ m,

mi j = 0 otherwise.

In the remainder of this paper, we will denote the LCP just described by(q,M).
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Theorem 4.9. There exist mappings between the set of solutions(x,y,u,v) of the problem in The-
orem 4.8 and the set of nonzero solutions(x′,y′) of the LCP(q,M) defined by

(4.38) (x,y,u,v) → (x/v,y/u) and

(4.39) (x′,y′) →

(

x′

1T
mx′

,
y′

1T
n y′

,
1

1T
n y′

,
1

1T
mx′

)

.

Proof. Suppose(x,y,u,v) is a solution to the problem in Theorem 4.8, and let(x′,y′) = (x/v,y/u).
If we suppose without loss of generality that all elements ofA andB are positive, then bothu
andv must be positive and (4.35) is satisfied. It is clear that1m−Ay′ ≥ 0 iff 1mu−Ay≥ 0 and
1n−Bx′ ≥ 0 iff 1nv−Bx≥ 0. So (4.36) is satisfied. Similarly,x′T(1m−Ay′) = 0 iff (4.32) holds
andy′T(1n−Bx′) = 0 iff (4.33) holds. The other direction is similar. �

So if we can solve the LCP(q,M) to obtain a solution(x′,y′), all we need to do is normalize
both vectors to obtain a solution to the original problem.

In this section I have shown that finding a Nash equilibrium ofa two-player zero-sum game
can be reduced (in polynomial-time) to solving a pair of duallinear programs. There are known
polynomial-time algorithms for solving linear programs (see the ellipsoid method in Chvatal,
1983). In practice, the simplex algorithm (which can be found in any optimization or operations
research textbook) also solves linear programs efficiently, although it runs in worst-case exponen-
tial time. In section 6 we will show how the Lemke-Howson algorithm gives a solution to the LCP.
Unlike linear programming problems, there are currently noknown polynomial time algorithms
for solving LCP’s, and the Lemke-Howson algorithm runs in worst-case exponential time.

5. THE LEMKE-HOWSONALGORITHM

In this section I will present the Lemke-Howson algorithm for computing a Nash equilibrium in
any two-player strategic-form game. This section is based on Shapely (1974) and von Stengel’s
(2002) expositions of Lemke’s original work. SupposeΓ is a two-player strategic-form game with
payoff matricesA andB. For notational convenience, letS1 = {1, . . . ,m}, S2 = {m+ 1, . . . ,m+
n}, andS∗ = S1∪S2. Mixed strategies are represented by vectorsx = (x1, ...,xm) ∈ Σ1 andy =
(ym+1, ...,ym+n) ∈ Σ2. Geometrically, the setsΣ1 andΣ2 are simplexes of dimensionm− 1 and
n−1 respectively.

Now define regionsΣk
1 in Σ1 for k∈ S∗ as follows:

Σi
1 = {x∈ Σ1 : xi = 0} for i ∈ S1,

Σ j
1 = {x∈ Σ1 : ∑

i∈S1

bi j xi = max
l∈S2

∑
i∈S1

bil xi} for j ∈ S2.

The setsΣ j
1 where j ∈ S2 (some of which may be empty) consist of all of player 1’s strategies

to which pure strategyj is a best response for player 2 (although it might not be the unique best
response). Since there is always at least one pure strategy best response for player 2 to any strategy
of player 1, they cover all ofΣ1.

Define thelabelof x∈ Σ1 to be the nonempty set

L′(x) = {k : x∈ Σk
1}.
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Define regionsΣi
2 andΣ j

2 and the labelL′′(y) similarly. Also define the label of the pair(x,y) ∈ Σ∗

to beL(x,y) = L′(x)∪L′′(y). (x,y) is completely labeledif L(x,y) = S∗, andk-almost completely
labeledif L(x,y) = S∗−{k} for somek∈ S∗.

Lemma 5.1. The profile(x,y) ∈ Σ is a Nash equilibrium iff(x,y) is completely labeled.

Proof. Suppose(x,y) is a Nash equilibrium and leti ∈ S1 be arbitrary. Ifi is not in the support of
x, thenxi = 0. Sox∈ Σi

1 → i ∈ L′(x) → i ∈ L(x,y). If i is in the support ofx, theni must be a best
response toy and hencey∈ Σi

2; so again we havei ∈ L(x,y). Similar logic shows thatj ∈ L(x,y)
for all j ∈ S2. So (x,y) is completely labeled. Now suppose(x,y) is completely labeled. Then
for eachi ∈ S1 either i ∈ Σi

1 or i ∈ Σi
2. The first case implies thati is not in the support ofx, and

the second implies thati is a best response toy. So every strategy in the support ofx is a best
response toy. Similarly every strategy in the support ofy is a best response tox. So(x,y) is a Nash
equilibrium by Theorem 1.5. �

Consider the game defined by the following two matrices:

(5.1) A =





0 6
2 5
3 3



 B =





1 0
0 2
4 3



 .

x3

x2

x1

x1

x2

x3

1

3

2

4

5

y5

y4

y1

y2

y3

4
1

2

3

5

FIGURE 1. Mixed strategy setsX (left) andY (right) for the game (5.1).

Figure 1 shows the mixed strategy setsX andY of this game. In the left diagram, the large
equilateral triangle with blackened edges represents the set X of possible mixed strategies, while
the non-darkened lines denote the axesxi of pure-strategies. The labels 1-5 are drawn as circled
numbers. Labels 1, 2, and 3 represent pure strategies of player 1 and are marked in the left diagram
when the corresponding strategy has probability zero and inthe right diagram when they are best
responses to the strategies of player 2. The pure strategiesof player 2 are similarly labeled by 4
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and 5. One can determine the labels of any mixed strategy by checking which labels are adjacent
to it in the diagram. The nodes denote strategiesx∈ X andy∈Y that have the maximum number
of labels in their respective strategy sets.

It is not difficult to apply Lemma 5.1 to find the equilibria of this game using Figure 1. The equi-
libria are(x1,y1) = ((0,0,1),(1,0)), wherex1 has the labels 1, 2, 4 (andy1 has the remaining labels
3 and 5),(x2,y2) = ((0, 1

3, 2
3),(2

3, 1
3)), with labels 1, 4, 5 forx2, and(x3,y3) = ((2

3, 1
3,0),(1

3, 2
3)) with

labels 3, 4, 5 forx3.
This geometric-qualitative inspection is effective at finding equilibria of games of size up to

3×3. It works by inspecting any pointx∈ Σ1 with m labels and checking if there is a pointy∈ Σ2
having the remainingn labels. A game is callednondegenerateif any x∈ Σ1 has at mostm labels
and anyy∈ Σ2 has at mostn labels. In the remainder of this section we will assume thatΓ satisfies
this nondegeneracy assumption. The following informal discussion explains why “most” games
are nondegenerate, so that this assumption does not pose a significant limitation. Notice that every
additional label imposes an additional equation that usually reduces the dimension of the set of
points having these labels by one. Since the complete setX has dimensionm−1, we expect no
points to have more thanm labels. This reasoning will only fail in exceptional circumstances
if there is a special relationship between the elements ofA or B. This suggests the following
equivalent definition of nondegeneracy, which is similar tothat used by Shapely (1996):

Lemma 5.2. For any x∈ Σ1 with set of labels K and y∈ Σ2 with set of labels L, the set{x′ ∈ Σ1 :
K ⊆ L′(x′)} is convex and has dimension m−|K|, and the set{y′ ∈ Σ2 : L ⊆ L′′(y′)} is convex and
has dimension n−|L|.

A convex setX hasdimension d≥ 0 iff there existd+1 linearly independent points
p1, . . . , pd+1 ∈ X such that

X = {α1p1 + . . .+αd+1pd+1 : αi ≥ 0,
d+1

∑
i=1

αi = 1},

andX is empty if its dimension is negative. A proof of this result as well as several other equivalent
definitions of nondegeneracy can be found in von Stengel (1996).

As an obvious corollary, the set of elements ofΣ1 with a given setK of m labels is either empty
or contains a single element (and similarly for elements inΣ2 with a given set ofn labels). Also,
let x∈ Σ1 containm labels, and letK be a subset ofm−1 of these labels. Sincex clearly contains
all of these labels, Lemma 5.2 asserts that the set of elements of Σ1 containing all the labels inK
is one-dimensional. So there existsx′ ∈ Σ1 such that the set of elements containing all labels inK
equals

{x′′ = αx+(1−α)x′ : 0≤ α ≤ 1}.
It is clear thatx′ must be an endpoint of this line segment because either setting α > 1 causes a
component ofx′′ to be negative or because strategyj of player 2 is no longer a best response tox′′,
where j ∈ K. The first case implies that an additional element ofx′′ has become zero atα = 1, in
which casex′ hasm labels. The second case implies that there is an elementj ′ ∈ S2−K such that
j ′ is a best response tox′′ whenα > 1, but not whenα < 1. So j and j ′ are both best responses
whenα = 1, andx′ hasm labels. So in either casex′ must contain an additionalm-th label, just as
x does. It follows that there are exactly two elements ofΣ1 that containm labels, which include the
m−1 labels inK. Similar logic holds for ally∈ Σ2 containingn labels.
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Lemma 5.3. In a nondegenerate game only finitely many points inΣ1 have m labels and only
finitely many points inΣ2 have n labels.

Proof. Let K andL be subsets ofS∗ with |K| = m and|L| = n. There are only finitely many such
pairs(K,L). Consider the set of points inΣ1 having the labels inK, and the set of points inΣ2
having the labels inL. By the above lemma, these sets are empty or singletons. So the desired
conclusion follows. �

We can now define two graphsG1 = (V1,E1) andG2 = (V2,E2) as follows. LetG1 be the graph
whose vertices are the pointsx ∈ Σ1 that have exactlym labels, with an additional vertex01 that
has all labelsi in S1. Any two such verticesx andx′ are joined by an edge if they differ in exactly
one label (and have the otherm−1 labels in common). Similarly, letG2 be the graph with vertices
y∈ Σ2 that haven labels, with the extra vertex02 having all labelsj ∈ S2, and edges joining those
vertices that haven−1 labels in common. Theproduct graph G= (V,E) = G1×G2 has vertices
(x,y) ∈V1×V2. There is an edge between two vertices(x,y) and(x′,y′) iff y = y′ and{x,x′} ∈ E1,
or x = x′ and{y,y′} ∈ E2.

The Lemke-Howson algorithm can be defined in terms of these graphs. Define

P = {(x,y) ∈V : L(x,y) = S∗},

and for eachk∈ S∗ let
Pk = {(x,y) ∈V : L(x,y) ⊇ S∗−{k}}.

These are the node pairs that are completely ork-almost completely labeled; note thatPk ⊇ P, and
thatk 6= l impliesPk∩Pl = P. It is clear from the nondegeneracy assumption and Lemma 5.1 that
the members ofP are the Nash equilibria ofΓ and the node pair(01,02). The following two results
follow pretty much directly from the discussion following Lemma 5.2:

Lemma 5.4. For each k∈ S∗, any completely labeled(x,y) ∈V is adjacent to exactly one vertex
pair (x′,y′) ∈V that is belongs to Pk.

Proof. Everyk∈ S∗ must be a label of eitherx or y (and not both). Ifk is a label ofx, we know that
there is a unique elementx′ ∈ Σ1 that shares the otherm−1 labels ofx and also has anm-th label:
so x′ is a vertex ofG adjacent tox. So (x′,y) is the only vertex ofG that isk-almost completely
labeled and adjacent to(x,y). Similarly if y has labelk, then the unique adjacent vertex inG will
be(x,y′). �

Lemma 5.5. For each k∈ S∗, any vertex(x,y) in G that belongs to Pk−P is adjacent to exactly
two vertices that belong to Pk.

Proof. Let h denote the unique duplicate label thatx andy have in common. We know there is
exactly one vertexx′ in G1 adjacent tox that shares the otherm− 1 labels (excludingh), and
exactly one vertexy′ in G2 adjacent toy that shares the othern−1 labels. So(x,y′), and(x′,y)
are both adjacent to(x,y) and are alsok-almost completely labeled. If instead we omit a label
from x or y that is not the shared label, then it will be impossible to obtain a vertex that isk-almost
completely labeled: so there are only two such vertices. �

These results suggest the following strategy for finding a Nash equilibrium if we are given some
completely labeled vertexv of G. First, pick ak∈ S∗ and travel to the uniquek-almost completely
labeled vertexv′ that is adjacent tov. If v′ is completely labeled, then it is either an equilibrium or it
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is (01,02). Otherwise,v′ must be adjacent to one otherk-almost completely labeled vertex besides
v : so we can continue this process indefinitely until we arriveat a completely labeled vertexw,
which has only onek-almost completely labeled neighbor. It can easily be shownby induction that
this path has no cycles; so this strategy determines a uniquepath to a completely labeled vertex,
which is either a Nash equilibrium or(01,02). If we start at the known completely-labeled vertex
(01,02), then the path must terminate at a Nash equilibrium. This algorithm was discovered by
Lemke and Howson (1964).
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x3

I
III

V

1

2
4

3

5 1
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IV
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1

2

3

4

5

y2

y3

FIGURE 2. The graphsG1 andG2 for the game (5.1).

Figure 2 demonstrates the algorithm on the game (5.1) definedabove withk = 2. The algorithm
starts withx = (0,0,0) andy = (0,0). Step I: sincex contains label 2,y will remain the same and
we must switchx in G1. It is clear that we must changex to (0,1,0), which causes label 5 to be
duplicated. Step II: dropping label 5 inG2 changesy to (0,1), which picks up label 1. Step III:
dropping label 1 inG1 changesx to (2

3, 1
3,0), which duplicates label 4. Step IV: dropping label 4

in G2 changesy to (1
3, 2

3), which has the missing label 2. So the algorithm terminates atthe Nash
equilibrium((2

3, 1
3,0),(1

3, 2
3)). Similarly, steps V and VI in the figure join the equilibria(x1,y1) and

(x2,y2) on a 2-almost completely labeled path.
In addition to its computational power, the Lemke-Howson algorithm also provides an alter-

native constructive proof that every nondegenerate game contains an equilibrium, independent of
Nash’s result. In fact, it shows that the number of equilibria in any game must be odd. For, consider
the set of allk-almost completely labeled vertices ofG and the edges that connect them, for some
fixedk. It is clear that this set of vertices and edges consists of disjoint paths and cycles. The cycles
consist solely of elements ofPk−P, and the paths have completely labeled vertices as endpoints.
It follows that there are an even number of completely labeled vertices, and since(01,02) is the
only one that is not an equilibrium, the number of Nash equilibria must be odd. Unfortunately,
the Lemke-Howson algorithm cannot, in general, find all Nashequilibria of a given game. That
is, it is possible that some equilibria are not endpoints of the k-almost completely labeled path
from (01,02) for all k. McKelvey and McLennan (1996) discuss some techniques for finding all
equilibria of a game, which turns out to be much more difficultthan finding a single equilibrium.
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6. SOLVING THE LCP

In the previous section we presented the Lemke-Howson geometrically. In this section we show
that it can also be interpreted algebraically as a procedurefor finding a solution to the LCP(q,M)
presented in section 4. Let

(6.1) P1 = {x′ ∈ R
m : x′ ≥ 0,x′TB≤ 1n},

(6.2) P2 = {y′ ∈ R
n : y′ ≥ 0,Ay′ ≤ 1m}.

Then by the analysis at the end of section 4, the elements of(P1−{0})× (P2−{0}) are feasible
solutions to the LCP(q,M).

P1×P2 is the polyhedron defined by

Ay′ + r = 1M(6.3)

BTx′ +s= 1N(6.4)

with x′,y′, r,s≥ 0, wherer ∈ R
M ands∈ R

N are vectors ofslackvariables. The system (6.3), (6.4)
is of the form

(6.5) Cz= q,

whereC, q, andz are defined as follows:z is the 2(m+n)-vector of nonnegative variables defined
by

zi = y′i for 1≤ i ≤ n,

zi = x′i−n for m+1≤ i ≤ m+n,

zi = r i−(m+n) for m+n+1≤ i ≤ 2m+n,

zi = si−(2m+n) for 2m+n+1≤ i ≤ 2m+2n.

C is the(m+n)×2(m+n) matrix defined by

C =

[

A 0 IM 0
0 BT 0 IN

]

,

whereIM denotes them×m identity matrix, andIn denotes then×n identity matrix. Andq= 1m+n.
Now let us assume that all rows ofA are distinct and all rows ofBT are distinct. If this were

not the case, then one player would have several “identical”strategies in the sense that he would
receive the same payoff playing either one no matter what hisopponent played. Thus we lose
nothing my eliminating these redundant strategies. Under this assumption, it is clear that matrix
C has full rank equal tom+ n (the number of rows). Soq belongs to the space spanned by the
columnsCj of C. A basisβ is given by a basis{Cj | j ∈ β} of this column space, so that the square
matrixCβ formed by these columns is invertible. The correspondingbasic solutionis the unique
vector zβ = (zj) j∈β with Cβzβ = q, where the variableszj for j ∈ β are calledbasic variables,
andzj = 0 for all nonbasic variables zj , j /∈ β, so that (6.5) holds. The solution is unique since
Cβ is invertible. If this solution also satisfiesz≥ 0, then the basisβ is calledfeasible. If β is
a basis for (6.5), then the corresponding basic solution canbe read directly from the equivalent
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systemC−1
β Cz= C−1

β q, called atableau, since the columns ofC−1
β C for the basic variables form

the identity matrix. The tableau is equivalent to the system

(6.6) zβ = C−1
β q− ∑

j /∈β
C−1

β Cjzj ,

which shows how the basic variables depend on the nonbasic variables.
Pivoting is a change of the basis where a nonbasic variablezj for some j not in β entersand

a basic variablezi for somei in β leavesthe set of basic variables. The pivot step is possible if
and only if the coefficient ofzj in the i-th row of the current tableau is nonzero, and is performed
by solving theith equation forzj and then replacingzj by the resulting expression in each of the
remaining equations.

For a given entering variablezj , the leaving variable is chosen to preserve feasibility of the basis.
Let the components ofC−1

β q beqi and ofC−1
β Cj beci j , for i ∈ β. Then the largest value ofzj such

thatzβ = C−1
β q−C−1

β Cjzj ≥ 0 in (6.6) is

(6.7) min{qi/ci j |i ∈ β,ci j > 0}.

This is called aminimum ratio test. The following lemma says that the minimum in (6.7) will be
unique and determines the leaving variablezi uniquely under the nondegeneracy assumption. After
pivoting, the new basis isβ∪{ j}−{i}.

Lemma 6.1. The gameΓ determined by A and B is nondegenerate if and only if all basicvariables
have positive values in any basic feasible solution to(6.3)and (6.4)

I won’t give a proof of this equivalence, and refer the readerto von Stengel (1996).
The choice of the entering variable depends on the solution being sought. The Simplex method

for linear programming is defined by pivoting with an entering variable that improves the value
of the objective function. In the system (6.3), (6.4), we arelooking for acomplementarysolution
where

(6.8) x′Tr = 0, y′Ts= 0;

this implies that(x′,y′) is a solution of the LCP(q,M), and therefore that its normalization is
a Nash equilibrium by Theorem 4.8. In a basic solution to (6.3), (6.4), every nonbasic variable
has value zero. Hence, each basis defines a vertex ofG which is labeled with the indices of the
nonbasic variables. The variables of the system come incomplementarypairs(xi, r i) for the indices
i ∈ M and(y j ,sj) for j ∈ N. Recall that the Lemke-Howson algorithm follows a path of solutions
that have all labels inS1∪S2 except for a missing labelk. Thus ak-almost completely labeled
vertex is a basis that has exactly one basic variable from each complementary pair, except for a
pair of variables(xk, rk) (if k ∈ M) or (yk,sk) (if k ∈ N) that are both basic. Correspondingly,
there is another pair of complementary variables that are both nonbasic, representing the duplicate
label. One of them is chosen as the entering variable, depending on the direction of the path being
computed. The two possibilities represent the twok-almost completely labeled edges incident
to that vertex. The algorithm is started with all componentsof r and s as basic variables and
nonbasic variables(x′,y′) = (01,02). This initial solution satisfies (6.8) and represents the artificial
equilibrium.
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Algorithm 6.2. (Complementary pivoting.) For a bimatrix game with positive payoff matrices A,B
compute a sequence of basic feasible solutions to the system(6.3), (6.4)as follows.
(a) Initialize with basic variables r= 1M,s = 1N. Choose k∈ S1∪S2, and let the first entering
variable be x′k if k ∈ S1 and y′k if k ∈ S2.
(b) Pivot such as to maintain feasibility using the minimum ratio test.
(c) If the variable zi that has just left the basis has index k, halt. Then(6.8)holds and(x,y) defined
by the mapping in Theorem 4.9 is a Nash equilibrium. Otherwise,choose the complement of zi as
the next entering variable and go to (b).

Now we will demonstrate Algorithm 6.1 for the example of the previous section. The initial
basic solution in the form (6.6) is given by

r1 = 1−6y′5
r2 = 1−2y′4−5y′5(6.9)

r3 = 1−3y′4−3y′5.

and

s4 = 1−x′1−4x′3(6.10)

s5 = 1−2x′2−3x′3.

Pivoting can be performed separately for these two systems since they have no variables in com-
mon. With the missing label 2 as in Figure 2, the first enteringvariable isx′2. Then the second
equation of (6.10) is rewritten asx′2 = 1

2 −
3
2x′3−

1
2s5, ands5 leaves the basis. Next, the comple-

menty′5 of s5 enters the basis. The minimum ratio (6.7) in (6.9) is 1/6, so that r1 leaves the basis
and (6.9) is replaced by the system

y′5 =
1
6
−

1
6

r1

r2 =
1
6
−2y′4 +

5
6

r1(6.11)

r3 =
1
2
−3y′4 +

1
2

r1.

Then the complementx′1 of r1 enters the basis ands4 leaves, so that the system replacing (6.10) is
now

x′1 = 1−4x′3−s4(6.12)

x′2 =
1
2
−

3
2

x′3−
1
2

s5.

With y′4 entering, the minimum ratio (6.7) in (6.11) is 1/12, wherer2 leaves the basis and (6.11) is
replaced by

y′5 =
1
6
−

1
6

r1

y′4 =
1
12

+
5
12

r1−
1
2

r2(6.13)

r3 =
1
4
−

3
4

r1−
3
2

r2.
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Then the algorithm terminates since the variabler2, with the missing label 2 as index, has become
nonbasic. The solution defined by the final systems (6.12) and(6.13), with the nonbasic variables
on the right hand side equal to zero, satisfies (6.8). Renormalizing x′ andy′ by the mapping in
Theorem 4.9 gives the equilibrium(x,y) = (x3,y3) mentioned after example (5.1), with payoffs 4
to player 1 and 2/3 to player 2.

7. CONCLUSION

We have seen that a two-player zero-sum game in strategic-form can be solved in polynomial
time by converting it to a pair of dual linear programs, and a general two-player game in strategic
form can be solved by the Lemke-Howson Algorithm, which runsin worst-case exponential time.
It turns out that these are among the most efficient known algorithms for solving these problems,
and it still remains an important open question whether there exist polynomial-time algorithms for
finding a Nash equilibrium in any finite strategic-form game (it has not been proven to be NP-hard).
It is surprising that so little is known about the complexityof this problem, despite the fact that a
solution is guaranteed to exist by the Nash Existence Theorem. In fact, Berkeley Professor Christos
Papadimitriou (2001) stated, “the complexity of finding a Nash equilibrium is in my opinion the
most important concrete open question on the boundary of P today.”

While the results presented in this paper are very powerful, they only represent the simplest
computational problems in game theory. We only looked at twoplayer games, rather thann-
player games; we assumed all games were nondegenerate; we only computed Nash equilibria,
rather than other equilibrium refinements; we only computeda single Nash equilibrium, rather than
multiple or all equilibria; we only considered games in strategic-form, rather than more powerful
models such as extensive form and sequence form; and we only considered two particular linear
techniques, rather than other algorithms. These are all interesting and very important questions,
which unfortunately I do not have time to address in this paper and refer the reader to McKelvey
(1996) and von Stengel (2002). However, many of these results involve relatively simple extensions
of the Lemke-Howson algorithm and other techniques developed in this paper, and it should not be
too difficult to understand them after this introduction.
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