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Abstract.

An explanation is given for two peculiar phenomena – Foo Fighters and microwave oven plasma balls. Both are proposed to arise

from the  interaction  of  microwave energy with  areas  of  hot,  partially  ionized,  gas.  In  the  former case  it  is  suggested  that  the

airplane's  own radar  irradiated  its  hot  exhaust  thus  producing a  glowing object that  appeared to follow it.  The physics of these

situations is examined and we attempt to delineate the temperatures and field strengths necessary for such processes to be viable.

To do this we employ an interesting iterative method for the solution of the appropriate partial differential equations. We find that

both processes do make good physical sense although the field strengths  required are towards  the higher end of what  would be

considered reasonable.

1. Introduction. 

The  mysterious  appearance  of  "Foo  Fighters" over  the  skies  of  World  War  II,  and  their  equally mysterious
disappearance  after  the cessation of hostilities, constitute one of the stranger  episodes  in the history of atmo-
spheric  physics (1).  Bright  lights were  reported  to  follow aircraft.  They were  observed  in all theaters  of  the
war.  Common  opinion  on  most  sides  held  that  they  were  enemy  secret  weapons  or  UFOs.  Little  evidence
indicating this surfaced  following the end of the war and they were variously explained as corona  discharges,
ball lightning, or other electromagnetic or optical phenomena. 
     The idea that these lights were  produced  by radar  beams  interacting with ionized gas, particularly engine
exhaust, is not new. An interesting video suggesting as much is easily found on the Internet (2). But the prove-
nance of this notion is difficult to trace  and it does  not seem to have attracted  much physical attention. For  a
phenomenon such as that described  to have been real it would have had to have an input of energy (or  be an
actual UFO). Very few sources  of external energy, save radar  energy emitted by the aircraft itself would have
been present to account for a glowing object. We would like to investigate this idea and find out whether, and
under what circumstances, it might be plausible.

2. Microwave Oven Plasma Balls.

Most people that would read a paper like this have, probably, at some time or other, succumbed to the tempta-
tion to put a lit candle or sliced grape into their microwave oven. The result is usually a bright plasma ball that
rises to the top surface of the oven and dissipates. What could be occurring here? Surprisingly, little theoreti-
cal  work  seems  to  have  gone  into  analyzing this  common  phenomenon.  Das  (3)  has  tried  to  describe  it  in
terms  of  Townsened  avalanches  (although  the  electric  field  strengths  involved  do  not  seem  to  easily justify
this). We will take a far simpler approach.
     Suppose there is a free electron oscillating in a microwave field. It moves according to:

1)   me x''(t) + Λ x'(t) = e E Sin(Ω t) = F(t)

where  Λ  represents  a damping constant  that describes  the interaction of the electron with the air it is moving
through. We can estimate Λ by considering Paschen's work on the electrical breakdown  of air at STP (4).  He

finds  that  the  average  distance  traveled  between  electron  collisions with  air  molecules  is,  roughly,  10-6  m.

Knowing this we can estimate  Λ » 10-19 
kg
sec

. Realizing that the electron gives energy to its surrounding gas at

a rate x'(t) F(t) we find that the gas takes up energy at a rate:

2)    Rate  energy in  (W/m3)  =  
Ηe e 2 E2 Λ

2 Ime
2 Ω2 + Λ2M  »  

Ηe e 2 E2

2 Λ
 where  Ηe  is  the  number  density of  free  electrons.  Ω  is

assumed to be about 109-1010 sec-1 since this is typical for a kitchen microwave oven.

Now,  assuming  that  each  gas  molecule  possesses  an  energy  Β  k  T,  we  can  write  the  rate  of  temperature
increase as:

3)   ¶t THtL =
Ηe e 2 E2

2 ΗA Β k Λ
 where ΗA represents the number density of air molecules. Β is set at 3.5, as is proper for

diatomic molecules at high temperature.

The pressure  of the air is taken to always be 1 atm (P0  = 101,325  N/m2). We will picture our nascent plasma
ball having a radius d0  and containing a fixed number  of free electrons.  We cannot be sure what this number
is but,  for  simplicity's sake,  we  will assume  their  total  number  to  be  more-or-less  constant.  We will assume
that  all the air  molecules  inside our  plasma ball stay there  forever  and  we will write  their number  as N0.  As
our  ball heats it will, of course,  expand.  Ηe  and ΗA  will change equally. Λ may be designated Λ0T0/T(t)  where

T0  is about  273 K. (As the ball expands the electrons will collide less often and Λ will decrease as 1/volume.)
Therefore:

4)   ¶t THtL =
Ηe e 2 E2 THtL
2 ΗA Β k Λ0 T0

.

     It is not clear what Ηe  really is. But we know that there are free electrons in candle flames since these can

conduct electricity somewhat. We do know that a candle flame can easily be up to 1800 K in places, however.
E is more difficult to estimate because of the complexity of the situation within the oven. A pattern of standing
waves  is set  up  and  the field can be  very strong in some  places  and  weak in others.  We know that  a  micro-
wave oven projects  about  1 kW of energy through a roughly .07 m2  area.  So E » 3250  V/m on average. The
intensity  of  this  radiation  would  be  about  14,000  W/m2. One of two things can happen. If Ηe  is  very  small,

nothing happens.  If Ηe  is sufficiently great  the little ball will heat exponentially in real time. If Ηe  = 6.5  X1016

m-3  (corresponding  to about  1.5X10-6 % ionization) it will heat to 8, 000o  in 1 sec! But we should also bear
in mind that, as the temperature  increases, Ηe  will increase due to simple (Saha) ionization of the air. The net

result would  be a rapid  expansion of the ball to  enormous  temperatures  and dimensions. Obviously, no such
catastrophes  ever happen.  Why not? For one thing, the plasma ball (being very hot and buoyant) quickly rises
to the top  of the oven compartment  where  it dissipates.  But,  more  importantly, there is only so much energy
an oven can give to such a ball. Suppose our ball of candle flame began with a radius of 2 cm. If Ηe exceeds a

critical  level  the  above  model  would  have  it  taking up  energy at  a  rate  greater  than I0  Area  =  I0  Π  H2 cmL2

where I0 designate the radiation intensity impinging on the ball. This is, of course, quite impossible. Since I0 =
Ε0 c E2

2
 we see that the critical electron density is defined by:

     

5)   Ηe ³ 3 Λ0 c Ε0 T0

4 e2 T d
 which is independent of I0. T0 = 300 and Λ0 is the damping at STP.

This gives a critical density of 6.5X1016  m-3 for a 2 cm ball and 1.3X1016m-3  for  a larger one with a 10 cm
radius,  assuming these are at 1800  K. It is perhaps  worth mentioning that, at these and higher electron densi-
ties, the plasma frequency is generally above the frequencies used by microwave ovens (and radars).  Early in
its life we suppose  these free electrons are supplied primarily by the chemical reactions that power  the flame.
With the temperature  above  about  4000-5000  K Saha ionization of the air would  provide  more  than enough
electron density to sustain the process. 

     If Ηe  is above  the critical value the above-described  heating mechanism cannot  work  and  must  be  aban-

doned in favor of one where the heating occurs at a slower rate given by:
     

6)    ¶t THtL =
Π d2 I0

N0 Β k
 where  d  is  the  radius  of  the  expanding  ball  of  ionized  air  and  N0  is  the  number  of  air

molecules inside it.

This radius will be proportional to HTHtL � TBL1�3 where TB is the initial temperature  of the flame. Thus ¶t THtL µ

THtL2�3 and the ball will expand less quickly than it would according to Eqn 4). Indeed, we will suppose that Ηe

always exceed the critical value. This assumption greatly simplifies our work. We write:

7)  ¶t THtL =
Π d2 I0

N0 Β k
 inside the ball and 0 outside.

     But  the temperature  will also change owing to  thermal  diffusion. And,  if hot  enough,  the ball (which we
assume to be optically transparent) will cool owing to its emission of continuum radiation. Therefore:
     

8)   ¶t THt, rL =
Π d2 I0

N0 Β k
 +  D0(T(t,  r))  Ñ2T(t)  -  

WHTHt, rLL
P0 Β

 where  W HTHt, rLL represents  the  loss  to  radiation  ( W
m3 )

and D0(T(t, r)) the thermal diffusivity of the air ( m2

sec
). The source term is understood  to operate only inside the

ball.
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). The source term is understood  to operate only inside the
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3. Numerical Simulations.

In  order  to  see  whether  Equation  8)  describes  any  reasonable  physics  it  must  be  solved  numerically.  The
solution of  this non-linear PDE is not  straightforward.  It  is difficult, using Mathematica's NDSolve  function,
to capture  the expansion of the ball. This is a crucially important matter  since it directly influences the rate of
the ball's heating. We require a more effective method.
     We will construct a table, K, that represents the initial state of the ball:
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K = 880.001, 1800<, 80.002, 1800<, 80.003, 1800<, 80.004, 1800<, 80.005, 1800<, 80.006, 1800<,
80.007, 1800<, 80.008, 1800<, 80.009, 1800<, 80.01, 1800<, 80.011, 1800<, 80.012, 1800<,
80.013, 1800<, 80.014, 1800<, 80.015, 1800<, 80.016, 1800<, 80.017, 1800<, 80.018, 1800<,
80.019, 1800<, 80.02, 1800<, 80.021, 300<, 80.022, 300<, 80.023, 300<, 80.024, 300<,
80.025, 300<, 80.026, 300<, 80.027, 300<, 80.028, 300<, 80.029, 300<, 80.03, 300<, 80, 0<<.

Here the first term in the elements of the set designates the radial distance from the center of the ball and the
second  its temperature.  We imagine that  the ball begins at  1800  K –  not  too  unbelievable –  and  that  the air
outside  is  at  300  K.  Essentially, we  are  treating  the  ball  as  a  sort  of  "onion." We  assume  that  nothing ever
crosses  from  one  onion-layer to  another.  Any air  molecule  or  free  electron  that  starts  in  a  given shell stays
there forever.  Heat is only given to the innermost 20 shells. The 31st element of the set is a 'dummy element'
that  is only used  to  index time throughout  the simulation. We guess  that  the initial radius  is 2  cm.  This may
seem a little large for a candle flame. But we should recall that a significant amount of very hot air surrounds
what  our  eye  sees  as  the  flame.  Smaller  flames  can  be  modeled.  They  do  not,  however,  achieve  a  size  or
brightness consistent with what we usually see in our ovens.
     We first act on K with a 'Source  Operator'  which adds the proper  amount  of temperature  to each layer of
the  onion  and  subtracts  the  loss  due  to  continuum  radiation  (usually  insignificant).  After  this  a  'Diffusion
Operator'  acts upon it doing two things. Firstly, it redistributes the temperatures  according to ordinary thermal
diffusion. Then it adds  one time increment to the 'dummy' 31st  set.  Lastly an operator  rearranges  the coordi-
nates of the onion-layers so that expansion is accounted  for – if, say, the temperature  inside a particular layer
happened  to  increase,  the separation  between  that layer's walls would  have to  increase as well. These opera-
tors  execute  over  a  time step  small enough  that  the  solution is stable  and  accurate.  We combine  these  three
sequential  processes  into  one  'Evolution  Operator'  which  is  iterated  upon  K  as  many times  as  necessary  to
cover  the  time  interval of  interest.  The  details  are  laid out  in the  Supplementary  Material.  Having estimated
the  candle  flame  as  being about  1800  K  we  have  only to  figure  out  I0.  The  pattern  of  microwaves  inside a
typical oven has been simulated (5).  The strongest fields can exceed 25,000  V/m. Also, as standing waves are

set  up,  energy  can  impinge  on  the  ball  from  both  sides.  We  will  guess  that  I0  =  106  W/m2.  This  may  be
towards  the high end of what might be considered  reasonable.  But it gives us an encouraging result  (Figs. 1,
2).
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                                            Fig. 1

The calculated core temperature (K) of an d0 = . 02 m, I0 = 106 W/m2 ball as a function of time (sec).

     The ball quickly heats and expands which is exactly what we see in our  ovens at home.  By the time it
reaches about 3500 K it will be quite visible. By the time it reaches 6000 K it will be glowing with the appar -
ent intensity of an 45 Watt light bulb (assuming these are about 2% efficient (6)). Below we plot its tempera -
ture profile at t = .5 sec (Fig. 2). The ball achieves a maximum radius of about .03 m.
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                                            Fig. 2

The temperature profile (K) of an d0 = . 02 m, I0 = 106 W/m2 ball at t = .5 sec as a function of radial distance (m).

4. Foo Fighters.

Let us apply what we have learned above to the, more interesting, problem of Foo Fighters. Situations in the
skies over World War II differed quite a bit from those inside a microwave oven. But we do know that air-
planes put out hot exhaust. Modern propeller-driven planes can put out exhaust at, at least, about 1500 K (7).
We will guess that the powerful,  early, war planes put out exhaust at 1800  K (since we have, conveniently,
already used this number and, besides, it is as reasonable as any). 
     The primitive airborne interception radars in use at the time could generate as much as 250 kW in power
(8).  Some focused it using parabolic reflectors. Others utilized Yagi-Uda or other dipole antenna arrays (9).
Not knowing the specifics, we will estimate that 250 kW went out over an area of roughly 1 m2. (It cannot,
really, have been much larger or smaller for things to make practical sense.) These early radars did not pour
their energy out in a continuous stream but, rather, delivered it in pulses. The pulse rate frequency could be as
high as many hundred Hz. But the German Hohentwiel system operated  at as low a frequency as 50 Hz (10).
We will just use 100 Hz as an illustrative and reasonable example. Different planes had, of course,  different
radar sets on board which they would use to scan for enemy aircraft. If a radar beam were to end up focused
upon an area where the airplane was discharging hot, probably rather ionized, exhaust, a phenomenon similar
to that already described  might very well take place. A hot plasma ball might form which, for as long as it
remained subject to the plane's radar,  would grow and luminesce. Since an airplane's exhaust stream is much
larger than a candle flame we will consider a ball with d0 = .1 m. Below we plot the results (Fig. 3).
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The calculated core temperature  (K) of an d0 = . 1 m, I0 = 2.5 X105 W/m2 ball as a function of time (msec).

A concern may arise since the radar supplies energy to the ball in pulses whereas we are approximating it as a
continuous stream of power.  Simulations have been performed  with the source  turning off and on rapidly.
Although the temperature  increases in a more  jagged way the essential conclusions are unaltered  (data  not
shown). It is remarkable  how both this system, and its far smaller, oven-based,  counterpart  converge to the
same final temperature  of about 6300 K. Once fully developed the plasma ball would glow with the apparent
brightness of a roughly 660 W incandescent light bulb. Now this is a bit below what we might like to see for a
Foo Fighter. So we do not think this is all there is to it.
     Every .01 sec the exhaust stream will receive a powerful pulse of microwave energy. World War II air-
planes generally flew at about 100 m/sec. The result would be a string of plasma balls that trailed behind the
plane. They would be spaced at 1 m intervals. As long as they remained in the radar  beam they would con-
tinue to heat and grow. The ones closest to the plane would be small and cool. Those farther away would be
large and bright. Obviously, such balls could not continue to grow forever; at some point one of three things
would happen: 1) The ball would simply convect away and dissipate. 2) The radar  beam might move away
from it thus depriving it of sustenance. Or, 3) so many balls might trail the plane that they, together,  would
absorb all the energy put out by the transmitter. We cannot say much about the first two possibilities. But we
know that one of these balls has an area of about  .03 m2. If all the emitted energy from the plane covers a
rough effective area of 1 m2 the maximum number of balls would be about 1/.03 = 33. We will use 35 since it
is a more convenient number. So, out to about 35 m behind the plane, the air crew would see a string of lights
with the brightest being the farthest away. Beyond 35 m the lights would quickly die out and vanish. We plot
this situation below (Fig. 4).
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The luminosity (W) of a string of d0 = . 1 m, I0 = 2.5 X105 W/m2 balls as a function of distance from aircraft (m).

     So we do not think the air crews were observing a single object. Instead, they were looking at something
like the still frames in a movie. The balls closest to the plane would be easily overlooked. They would proba-
bly focus  their attention on the ~5 very bright balls that would  form a chain about  4-5  m long and 35  m
behind the plane. These would glow, collectively, with about 55 W (or the intensity of a 2750 W light bulb).
Distance and confusion could easily lead them to perceive a single, large and bright, object that appeared to be
chasing their plane. We suspect that this is what happened. The picture is, probably, complicated somewhat by
the fact that not all balls in such a string would have ignited or behaved identically.
     It could be objected that we have had to use some pretty large values for I0 and T  both for the Foo Fighters
and the microwave plasma balls. Our values, while not physically ridiculous, are, to be sure, "generous." But
Foo Fighters were not observed chasing all airplanes every day and not all candles perform well in the oven.
Some  rather  fortuitous  circumstances  seem required  for  these phenomena  to  work.  How a powerful  radar
beam would be "painting" the balls behind an aircraft is hard to say. The previously mentioned video blames
'overpowered'  radar  sets. This is certainly possible – malfunctions must have been common.  Many airplanes
had radar that could scan off to the sides and behind so it may be that some air crews exacerbated their own
problem by trying to track the, seemingly dangerous, object that was pursuing them. In the process they would
only have encouraged  its growth and bad  behavior! We also wonder  why Foo Fighters largely disappeared
following the end of the War.  This may be due  to the adoption  of jet power  – perhaps  jet engines do not
produce suitable exhaust. Also, radar systems evolved becoming much more efficient and manageable.

5. Conclusion.

We have tried to show that the interaction of microwave energy with hot, ionized, air can very well produce
the kinds of phenomena encountered  in our kitchen ovens and by World War II fliers. We have been able to
estimate the circumstances that seem necessary and find these to be, generally, not too physically unrealistic. It
may be objected  that our  treatment  of the heating mechanism for the ball is a bit simplistic and threadbare.
This is true. But the important point to remember  is that the ball can never take up more energy than is inci-
dent upon it. We just assume it does the very best it can.
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Supplementary Material | Microwave Oven Plasma Balls.

Below we define W@TD. Our valuesare taken from HLowke, J.J., M.A.Uman, R.W.Liebermann,

1969 : Toward a theory of ball lightning.J. Geophys. Res., 74, 6887 - 6898.L
and HYos, J.M., 1963 : Transportpropertiesof nitrogen, hydrogen, oxygen,

and air up to 30000 K.AVCO Tech. Memo.RAD - TM - 65 - 7, AD - 486068,

doi : http : �� www.dtic.mil�dtic�tr�fulltext�u2�435053. pdf.L.
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w1 = Interpolation@880, 0<, 81000, 1.5<, 81500, 4.5<, 82000, 15<, 83000, 150<,
85000, 1500<, 810000, 7.47´10^7<, 812500, 10^9<, 820000, 7´10^9<, 830000, 10^10<<D

InterpolatingFunction@880., 30000.<<, <>D

w2@t_D := Exp@.00216329t - 3.50388D
W@t_D := If@5000 < t < 10000, w2@tD, w1@tDD
Here we definethe ball' s size and chacteristics:

d0 = .02

k = 1.38´10^-23

Β = 3.5

Η0 = 2.45´10^25

T0 = 1800

P0 = 101325

I0 = 1000000

Here is the numberof air moleculesinsideour ball.

N0 = 4 H300�1800L Pi Η0 d0^3�3
1.36834´1020

Here is its volume.

V0 = 4 Pi d0^3�3
0.0000335103

This is the numberdensityof air moleculesinsidethe ball.

N0� V0

4.08333´1024

This is the heat absorbedover a unit area.

Pi I0� HN0 k 3.5L
4.75345´108

HH simply diffuesa solutionaccordingto Ñ
2T HtL.

HH@U_D :=

Table@8i, Which@i � 1, 2 H U@@2DD@@2DD - U@@1DD@@2DDL �U@@1DD@@1DD^2, i � 30, 0, i � 31, 0, True,

2 HHU@@i + 1DD@@2DD - U@@iDD@@2DDL � HU@@i + 1DD@@1DD - U@@iDD@@1DDL - HU@@iDD@@2DD -

U@@i - 1DD@@2DDL � HU@@iDD@@1DD - U@@i - 1DD@@1DDLL � HU@@i + 1DD@@1DD - U@@i - 1DD@@1DDL +

2 HU@@iDD@@2DD - U@@i - 1DD@@2DDL � HHU@@iDD@@1DD - U@@i - 1DD@@1DDL U@@iDD@@1DDLD<, 8i, 1, 30<D
G@U_, M0_, i_D := HU@@iDD@@2DD � M0@@iDD@@2DDL
Below we definethe thermaldiffusivity. These valuesare derived

from HYos, J.M., 1963 : Transportpropertiesof nitrogen, hydrogen,

oxygen, and air up to 30000 K.AVCO Tech. Memo.RAD - TM - 65 - 7, AD - 486068,

doi : http : �� www.dtic.mil�dtic�tr�fulltext�u2�435053. pdf.L.
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D0 = Interpolation@88300, .000022<, 81000, .00015<, 82000, .00052<,
83000, .0024<, 84000, .0043<, 85000, .009<, 86000, .027<, 87000, .053<,
810000, .024<, 815000, .065<, 820000, .093<, 825000, .195<, 830000, .3<<D

InterpolatingFunction@88300., 30000.<<, <>D

We use a time step of .00001sec.

Diff@U_D := Table@If@i £ 30, 8U@@iDD@@1DD, U@@iDD@@2DD + .00001D0@U@@iDD@@2DDD HH@UD@@iDD@@2DD<,
U@@iDD + .00001 81, 1<D, 8i, 1, 31<D

Below we definethe initialstate of our candleflame.

K = Table@Which@i £ 20, 8.001 i, 1800<, 20 < i £ 30, 8.001 i, 300<, True, 80, 0<D, 8i, 1, 31<D
880.001, 1800<, 80.002, 1800<, 80.003, 1800<, 80.004, 1800<, 80.005, 1800<, 80.006, 1800<,

80.007, 1800<, 80.008, 1800<, 80.009, 1800<, 80.01, 1800<, 80.011, 1800<, 80.012, 1800<,
80.013, 1800<, 80.014, 1800<, 80.015, 1800<, 80.016, 1800<, 80.017, 1800<, 80.018, 1800<,
80.019, 1800<, 80.02, 1800<, 80.021, 300<, 80.022, 300<, 80.023, 300<, 80.024, 300<,
80.025, 300<, 80.026, 300<, 80.027, 300<, 80.028, 300<, 80.029, 300<, 80.03, 300<, 80, 0<<

Sourcedescribesthe heat given to each onion layer.

Source@U_D :=

Table@Which@i £ 20, .00001 80, If@U@@31DD@@2DD £ 1, 1, 0D 4.75´10^8< HU@@20DD@@1DDL^2 + U@@iDD -

80, 1< .00001U@@iDD@@2DD W@U@@iDD@@2DDD � HP0 ΒL, True, 80, 0< + U@@iDDD, 8i, 1, 31<D
HD@U_D := Diff@Source@UDD
FF expandseverythingaccordingto the changesin

temerature. It also redefinesthe radialcoordinateswith which we work.

FF@U_, M0_D := TableB: â
k=1

j

HG@U, M0, kD HU@@kDD@@1DD^3 - If@k > 1, 1, 0D U@@k - 1DD@@1DD^3LL ^H1�3L,
U@@jDD@@2DD>, 8j, 1, 31<F �� N

Evolve@U_D := FF@HD@UD, UD
Here we calculateour solution. It can take up to 40 min.

NestList@Evolve, K, 50001D;
CT gives the ball' s core temperature.

CT@U_D := U@@1DD@@2DD
Table@CT@%52@@iDDD, 8i, 1, 50001<D;
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ListPlot@%, PlotRange® AllD
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We can find the valuesat t = .5 sec and graph them.
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We can graph the ball' s luminosity.

Table@W@CT@%52@@iDDDD, 8i, 1, 50001<D;
ListPlot@%, PlotRange® AllD

10 000 20 000 30 000 40 000 50 000
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20 000
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50 000

We rearrangethe x - axis to correspondto time in sec.

Table@810^H-5L i, %53@@iDD<, 8i, 1, 50001<D;
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ListPlot@%70, PlotRange® AllD
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Watt calculatesthe continuumradiation.

Watt@U_D := Sum@H4 Pi�3L If@i � 1, W@U@@1DD@@2DDD U@@1DD@@1DD^3,
W@U@@iDD@@2DDD HU@@iDD@@1DD^3 - U@@i - 1DD@@1DD^3LD, 8i, 1, 30<D

Watt@%55D
0.908783

Supplementary Material | Foo Fighters.

Here we do the same thing for a largerball.

w1 = Interpolation@880, 0<, 81000, 1.5<, 81500, 4.5<, 82000, 15<, 83000, 150<,
85000, 1500<, 810000, 7.47´10^7<, 812500, 10^9<, 820000, 7´10^9<, 830000, 10^10<<D

InterpolatingFunction@880., 30000.<<, <>D

w2@t_D := Exp@.00216329t - 3.50388D
W@t_D := If@5000 < t < 10000, w2@tD, w1@tDD
d0 = .1

k = 1.38´10^-23

Β = 3.5

Η0 = 2.45´10^25

T0 = 1800

P0 = 101325

I0 = 250000

N0 = 4 H300�1800L Pi Η0 d0^3�3
1.71042´1022

V0 = 4 Pi d0^3�3
0.00418879

N0� V0

4.08333´1024
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Pi I0� HN0 k 3.5L
950691.

HH@U_D :=

Table@8i, Which@i � 1, 2 H U@@2DD@@2DD - U@@1DD@@2DDL �U@@1DD@@1DD^2, i � 30, 0, i � 31, 0, True,

2 HHU@@i + 1DD@@2DD - U@@iDD@@2DDL � HU@@i + 1DD@@1DD - U@@iDD@@1DDL - HU@@iDD@@2DD -

U@@i - 1DD@@2DDL � HU@@iDD@@1DD - U@@i - 1DD@@1DDLL � HU@@i + 1DD@@1DD - U@@i - 1DD@@1DDL +

2 HU@@iDD@@2DD - U@@i - 1DD@@2DDL � HHU@@iDD@@1DD - U@@i - 1DD@@1DDL U@@iDD@@1DDLD<, 8i, 1, 30<D
G@U_, M0_, i_D := HU@@iDD@@2DD � M0@@iDD@@2DDL
D0 = Interpolation@88300, .000022<, 81000, .00015<, 82000, .00052<,

83000, .0024<, 84000, .0043<, 85000, .009<, 86000, .027<, 87000, .053<,
810000, .024<, 815000, .065<, 820000, .093<, 825000, .195<, 830000, .3<<D

InterpolatingFunction@88300., 30000.<<, <>D

Here we use a larger.001 sec time step.

Diff@U_D := Table@If@i £ 30, 8U@@iDD@@1DD, U@@iDD@@2DD + .001 D0@U@@iDD@@2DDD HH@UD@@iDD@@2DD<,
U@@iDD + .001 81, 1<D, 8i, 1, 31<D

Here we leave the sourceon always.

Source@U_D :=

Table@Which@i £ 10, .001 80, If@U@@31DD@@2DD £ 1, 1, 0D 950691< HU@@10DD@@1DDL^2 + U@@iDD -

80, 1< .001 U@@iDD@@2DD W@U@@iDD@@2DDD � HP0 ΒL, True, 80, 0< + U@@iDDD, 8i, 1, 31<D
K = Table@Which@i £ 10, 8.01 i, 1800<, 10 < i £ 30, 8.01 i, 300<, True, 80, 0<D, 8i, 1, 31<D
880.01, 1800<, 80.02, 1800<, 80.03, 1800<, 80.04, 1800<, 80.05, 1800<, 80.06, 1800<,

80.07, 1800<, 80.08, 1800<, 80.09, 1800<, 80.1, 1800<, 80.11, 300<, 80.12, 300<,
80.13, 300<, 80.14, 300<, 80.15, 300<, 80.16, 300<, 80.17, 300<, 80.18, 300<,
80.19, 300<, 80.2, 300<, 80.21, 300<, 80.22, 300<, 80.23, 300<, 80.24, 300<,
80.25, 300<, 80.26, 300<, 80.27, 300<, 80.28, 300<, 80.29, 300<, 80.3, 300<, 80, 0<<

HD@U_D := Diff@Source@UDD

FF@U_, M0_D := TableB: â
k=1

j

HG@U, M0, kD HU@@kDD@@1DD^3 - If@k > 1, 1, 0D U@@k - 1DD@@1DD^3LL ^H1�3L,
U@@jDD@@2DD>, 8j, 1, 31<F �� N

Evolve@U_D := FF@HD@UD, UD
HD@KD
880.01, 1807.61<, 80.02, 1807.61<, 80.03, 1807.61<, 80.04, 1807.61<, 80.05, 1807.61<,

80.06, 1807.61<, 80.07, 1807.61<, 80.08, 1807.61<, 80.09, 1807.61<, 80.1, 1801.94<,
80.11, 300.271<, 80.12, 300<, 80.13, 300<, 80.14, 300<, 80.15, 300<, 80.16, 300<, 80.17, 300<,
80.18, 300<, 80.19, 300<, 80.2, 300<, 80.21, 300<, 80.22, 300<, 80.23, 300<, 80.24, 300<,
80.25, 300<, 80.26, 300<, 80.27, 300<, 80.28, 300<, 80.29, 300<, 80.3, 300<, 80.001, 0.001<<

NestList@Evolve, K, 501D;
CT@U_D := U@@1DD@@2DD
Table@CT@%31@@iDDD, 8i, 1, 501<D;
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ListPlot@%D
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Here is the temperature profile at .5 sec.
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Here we turn the sourceoff after .35 sec.

Source@U_D :=

Table@Which@i £ 10, .001 80, If@U@@31DD@@2DD £ .35, 1, 0D 950691< HU@@10DD@@1DDL^2 + U@@iDD -

80, 1< .001 U@@iDD@@2DD W@U@@iDD@@2DDD � HP0 ΒL, True, 80, 0< + U@@iDDD, 8i, 1, 31<D
NestList@Evolve, K, 501D;
Table@CT@%75@@iDDD, 8i, 1, 501<D;
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ListPlot@%D
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Watt@U_D := Sum@H4 Pi�3L If@i � 1, W@U@@1DD@@2DDD U@@1DD@@1DD^3,
W@U@@iDD@@2DDD HU@@iDD@@1DD^3 - U@@i - 1DD@@1DD^3LD, 8i, 1, 30<D

Table@Watt@%32@@iDDD, 8i, 1, 501, 10<D;
Below we plot the variousballs' luminosityas a functionof their distancefrom the aircraft.

ListPlot@%D
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