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Abstract-A number of unidirectional transient flows of a second grade fluid in a domain with one 
finite dimension are studied. The method of integral transforms (Fourier, Hankel or Laplace) is 
applied to obtain exact solutions. A general theorem on start-up flows for second grade fluids is 
presented that allows us to determine unidirectional flows of second grade fluids once the corres- 
ponding solution is known within the context of the Navier-Stokes theory. In the process of 
obtaining solutions for the fluid of second grade, we find several new exact solutions within the 
context of the classical Navier-Stokes theory. 

1. INTRODUCTION 

Recently, there have been several rigorous mathematical papers devoted to the study of 
existence, uniqueness, and stability of solutions for an incompressible homogeneous second 
grade fluid (cf. Galdi et al. [l], Galdi and Sequeira [2], Coscia and Wideman [3], Galdi 
et al. [4], Dunn and Fosdick [S] and Fosdick and Rajagopal [6]). Dunn and Fosdick [S] 
carried out an extensive study of the thermomechanics of fluids of second grade. They 
showed that if all the motions of the fluid meet the Clausius-Duhem inequality and the 
assumption that the specific Helmholtz free energy be a minimum in equilibrium, then the 
material coefficients obey p 2 0, a1 > 0 and a1 + a2 = 0. 

As early as 1963, Ting [7] provided a set of exact solutions for start-up flows of second 
grade fluids and recognized that the material constants aI and a2 are subject to specific 
restrictions if the solutions are to be bounded. In fact, Ting [7] showed that if the condition 
that a1 > 0 is violated, then the solutions become unbounded. Coleman et al. [S] also 
studied an unsteady unidirectional flow and showed that the solutions blow up in time if 
a1 > 0. A recent paper by Dunn and Rajagopal [9] discusses in detail various issues 
concerning the thermomechanics of fluids of the differential type. 

The purpose of this work is to study the general mixed initial-boundary value problem 
governing unidirectional unsteady flows involving second grade fluids with a view to 
emphasize the differences between the unsteady flow of a second grade fluid and the 
corresponding flow of a classical viscous fluid. We have found several new exact solutions to 
flows that might be relevant to problems in physics and engineering, and useful in the 
experimental determination of the material constants a1 and a2. In this paper we study the 
following problems: 
(a) formation of Couette flow between parallel plates; 
(b) flow between two parallel plates due to an impulsive body force or pressure gradient; 
(c) Taylor-Couette and Couette flows in an annulus due to a constant velocity suddenly 

applied to one of the boundaries; 
(d) Taylor-Couette and Couette flows in an annulus due to a constant shear suddenly 

applied to one of the boundaries. 
Many more exact solutions can be determined; instead of listing them one after the other, 

we will present a theorem on unidirectional transient flows for second grade fluids which 

*Author to whom correspondence should be addressed. 
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makes a systematic study redundant; in fact, we will show that the velocity profile is 
immediately derivable from the corresponding one for the Navier-Stokes fluid. We also 
consider unidirectional flows due to the application of impulsive pressure gradients or body 
forces for which our theorem does not apply. 

2. GOVERNING EQUATIONS 

The incompressible second grade fluid is characterized by 
equation (cf. [lo]): 

T = - pf + +4r + arAz + a&, 

the following constitutive 

(2.1) 

where p is the coefficient of viscosity, a1 and a2 are the normal stress moduli; - pl denotes 
the indeterminate spherical stress and Ai and AZ are the kinematic tensors defined through 

and 
A1 = (grad v) + (grad v)~, (2.2a) 

AZ = :A1 + Ai(grad v) + (grad v)rAr . (2.2b) 

Here v is the velocity, grad the gradient operator and (d/dt) the material time derivative. 
If we substitute the stress T into the balance of linear momentum 

div T + pb = p$ (2.3) 

we obtain, in the case of a conservative body force field b = -grad 4, 

~Av + aiAv, + ar(Aw x v) + (a1 + a&{AlAv 

+ 2 div [(grad v)(grad v)r]} - p(w x v) - pv, = grad P, (2.4) 

where 

P = p - a,(v-Au) - (2a14+a~)iA,,~+~p,v,~+p~, (2.5) 

and A is the Laplacian, the subscript t indicates partial differentiation with respect to time, 
1 Al 1 the trace norm of A1 and 

w = curl 0. (2.6) 

As the fluid in incompressible, it can undergo only isochoric motions; therefore 

divv = 0. (2.7) 

If the domain R is bordered by two non-intersecting boundaries Si, SZ and we assume 
a unidirectional motion of the form 

v = v(x, t)j, (2-g) 

in Cartesian coordinates, 

v = v(x, t)e,, (2.9) 

or, alternatively, 

v = u(x, t)eO, (2.10) 

in cylindrical coordinates, and 

v = v(x, t) sin Bee, (2.11) 

in spherical coordinates (x is the spatial coordinate on which the velocity depends, ee and e, 
are, respectively, the unit vectors in the 8- and the z-directions), then it can be shown that 
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the general form of the balance of linear momentum is 
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(2.12) 

In (2.12), n = 1 when the velocity has the form in (2.8), otherwise n = 0; p = 0, 1, 2, for 
Cartesian, cylindrical, and spherical coordinates, respectively (no summation on p is 
intended). Here g(x, t) represents the sum of the body forces and the pressure gradient. The 
linear partial differential equation (2.12) is to be solved under the boundary conditions 

~i[p(~-y~)+a~~(~-~~)]+(l-qi)“=f;(f) xESi, t>O, (2.13) 

where y = 1 when the velocity assumes the forms in (2.10) and (2.11), otherwise y = 0. (i = 1, 
2; also if 4i = 0 we call it a boundary condition at Si of the first kind and if qi = 1 we call it 
a boundary condition of the second kind.) The initial condition is 

u = F(x), XE R, t = 0, (2.14) 

We will give the solution to the mixed initial-boundary value problem represented by 
(2.12H2.14) by employing a finite integral transform to eliminate the spatial variable and 
the Laplace transform to eliminate the time variable. Then we will provide the explicit 
solution for flows of problems of engineering and physical interest by using the Laplace 
transform. Problems for which the boundary data are incompatible do not admit smooth 
solutions that satisfy both the initial and boundary conditions (cf. Bandelh er al. [22]). The 
ones here examined do yield smooth solutions. 

3. THE GENERAL GOVERNING EQUATION FOR UNIDIRECTIONAL MOTION 

OF A SECOND GRADE FLUID 

In general, it is not convenient to use the method of separation of variables to solve 
non-homogeneous linear partial differential equations. In this case the integral transform 
technique presents a systematic, efficient and powerful tool. 

3.1. Development of the integral-transform pair 
An integral-transform pair can be developed by considering the eigenvalue problem 

(3.1) 

(3.2) 

where $ = @(A, x). Notice that the following identity is valid 

la &I -_ 
( > 

xp- = Vu, 
3ax ax 

p=O,1,2,fo c r artesian, cylindrical, and spherical coordinates, respectively (no summation 
on p is intended). We define the integral-transform pair in the spatial variable x for 
a function f(x, t) as: 

integral transform: f(in,, t) = +(&,, x) f(x, t) dv, (3.3) 

inversion formula: f(x, t) = 1 m *JCL9 0, 
WI 

(3.4) 
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where 3(f(n,, t) is called integral transform of the functionf(x, t) with respect to the variable x, 
and 

N&t) = 
f 

C$ (L 41’ dv. 
R 

3.2. Integral transform of the balance of linear momentum 
Let us multiply both sides of (2.12) by $(A,,,, x) and integrate over the region R. Then, 

s ~h,(x)V~~(x, Odv - n P &,,(x)V%(x, t)dv 
R I 4x9 t) I(lm(x) 

R 
x2 dv + Q& 

I R 

8 Nx, ~)hAX) 

-na'z R 
s 

xz dv + 

s R 
h,,(x)g*(x, Odv = P; 

s 
t4,,/m(4~(x, Oh (3.5) 

R 

where $,,,(x) indicates $(A,, x). Using Green’s theorem 

s Ic/,(x)V’v(x, t)dv = v(x, t)V’&,,(x)dv + i 
84x, t) 

R s R S( i=l Si 
k(x) ax - - u(x, t) y) ds, 

(34 

and (3.5), we have 

(3.7) 

Let us multiply each side of (3.1) by v(x, t) and integrate over the region R to obtain 

5 
vV2&, dv - n 

s 
!!kd,,= _A; t+&v dv = - A;V(lE,, t). (3.8) 

R R x2 

Then, substituting the result into (3.7), we get 

- 1; ( pLv(I,, t) + al?) +gbLl, t) + ClbLl, 0 + c2(kn, t) = P 
!Ee$, (3.9) 

where the functions Ci(&, t) are given by 

4i = l, Y = 0 + Ci(L t) = 

s 
s, $mfids, 7 = 1 + Ci(l,, t) = 

s 

dl//, x-Ads. 
si dx 

If we set 

and 

A*&, t) = 
A @m t) 

p + Alan’ 

then (3.9) yields 

(3.10) 
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3.3. Solution of the ordinary dijkential equation and inversion 
We can solve (3.10) for V(A,, t) as 
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V(l,, t) = 
s 

A*@,, t)exp 
i 

Pii.:q2(r-r)}dr+Cexp{ -pJzlit). (3.11) 
P + ~l’wl 

The constant C can be found by using the initial condition I?(&,, 0) = F&J, and hence 

s ’ 
V(A,, t) = 

mm, 4 
2 exp 

&I 
OP + al&l P + @l&i 

(r-t))dr+F(i,iexp{ -pIzlir}. (3.12) 

Integrating by parts, we obtain 

z?(A,, t) = 1 
&I 

A(&, t) - A(&, 0)exp ip :$;t} - j;gexp{p ;z,;(r - t))dr 

+ F&J exp - 
i 

&I 

p+a,G 

t 

I 
(3.13) 

Now suppose that A@, t) is independent of the spatial variable and has the form 

A(X, t) = f AiHi(t - ti)y 

i=l 

where Ai are constant and Hi(t - ti) is the Heaviside step function with step at t - ti. In 
doing so we implicitly allow for the body forces, the pressure gradient, the boundary 
conditions or any combination of them to undergo only step changes in time. Let us restrict 
ourselves to the case when 

A(x, t) = AH(t), 

then 

25(1,, t) = -A- 1 - exp mJ {-p~~i:.~}]+f(i.)exp{ -,[:,;t}, t>O. (3.14) 

With the help of the inversion formula (3.3) we obtain the final expression for the velocity 

v(x 
9 

t) = A c wfm x) ,_+,s(-$+F&))exp{ -p:zA:,ij, t>O. (3.15) 
P m kJ%L) 

The first term on the right-hand side of (3.15) represents the steady state velocity, the 
second term the transient response of the flow to an abrupt change either in the boundary 
conditions or body forces or pressure gradient. It is worthwhile pointing out that the 
boundary conditions implicitly determine the kind of flow taking place because they affect 
the form of the functions Ci(&, t) and therefore of A. We are now in the position to state the 
following: 

Theorem. If a second grade fluid is at rest or is undergoing steady unidirectional motion 
in a bounded domain and, at some instant, the boundary conditions, the body forces, 
the pressure gradient, or any combination thereof experience a step change, then the 
resulting transient motion will be the same as that of a purely viscous fluid but with 
characteristic time t, = (p + a,&$/&, where A,,, are the eigenvalues of the 
Sturm-Liouville problem associated with the mixed initial-boundary value problem gov- 
erning the flow of the Navier-Stokes fluid, provided that the body forces are independent of 
the position. 

To illustrate the power of this theorem we shall consider two similar problems: the axial 
Couette and the Taylor-Couette flow formation in an annulus due to the imposition of 
a constant shear. The ease with which the latter can be solved, once the Navier-Stokes 
solution is known, will become self-evident. 
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4. AXIAL COUETTE FLOW FORMATION IN AN ANNULUS 

DUE TO A LONGITUDINAL CONSTANT SHEAR 

Consider a second grade fluid at rest in an annular region. At time t = O+ let the inner 
cylinder of radius R0 be pulled with constant shear along its axis and the outer one of radius R1 
be held fixed. 

Let us assume a velocity field of the form 

The balance of linear momentum yields 

~(~+~~)+,n(~+~~>-P~=O, RO<r<R,, t>O, (4.1) 

and the boundary conditions are 

w = (0, 0, w(r, t)). 

w=O, r=R1, t>O, (4.2) 

r = RO, t >O, 

with initial condition 

w =O, R,, <r 5 RI, t =O. (4.4) 

The subsidiary equation obtained by applying the Laplace transform to (4.1) and using 
the initial condition (4.4) is 

d2W ldw pp 

dr2+xr- 
-ii,=O, Ro<r<R1, 
P + alp 

whose solution, under the transformed boundary conditions 

w = 0, r = RI, (4.6) 

dw f 
dr = p(p + alp)’ 

r = R,,, 

is 

*= f Z&r)K&R1) - Z&R&&9 

pJmi ZI (zRo)Ko(zR~) + Zo(zR~)Kl(zRo) 

fz ~o(zr)&(zR1) - ~o(zRXdzr) =-- 
P p2 I~(zRo)Ko(zRd + ~o(zRd&@Ro) 

(the bar denotes the Laplace transform of w) where 

PP ( > 
l/2 

z= ~. 
CL + alp 

(4.7) 

(4.8a) 

(4.8b) 

We shall choose the branch of z such that --11/2 < arg z I x/2. Clearly, the singularities of 
(4.8a) are the zeros of the denominator. It is easy to show that p = 0 is a simple pole; to find 
the other poles, let us set z = il into the denominator of (4.8a) and compute the roots of the 
transcendental equation 

ZI(i~Ro)Ko(ilRI) + Zo(URI)KI(i~RO) = - ~xi[JI(IRo)Yo(~Rx) - Jo(~Ro)YI(AR~I = 0. 

(4.9) 
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In (4.9) we have used the identities (cf. [ll])’ 

J&x) = Jo(x), (4.10a) 

Zl(iX) = iJi(X), (4.10b) 

K&x) = - _57ci[J&) - iY,(x)], (4.1oc) 

K,(ix) = - +71[J1(x) - iY,(x)], (4.10d) 

The theorem in the Appendix ensures that there are infinitely many roots of (4.9) and that 
they are simple, real and therefore, they can be ordered to form an increasing sequence {A,}. 
Thus the singularities of W are 

PO = 0, pn = - 4.f 
p + alA,Z’ 

(n = 1,2,. . .), (4.11) 

[A, are the positive roots of (4.9)] and are concentrated in the interval - p/al I p I 0, with 
p = - p/al as the point of accumulation. Hence W is a regular analytic function of p if 
Rep > 0. Direct computation gives the residues R, at the poles pn: 

R. =/R,lo+ 
P 1 

(4.12) 

R 

n 
= _ ?tf J&W YOGI) - Jo(UG)YO(~~ J (l R )J (A R 

&rJ,$,R,) - .f:@,Ro)l ’ ” ’ l ” ’ 
)epnt, (n = l 2 ) 

3 3. .* 

P 

(4.13) 

The inverse transform of (4.8a) will be computed with the complex inversion formula (cf. 

WI) 

w(r, t) = & Wept dp, (4.14) 

where L is a path defined by Re p = const. > 0 such that all the singularities of W are to the 
left of L. 

At this juncture it would be appropriate to document results due to Ting [7] that will be 
useful in our analysis. The complex inversion integral (4.14) can be evaluated by applying 
the Cauchy residue theorem. However, an extension of this theorem is necessary because the 
integrand in (4.14) possesses infinitely many singularities concentrated in the interval 
[p/al, 0] and p = - p/al is an essential singularity. Towards this purpose, we consider the 
integral 

1 +Q* = - 
27ri J 

Wept dp. (4.15) 
L+c+cN 

The integration contour is reported in Fig. 1. I is a half-circle of radius R to the left of the 
path L and CN a curve enclosing all the singularities p. for n > N; I and CN are connected 
by two portions of straight lines parallel to the real axis where Rep < - p/al. The curves 
CN are constructed so that they do not cut any singularity. 

By the residue theorem, for all finite. N 

1 

2ni s 
tiep’dp = 5 R,, 

L+c+c, n=O 

(4.16) 

where R, is the residue of W(p, t) at the pole p.. We will show later that the line integrals over 
I and CN vanish, respectively, as R and N tend to infinity, whereas those on the horizontal 
straight lines cancel each other, as the integrand is continuous there. 

‘Op. cit., Carslaw and Jaeger, p. 351, formulae (30)433). 
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Fig. 1. Contour of integration. 

By taking the limit of (4.16) as N and R go to infinity, we will formally have 

w(r,t)=& tierfdp= f R,. 
n=O 

(4.17) 

The formal solution obtained in (4.17) is to be checked a posteriori to ensure that it actually 
satisfies the given initial-boundary value problem. 

To show that the complex inversion integral converges uniformly in r and t we need an 
estimate for 1 @,I (cf. [12]). 

The transformation pp/(p + alp) maps the region Rep > a0 > 0 into a finite disk. 
Consequently, the conformal transformation 

PP ( > 
112 

Z= 
GG+ 

--7Z<argzln 
2 2’ 

maps the closed set Rep > a0 in the p-plane onto a closed half-disk F in the z-plane. Since 

,z, Io(zr)Ro(zR~) - lo(zRr)Ro(zr) 

Zl(zRo)Ro(zR~) + ~o(zRr)&(zRo) ’ 

is a continuous function defined on the compact set CR,, RI] x F, then by the Weirstrass 
theorem it must assume a maximum there. Thus, for Rep 2 ao, 

,*, =fIZI lo(zr)Ko(zR~) - ZoW~Wo(zr) 
P IP? zl(zRo)Ko(zR~) + zo(zRdKl(zRo) 

const. lo(zr)Ro(zRJ - Io(zRXo(zr) const. 

I IpI2 T“: 11 (zRo)Ko(zRd + Zo(zRdK~(zRo) s IPI . 
(4.18) 

Ro-zir$R, 

Similar estimates for the successive derivatives of the integral (4.14) with respect to the 
space variable show that these are of the order of 0(l/lpj2). Formulae (4.12), (4.13) and the 
residue theorem imply that 

1 

2ni s 

f 
L+c+cw 

G(r,p)eP’dp = ;R,logs 
1 
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To prove that the integral (4.16) vanishes over I we observe that when Ip 1 is large enough 

IPWl = 
Z0((Plai)“2r)~((plai)“2R1) - Z0((plal)“2R1)Ko((p/cr,)“2r) 

~l((~lal)1~2~o)~o((~Ial)‘~2~~) + Zo((plal)“2R1)Kl((p/a1)“2Ro) 
const. 

<IpI 

that is, pG and, therefore, W uniformly tend to zero when the absolute value of p approaches 
infinity. Theorems on limiting contours in complex analysis (cf. [ 131)’ ensure that (4.20) is 
a sufficient condition for the integral over I to vanish and for the initial condition to be met. 
If we let N + co, (4.19) formally yields 

1 
W(I, t) = - G lim 

I 

f 

N-+m C,, 

ti(r, p) epr dp + 1 R,, log f 
1 

n.f m 

c 

Jo@dYo@&) - -‘&&)Yo(~J) 
-- 

w&LRl) - J~@JW 
Jo(L,Rl)Jl(I,Ro)ePn’. (4.21) 

P II=1 

Let us verify that the series in (4.21) converges absolutely and uniformly in r and t and 
that it is a valid representation for w(r, t). The theorem in the Appendix suggests that the 
roots J_, of (4.9) are such that 2,/n = O(1) as n + co. By virtue of the Bessel function 
expansions for large values of the argument 

J,(x)=&os(x-~-~), 

Y,(x)=&sin(x-i-7). (4.22b) 

we have 

and 

J&r) Y&RI) - J&,R,) Y&r) z & sin rZ,(R1 - I) = 0 i 
0 

, (4.22~) 
n 

(4.22d) 

as n --+ co, where k = RI/R0 [observe that J&RI) # J1(A,Ro) unless RI = R,]. Therefore 

J,U.R,) 

JoW,)J,(~nRo) “’ ‘. Jr (AR,; 
J;(I,R,) - J:(l,R,) = J&R,) - , = O(l)’ 

as n + 00; we conclude that R, = 0(l/nJ2. Then, the convergence of the series is ensured. 
To completely evaluate the inversion integral, following Ting [7] we will construct 

a series of closed curves CN around point p = - p/al, provided that they do not cut any 
pole, such that 

Ft 
-I 

c,G(r, p) eP’ dp = 0. (4.24) 

After defining two sets of curves, respectively, in the z and p-plane by 

2 E z exp(iq), p + 6 = cexp(iB), (4.25) 

‘Op. cit., Hildebrand, pp. 589-590. 
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and setting 

rsin 11 = &7r (N = 1,2,. . .), (4.26) 

it is easy to show that &N =f(tJ, AN), where 

1 
&N=O - 

0 AN 
as N-+oo. (4.27) 

If 0 = 0, we verify that no curve actually cuts any of the poles of #(r, p). Now 

1 JcTeP’dp/ I f f 1”: 1 zO(zr)KO(zR1) - zo(zR&(zr) IzNe~~~~d~. (4.28) 
_ I PRO IP I 11 (zRo)Ko(zR,) + Zo(zR,K(zRo) 

With the help of the asymptotic expansions for the modified Bessel functions valid for 
lzj 9 1 (cf. [14])’ 

’ lo(z) E - 
JG 

(-ie-‘+e’) -n<argzIO, 

lo(z) s -(ie-' + e') 
Jkcz 

0 < argz I K, 

II(Z) 2 L(ie-‘+e’) -n<argzlO, 
& 

-~<argzS~, 

we find that, for the range - n < arg z I 0, 

N = Zo(zr)K,,(zR1) - Zo(zR1)&(zr) z i 
J 

%lr (erCrPR1) - er(‘-R1)), (4.29) 

D = Z,(zRo)Ko(zR,) + Zo(zR1)Kl(zRo) r i (ez(Ro-RL) + ectiRo-RL)). (4.30) 

Hence 

I coshz(Ro - R,)’ 
(4.31) 

and 

From (4.25) it follows immediately that 

rcose = &,tcote 

which, when used in (4.32), yields 

I I cash &A Cot f?(r - R 1) g S const . 
Slllh&Rcot~(RO - R,) 

= 0 (1). 

(4.32) 

(4.33) 

‘Op. cit., McLachlan, p. 201. 
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Ultimately 

n const 1 l/2 
5 - s -zlP13’2 JGzJ 

sNelrlt dtI 5 
s 

= constE”2d~=0 _+ . 
_nlP13’2 N 0 N 

Consequently, the limit (4.24) holds. For 0 I arg z < rr 

D g ; _ ,-MO-RI)), 

which are equal, respectively, to (4.29) and (4.30); hence, limit (4.24) holds throughout the 
whole complex plane. The final solution is 

f w(r, t) = PRolog$ 
1 

nf m c Jo(~~Yo(J-~R~) - J0(&RdY0@d 
-- 

P n=l CJ;(Wh) - J:(Mo)l 
Jo(~,R,)J,(~,Ro)ePn’, (4.34) 

or, on substitution of (4.9) into (4.34) we obtain 

5. TAYLOR-COUETTE FLOW IN AN ANNULUS DUE TO A CONSTANT COUPLE 

Consider a second grade fluid at rest in the annular region between two infinitely long 
co-axial cylinders. At time t = O+ let the inner cylinder of radius R. be set in rotation about its 
axis by a constant torque per unit length 2nRo f and let the outer cylinder of radius Rl be held 
stationary. 

Here, we shall apply the theorem of Section 3 to obtain the result for a fluid of second 
grade. However, before doing so, we first need the solution to the Navier-Stokes equation, 
which has not been documented to the best of our knowledge. 

We shall assume the following velocity field: 

v = (0, u(r, t), 0). 

The momentum equation reduces to 

- pg = 0, R. < r < Rl, t > 0, (5.1) 

to be solved subject to the boundary conditions 

r = RI, t > 0, (5.2) 

(5.3) 

and initial condition 

v=O, R. <rlRl, t ~0. (5.4) 

The subsidiary equation obtained after taking the Laplace transform is 

d2u ldu 
s+;z- 7+ (’ &)6=0, Ro<r<Rl, (5.5) 
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together with the transformed boundary conditions 

v = 0, r = R1 (5.6) 

dv V f 

dr r P(P + a~)’ 
r = Ro. (5.7) 

The bar denotes the Laplace transform of u. The solution of the two-point boundary value 
problem (5.5)-(5.7) is 

f q ~l(qrK(qRl) - MRdWzr) =-- 
P p2 ~2(qRo)K2(q&) + ~ddW2(qRo) 

v-9 

where 

(5.9) 

We shall consider the principal branch of q such that - n/2 < argq I 42. 

For the Navier-Stokes fluid ~1~ = 0; let us define Cj = m = fi. The complex 
inversion formula yields 

u(r, t) --$ s f zl(@K(@G) - ~1WWGW) ~ 
27~ L /&& I&Ro)&(@,) + I,& 

eP’dp. (5.10) 

It is easily verified that the integrand of (5.10) is a one-to-one function of p, so to evaluate 
the integral (5.10) we use the contour shown in Fig. 2. The singularities of (5.10) are given by 
the zeros of the denominator which, after setting p = - vl’, becomes 

Z2(ilZRo)Kl(ilR1) + Zl(iRR1)K2(iARO) = + ni[J2(lR,,)Y 1 (AR,) - Jl(ARJ Y&R,)]. 

Here the following formulae have been used [ 1 l] : * 

Z2(iz) = e”‘J,(z), II = e:‘Jl(z), K,(iz) = -&r[Jl(z) - iYl(z)], 

K,(iz) = *ni [J2(z) - iY,(z)]. 

The poles of the integrand in (5.10) are p. = 0 (which is simple) and p. = - VA,” 
(n = 1,2,. . .), where ,J., is the nth positive root of the transcendental equation 

J4Ro)yi(~&) - J1WVY2Wo) = 0. (5.11) 

By the theorem given in the Appendix, all the infinitely many roots of (5.11) are real and 
simple. Now 

[ 
-&(I.Ro)Y,(&) - U&P’@,))] = 

I = A, 

RoJ;(&Ro)Yr(4R,) + &Jd4Ro)WARd - WI(&RI)Y&IRO) - ~oJ,(&~AW,Ro). 

(5.12) 

Also, if A1 is a root of (5.11), then J2(&RO)/J1(~1R1) = Y2(A1Ro)/Y1(11R1) = k, say, there- 
fore 

- JIWA - Y2Mo)j] 
i =A, 

‘Op. cit., Carslaw and Jaeger, p. 351, formulae (34) and (35). 
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Fig. 2. Contour of integration. 

Thus the residue at the pole pn = - VA,’ (n = 1,2,. . .) is 

In the last step we have used the transcendental equation (5.11). To find the residue at the 
pole p. = 0, we will take advantage of the expansions of Bessel functions 

&(z)=;z 1+;z2+- ) I K,(z)=;+;zlog;+.‘., 

Zz(z) = fz 0 2(1 + . .), &(I)=;+.... 
valid in the neighborhood of z = 0 in the integrand of (5.10). Straightforward computations 
lead to 

Ro=$($)‘(r-$). (5.15) 

It is easy to show that, ultimately: 

W)=$($J2) 

+Ff; 
m JI(I,R,)CJ,(%~)Y,(~,RO) - Y,(~“r)~~(~,R,)Iexp(_p”t) 

MJ%LRo) - J:(UG)l 
t5 16j 

n 1 

where pn = VA,“. By replacing p. with p,* = &/(p + alAi), we obtain immediately the 
velocity for a second grade fluid 

Oc J:(MG)C.W,r) Y&Ro) - Y1@nW2@nRo)l 

MJ:Wo) - J:(UMl 
exp(- ~3). (5.17) 
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6. TAYLOR-COUETTE FLOW IN AN ANNULUS 

Consider a second grade juid contained between two injinitely long coaxial cylinders of 
radii R,, and RI(R1 > R,). The outer cylinder is heldjixed while the inner one, at time t = 0, 
starts rotating with constant angular velocity Sz. 

Goldstein [lS] uses the Laplace transform to attack this problem in the case of a viscous 
fluid when both the cylinders at time t = 0 start rotating with different constant angular 
velocities. Ramkissoon [16] considers a second grade fluid and assumes that the angular 
velocity of the inner cylinder obeys the generic law LR = d(t). He employs the Hankel and 
the Laplace transform, but his solution is not completely correct. In fact, let us recall the 
Laplace transform of dn(t)/dt 

= pL{R(t)} - Q(O’). 

Ramkissoon ignores the term Q(0’) (cf. [ 161, equation (18)) and, therefore, his solution does 
not meet the initial condition. Later on, the particular case that he studies, that is, 
n(t) = sin t, yields the correct solution by chance, for Q(0’) is zero in this case. 

Here, the method of separation of variables will be employed to solve this problem. The 
assumed form for the velocity field is 

v = (0, u(r, t), 0). 

The governing equation is, therefore 

au 
-pz=O, Ro<r<RI, t>O (6.1) 

with boundary conditions 

v=RR,,, r=Ro, t>O, 

o=O, r=R1, t>O, 

and initial condition 

v=O, R,,<rsR1, t=O. 

It is easy to show that the generic solution to equation (6.1) has the form 

(6.2) 

(6.3) 

(6.4) 

where R(r) and il represent, respectively, the eigenfunctions and eigenvalues of the eigen- 
value problem (cf. [ 171)’ 

$+$f+ i2-f R=O, 
( > 

R = QR,,, r = RO, 

R=O, r=R1. 

The complete solution is 

RR2 r2 - R2 
u(r, t) = 1 

0 

rm 

a 
-i&RI 1 

J1 (Rok) Y1 (rU - Y1 (R&J1 (rU 
II=1 J:(RA) - J:(Rok) 

where 1. is the nth root of the transcendental equation 

Jr (Ro4 y, (R,4 - J1 (Rr4 Yr (Ro4 = 0. 

‘Op. cit., Osizik, p. 113. 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 
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All roots of (6.10) are known to be real, simple, and infinitely many (cf. [lS]). We notice that 
the result expressed by (6.10) could be reached simply by applying the theorem stated in 
Section 3 and using the result for the Navier-Stokes fluid available in the literature [l 11.' 

7. AXIAL COUETTE FLOW IN AN ANNULUS 

Consider a second grade fluid at rest in the annular region between two infinitely long 
coaxial cylinders. At time t = 0 let the inner cylinder of radius R. start translating along its 
axis of symmetry with constant velocity W and the outer one of radius Rr be heldfixed. 

With the assumption that the velocity field has the form 

w = (0, 0, w(r, 0) 

the balance of linear momentum yields 

,(~+~~)+~~~(~+~~)-~~=O, RO<r<Rl, 

with boundary conditions 

w=W, r=Ro, t>O, 

w=O, r=R1, t>O, 

and initial condition 

w=O, Ro<r<R1, t > 0. 

t>o (7.1) 

17.2) 

(7.3) 

(7.4) 

The mathematical formulation of this problem for a viscous fluid is identical to that of 
diffusion of temperature in a solid bounded by two cylindrical surfaces+ (cf. [18J). By 
appealing to the theorem in Section 3, the solution is readily obtained as 

where pn = I,Ro, m = RI fRo, and 

I’&,r) = J&.r) Yo(UO) - Jo(Mo) YoW 

and Iz, are the positive eigenvalues (cf. [19])* (all simple and real) of the transcendental 
equation 

Jo(iRr) Yo@Ro) - Jo@Ro) yo(%) = 0. (7.6) 

8. FLOW DUE TO AN IMPULSIVE PRESSURE GRADIENT OR BODY FORCE 

Consider an impulsive pressure gradient or body force applied at time t = O+ to a second 
gradefluid contained between two infinite parallel plates at distance 2h apart. 

Impulsive functions represent convenient tools in the idealization of certain types of 
problems of practical importance in physics and engineering. In this case the theorem of 
Section 3 cannot be applied because the pressure gradient experiences an impulsive and not 
a step change in time. 

We shall assume the following velocity field 

v = (0, 0, v(x, t)). 

‘Op. cit., Carslaw and Jaeger, p. 172. 
+ Op. cit., Luikov, p. 156. 
*Op. cit., Gray and Matthews. 
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The balance of linear momentum yields: 

au a*v a3v 
P& qg yjt&2 -h<x<h, t>O, 

boundary conditions 

x=&h, t>O, 

initial condition 

V = -hsx<h, t=O, 

(8.1) 

(8.2) 

(8.3) 

kd(t) = ff + pb, 
8.Y 

s(t) being the Dirac measure. 
Notice that the mixed initial-boundary value problem (8.1)-(8.3) is equivalent, by 

symmetry, to the following: 

au a% a% 
P~=~Q+“latax2 - + kc?(t), -h<x<h, t>O, 

au=0 x-o t>o 
ax 9 -9 3 

(8.4) 

v = 0, x = h, t > 0, (8.6) 

v = 0, -hsxsh, t=O. (8.7) 

Let us multiply both sides of (8.4) by cos J&x, /$ being the positive roots of the equation 
cosflh = 0 (i.e. /s$ = (2n - l)n/2h, n = 1,2,. . .). Provided that v(x, t) satisfies the Dirichlet 
conditions over the interval [0, h], we find, after applying the boundary conditions (8.5) and 
(8.6), that 

di?(n, t) 

’ dt 
- = - /?.” 63.8) 

where 

and 

i$n)~ 
I 

‘kcos&xdx = (-l),+l 
k 

B.’ 
(8.9 

0 

s 

h 

qn, t) & v(x, t) cos j&x dx, (8.10) 
0 

are defined as the Fourier cosine transform of k and v(x, t), respectively. Now 

m qn, t) 
v(t, x) = c - 

“cl N(B,)coS~“x’ (8.11) 

is, by definition, the inverse Fourier cosine transform of v(t, x), where l/N&) = 2/h. 
The time variable is eliminated by taking the Laplace transform of (8.8) and applying the 

initial condition (8.7): 

Hence 

(p + a?&)pL{fi(n, t)} + /.@.‘L{fqn, t)> = (- 1y+‘$. 
n 

(8.12) 

L{fi(n, t)} = k_!r k (-l).+l k 

B. (P + d,2)P + PP.” = (P + adC)B. p + 1.4~ ’ 
(8.13) 

P + a& 
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The inverse Laplace transform of (8.13) is 

(- l)“+‘k 

whose inverse Fourier cosine transform by virtue of (8.11) leads to 

Now let us study the solution (8.15) at t = 0: 

If a1 = 0, we recover the result for the Newtonian fluid: 

cos /3.x E (- ,),+I--, 
n 1 B. 

833 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

Recall that [17]* 

Thus, the initial condition (fluid at rest at t = 0) is not satisfied! This is not surprising: 
a similar example of velocity discontinuity at time t = 0 arises in the problem of a block of 
mass m subject to a blow P [ 111.’ However, it is puzzling that the incipient velocity profile is 
flat and presents a discontinuity at the wall. 

For a second grade fluid, after recalling that [17]* 

(8.18) 

and supposing that a&~>, the velocity profile at t = O+ can be approximated as 

u(x, 0) 1; (f? - x2). (8.19) 
1 

Therefore, the velocity profile in the impending motion of a second grade fluid is 
physically sound and resembles the steady-state one, where the normal stress modulus aI 
replaces the viscosity p. Although it does not meet the initial condition, the velocity is 
infinitely differentiable in the spatial variable and seems better behaved than 
a Navier-Stokes fluid. This is true in other instances; Ting [7], for example, pointed out that 
the second grade fluid does not give rise to the paradox noticed by Lamb [20] regarding the 
rate of increase of the rate of dissipation shown by a viscous fluid. In order for the velocity to 
die out, as physically expected, the stress moduli a1 must be positive, otherwise the flow 
would be unstable. 

9. COUETTE FLOW FORMATION BETWEEN PARALLEL PLATES 

Consider a second grudeJfuid at rest between two i&&e parallel plates at a distance 2h 
apart. At time t = O+ suppose that the lower wall moves with constant velocity in a direction 
parallel to the upper one which is stationary. 

The solution for the classical viscous fluid is well known and available in the literature 
[21]. We shall assume the following velocity field 

v = (0, 0, v(x, t)). 

‘Op. cit., Osizik, p. 5 17. 
‘Op. cit., Carslaw and Jaeger, p. 234. 
* Op. cit., Osizik, p. 5 17. 
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The balance of linear momentum leads to 

au a2v a% 
P,=p&T+‘lataX2’ 

with boundary conditions 

R. Rajagopal 

O<x<h, t>O, (9.1) 

v = 0, x = h, t > 0, (9.2) 

v = u, x =o, t > 0, (9.3) 
and initial condition 

v=O, Osxsh, t=O. (9.4) 

The method of separation of variables yields a solution (cf. [lo]) in the form of a series of 
products of trigonometric and exponential functions: 

where 

For large values of time this series converges very rapidly, but for small times the solution in 
this form is not useful for computational purposes. Therefore, we are going to provide an 
alternative form using the method of the Laplace transform. 

Let us define the following dimensionless variables 

(9.7) 

Let us also define 

&,A 5 1’2h. 
0 

(9.8) 

Notice at once that the Navier-Stokes solution cannot be retrieved from that for fluids of 
second grade by letting al + 0 in virtue of the transformations (9.6) and (9.8). 

It follows from (9.1), (9.6) and (9.7) that 

a:v + a,a;v = a,v, (9.9) 

where the transcript denotes partial differentiation with respect to that variable. 
In deriving (9.9), we have assumed that 

(9.10) 

where U is some characteristic speed, which in the present case would be the speed imposed 
ontheplateatx=Oattimet=O+. 

Since the fluid is at rest for all 7 I 0, 

I/ =o, 0 5 5 5 to, z =o. (9.11) 

Also, as the lower plate is maintained at a constant speed U for all 7 > 0, we have 

I/=1, t=o, 7>0, (9.12) 

whereas for the upper plate 

V =o, 5 = 50, T > 0. (9.13) 
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Applying the Laplace transform 

L{~(5,r)}~S~e-p~(~,r)dr, 
0 

to (9.9) and using (9.1 l), we obtain 

PLm57)) = (1 + P)L{J% 7&r. 

The suffix r denotes partial derivative with respect to 5. Since 

I) =;, 

qwo,7)} = 0, 

it follows from (9.14H9.16) that 

835 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

Here m = (p/(p + 1))‘12, we choose the branch of m for which 

m=cp+i$, -5 < arg m < E. 
2 

This implies that cp 2 0. Another form of (9.17) is 

Consider the term 

1 em< _ e-m5 1 1 em<_e-m< 
j 1 _ e2mCo = --- 

pe2m<o 1 _ ,-2m50’ 

in (9.17) and recall that 

(9.19) 

(9.20) 

The sum of the geometric progression (9.20) converges because 1 e-2mc 1 < 1; in fact 

le-2mrl = Iexp(- 2((p + ii&t)1 = exp(-2&) 5 1. 

The equal sign is valid when cp = 0, which occurs if and only if p E 0 which is excluded 
because it is a singularity for L(V(l, 7)}. From (9.20) we have 

1 1 
e2M0 1 _ ee2% = i;0 e- 

2mCo(i +0 = i$ ,-2im&, (9.21) 

and, by virtue of (9.19) and (9.21), formula (9.17) can be rewritten as 

L(V(<, 7)> = iemmc + i _gO (exp t - m(2i<e + <)I - exp [ - m(2& - t)]}. (9.22) 
1 

It has been shown (cf. [21]) that 

exp(--)1,,(2$12r1’2)erfc(~q#12)d~}. (9.23) 
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It follows from (9.22) and (9.23) that 

OD V(<, r) = exp(-t) 
s 0 

exp(-rl)l,(2n1’lrl-2){erfc(~Sq-1~z) 

-~i{erfc[(i~o-$q-‘;‘]-erfc[(iC, +~)qP1’2]~~dq, (9.24) 

and, in dimensional form 

4x, t) = Uexp( -~~)/~exp(-g)10~(~)“2r112]{erfc[~($1’2xq-1~2] 

- i1{erfc[(:)1’2(ih - ;)q-1/2] - erfc[(t)‘I’(ih + G)q-‘li]}idq. 

(9.25) 

The solution can be cast in a slightly different form if we express (9.18) as 

em(Co-6) _ ,-N&-t) 

nZo e- c2n + lbn50 

P 

=~~~o{exp{-m[(2n+ 1)50-(5~-5)l} -exp(-mC(2n+l)r0+(50-r)l}} 

= i $o(exp[ -m(2n50 + t)] - exp C-M2n + l)go - 4)lf. (9.26) 

Using (9.23), we obtain 

V(<,z) = exp(-r) 
i 

mexp(-~)10(2~1’2r1’2) f erfc 
0 n=O i [ 

t(ZnC0 + 5)qp1'2 1 
+ l)to - <)1-l/2 11 dq, 

(9.27) 

and, in dimensional form: 

u(x, t) = .exp( -~~){~exp(-q)10(2(~~‘2r1~2) 

. f {erfc[$(2nh + x)(t)1’2q-1-2] 
II=0 

- erfc[i(2(n + 1)h - x) (~)‘:2r$~2]1. (9.28) 

It is easy to show that both (9.25) and (9.28) satisfy (9.1) and the boundary conditions but 
not the initial condition. Therefore, they do not represent smooth solutions (cf. [22]); none 
the less they are physically interesting, for each term of the series corresponds to the 
solution of a related problem for a semi-infinite region. Hence the solution for the finite 

region can be regarded as the superposition of successively reflected waves [l 11.’ 

‘Op. cit., Carslaw and Jaeger, p. 174. 
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APPENDIX 

Theorem 
If n is an integer and a, b are real and positive, then the function 

g(z) = J&z) y, + , W - Jn+ I W Y&4, 

is odd, continuous, except at z = 0, and has infinitely many zeros which are all simple and real. 

(AU 

Proof 
Without loss of generality, we will assume b > a. 

(a) Let us show that the function g(z) is odd. 
Recall that [11]’ 

and 

Y.( -z) = Y.(ze”‘) = emnniYm(z) + 2icosnnJ.(z), 

J.( -z) = J.(ze”‘) = emnniJn(z). 

Substituting these expressions in (Al), we get 

g( -z) = e-“=iJ”(aZ)[e-(“+ ilKi Y,+,(bz) + Zicos(n + l)xJ.+,(bz)] 

- e-(n+l’“‘J,+ ,(bz)[e-““‘Y,(az) + Zicos nlrJ.(az)]. 

After simplification, we find 

g( - z) = - e ‘““g(z) 

Therefore, in general, g(z) is an odd function except for a multiplicative constant. 
(b) We will prove in this section that g(z) does not possess any purely imaginary zero. 

Let us write g(z) as 

(A3) 

(A4) 

(A5) J.WJ,+ ,(bz) 
Yn + ,(W Yn(4 
- - - 
J.+ ,@4 > J,,(az) ’ 

‘Op. cit., Carslaw and Jaeger, p. 351. 
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provided that J&z) and J.+ ,(bz) do not vanish. Recall that [14]’ J,(ze”‘) = eyXiJV(z) (v is regarded as a complex 
number); hence 

J,(aze”‘)J,+ I(bze”‘) = e(‘+‘+l~“‘J,(az)J,+ ,(bz) = - e*‘“‘J.(az)J,+ ,(bz). 

This means that J.(az)J.+ ,(bz) is an odd function except for a multiplicative constant. Therefore, the function 

(Y,+ ,(bz)lJ.+ ,(bz)) - (Y.@z)lJd az )) 1s even except for a multiplicative constant. Define the function 

f(z) = Y,+ ,(bz) Y&z) -- 
J. + ,@z) J,(az)’ 646) 

It can he shown that [24]’ f(ix), with x real, is real. Now 

d Y&x) 2 2 -__=-=___ 
dx J,(ix) mJz(ix) xx(i”l,(x)) 

=(-l).--& (A7) 
” 

Hence 
2 1 

f(ix)=(-l)“+‘-- 
( 

1 
-+-. 

nx 1,2+,(ux) 1,2(bx) > 
648) 

It is clear from (AS) that f(ix) andf’(ix) are monotone and that lim,,, f’(ix) = 0. Let us investigate the asymptotic 
behavior of f(ix). When IzI is small [13]* 

- 2p(jl - l)!zFP 

Y,(P) n 2zp 
--.--g 
J,(z) 1 

= - ;p!(p - l)!z_? (A9) 

2Pp! zp 

Thus for small values of x 

Y., ,(ibx) Y&x) f(ix) = ~ - - 1 - 
22’“+ %l!(n + l)! -2%l!(n - l)! 

J. + dibx) J&ax) - n(ibx)z(“f 1) - n(iax)2” 

( k, k2 
=(-I)” (bX)20+- (aX)2” 

(k, and kz are constants) and 

lim f(ix) = co. 
x-0 

Let us study the case when x goes to infinity. Consider the identitf (cf. [23]) 

J.@)Y.+dz) - Jn+,(z)Yn(z) = -A, (AlO) 

which, provided that z is not a zero of J,(z) or J, + , (z) (we omit the proof in this case, but it follows along similar 
lines), is equivalent to 

Y. + l(Z) Y.(z) 2 

J.+ I(Z) J.(z) nzJ.+ ~(z)J.(z)’ 
(All) 

By virtue of (All), f(ix) can he written as 

f(ix) = Y+bx) Y&x) 2(- 1) Y,(ibx) Y,(iax) 2(- 1) ---- =---- 
J.(lbx) J&x) nbxl,, ,(bx)I,(bx) i”I,(bx) i”l,(ax) nbxf,, ,(bx)f,(bx)’ 

6412) 

Observe that the real function f(ix) is continuous on the whole real domain (-co, +a) except at x = 0. From 

6412) 

lim f(ix) = lim 
J-m ( 

Y,(ibx) Y,(iax) 2(-l) 
- - - - 

X-m Jdibx) J,(iax) nbxL+ 1 UW.W 
6413) 

Now, recall7 that (cf. [24]) 

Y(X) = 
Y&x) 
---2 
J.(ix) ’ 

‘Op. cit., Ma&a&Ian, p. 191. 
‘Op. cit., Carslaw, p. 128. 
*Op. cit., Hildebrand, p. 148. 
4Op. cit., Watson, p. 77, formula (12). 
“Op. cit., Carslaw, p, 128. 
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is real. Also 

y’(x)=(-l)“--& 
n 

If n is even (parallel considerations apply if n is odd), then y’(x) > 0; thus y(x) is monotone and (since b > a) 

y(bx) - y(ax) 2 0, (Al4) 

which is also valid when x -+ co. The only case for (A14) to be an equality is when x + cc because y’(bx) - y’(ax) is 
always negative and vanishes only at infinity [if n is odd, y’(x) < 0 + y(bx) - y(ax) 2 01. We can then confidently 
claim that 

lim f(ix) > 0. 
x-ZI 

Let us summarize the properties off(ix) when x is real (we will consider the case of n even; similar arguments 
apply when n is odd): 

(1) it is an even real function analytic in the whole real domain (- cc, +co) with its derivatives except at x = 0; 
(2) lim,-.,f(ix) = +co, lim,,,f(ix) = c > 0; 
(3) signum[f’(ix)] = - signum[x], thusf(ix) continually increases Vx < 0 and decreases Vx > 0; 
(4) f’(ix) # 0 Vx, but lim,_,f’(ix) = 0. 

Moreover, the Lagrange theorem ensures that f”(ix) = k > 0. 
We conclude thatf(ix) is strictly positive for Vx E R. In fact, property (2) assures the existence of a point x, such 

that VI x I 2 Ix, I, f(x) 2 0. Let us call x1 a point for which Ix, 1 2 1 x, I. By applying the Lagrangian theorem 

f(4 -_Wh) 
=f ‘(it), 

x - x1 
(A13 

where 
o<x<51x, or x, I[ <x i 0. 

It immediately follows from property (3) and from (A15) that 

/(ix) =f’(iQ(x -x1) +f(ixl) z 0. (A16) 

Therefore,f(ix) never vanishes and g(z) cannot have imaginary zeros. 
(c) The function g(x) does not have any repeated zero. 
In order for a root x = a to be multiple, a necessary condition is that g(a) = g’(a) = 0. Now, define the following 
functions of p 

From the Lommel integral [19]’ 

u = J&x) Y” + 1 (px) - J” + 1 (px) Y&x), 

” = WY) y,+ 1 (PY) - A+ 1 (PY) Y&Y). 

(A17) 

we see that, if x = a, the right-hand side vanishes but the left-hand side is positive: thus, all the zeros must be simple. 
(d) Let us show that g(z) has no complex zeros. Observe that Y,(z) = F”(z); this can be deduced from the definition 
of Y”(Z) [14]’ 

y 
n 

(z) = lim J”(Z)COS VA - J- “(4 
Y’” sin vn 

since J.(f) = l”(z); hence g(Z) = g(z). The Lommel integral 

uvp dp = (AW 

helps us to understand that g(z) cannot have any complex roots: in fact, suppose that in (A18) x = I, y = Tare two 
complex conjugate roots of g(z). Then the right-hand side of (A18) vanishes, whereas the left-hand side remains 
positive, for u(X) = E(l). 

It may be inferred from the asymptotic expansion of J. and Y, that g(z) has infinitely many roots and that, if d, is 
the nth root, then 

2” 
;=O(l) asn-+O. 

‘Op. cit., Gray and Matthews, p. 70, formulae (32) and (33). 
t Op. cit., McLachlan, p. 196, formula (107). 


