A Connectivity Preserving Framework For Distributed Motion Coordination in Proximity Networks

Hassan Jaleel & Waseem Abbas

ACC 2018

Introduction

Collection of mobile robots with

- limited sensing and communication,
- limited on-board processing, and
- limited available power

Formation Control

Coverage Control

Network Topology

- Graph G(V, E), where
 - $V = \{1, 2, \dots, N\}.$ - $E = \{(i, j) \mid i, j \in V\}$

Performance Guarantees

require network topology to be *connected*

Network Connectivity: Proximity Networks

Graph $G(V, E, \Delta)$, where

- $V = \{1, 2, \dots, N\}.$
- $\mathcal{N}_i = \{j \in V \mid \textit{dist}(x_i, x_j) \leq \Delta\}$
- Neighborhood structure depends on *inter-agent distances*
- Time varying network topology
- Network connectivity needs to be guaranteed

Objective

A framework for *local interaction laws* that can *guarantee network connectivity* in distributed motion planning under *proximity network* model.

Rendezvous Problem

Lemma Saber et al. 2007

Let G be a connected undirected graph. Then,

$$\dot{x}_i = -\sum_{j \in \mathcal{N}_i} (x_i - x_j)$$

 $\dot{x} = -\mathcal{L}x$

asymptotically solves an average consensus problem for all initial states.

Hassan Jaleel & Waseem Abbas Connectivity Preserving Framework~ 6/29

Rendezvous Problem: Proximity Networks

Ji & Egerstedt, "Distributed coordination control of multiagent systems while preserving connectedness," *IEEE TAC*, 2007

Connectivity Maintenance Approaches

Optimization Based Approaches

- Each agents computes a *feasible set* by solving a *convex program*.
- Motion is restricted to these feasible sets for each agent

Cortés, Martínez, & Bullo, "Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary

dimensions," IEEE TAC, 2006

Connectivity Maintenance Approaches

Optimization Based Approaches

Fiedler value as a measure of network connectivity

 $\max_{x\in\mathbb{R}^{dn}}\lambda_2(\mathcal{L}(x))$

- λ_2 is a concave function of \mathcal{L} .
- Motion is restricted to the directions that do not decrease λ_2

DeGennaro & Jadbabaie, "Decentralized control of connectivity for multi-agent systems," Proc. IEEE CDC, 2006

Connectivity Maintenance Approaches

Potential Function Based Approach

- An edge tension function *E_{ij}(x)* is defined between agents *i* and *j* if (*i*, *j*) ∈ *N_i*.
- Minimize the total edge tension in the system

$$\mathcal{E}(x) = \frac{1}{2} \sum_{j \in \mathcal{N}_i} \mathcal{E}_{ij}(x_i, x_j)$$

Local control of each agent has the form

$$\dot{x}_i = \sum_{j \in \mathcal{N}_i} w_{ij}(x_i - x_j)$$

• Edges are never broken

Ji & Egerstedt, "Distributed coordination control of multiagent systems while preserving connectedness," IEEE

Optimization Based Approach

Computationally complex

Potential Function Based Approach

Overly restrictive

Proposed Approach

Balance between the two existing approaches

Main Idea

- In a proximity network, determine a small subset of nodes such that maintaining their neighborhoods guarantee that overall network remains connected.
- Design controllers for these as well as other nodes.

• Dominating Set:

A subset $S \subseteq V$ such that $\bigcup_{s \in S} \mathcal{N}[v_i] = V$

• Dominating Set:

A subset $S \subseteq V$ such that $\bigcup_{s \in S} \mathcal{N}[v_i] = V$

Subgraph induced by dominating nodes is not connected.

Connected Dominating Set

• Connected Dominating Set:

A dominating set whose nodes induce a connected subgraph.

Connected Dominating Set

• Connected Dominating Set:

A dominating set whose nodes induce a connected subgraph.

Weakly Connected Dominating Set

• Weakly Connected Dominating Set:

G̃(V, *Ẽ*) where *Ẽ* is the set of edges incident on the nodes in WCDS, is connected.

Weakly Connected Dominating Set

• Weakly Connected Dominating Set:

- *G̃*(V, *Ẽ*) where *Ẽ* is the set of edges incident on the nodes in WCDS, is connected.
- Note that

 $DS \subseteq WCDS \subseteq CDS$

• Minimum sized WCDS problem is NP-hard¹

¹Dunbar et al., "On weakly connected domination in graphs," *Disc. Math.*, 1997.

Weakly Connected Dominating Set

(Computation)

- Approximation algorithm: $O(\log d_{\max})$, where d_{\max} is the maximum degree.
 - Centralized algorithm (Chen & Liestman 2002)
 - Distributed algorithm (Chen & Liestman 2003)
- Constant factor approximation algorithm: 5 (Alzoubi et al. 2003)
 - Time complexity: $\mathcal{O}(n)$
 - Message complexity: $O(n \log n)$
- Constant factor approx. algorithm: 122.5 (Alzoubi et al. 2003)
 - Time complexity: $\mathcal{O}(n)$
 - Message complexity: $\mathcal{O}(n)$
- Constant factor approximation algorithm: 110 (Han & Jia 2007)
 - Time complexity: O(n)
 - Message complexity: $\mathcal{O}(n)$

- Construct small sized dominating sets (in a distributed way).
- "Patch up" the components.

- Construct small sized dominating sets (in a distributed way).
- "Patch up" the components.

- Construct small sized dominating sets (in a distributed way).
- "Patch up" the components.

- Construct small sized dominating sets (in a distributed way).
- "Patch up" the components.

- Construct small sized dominating sets (in a distributed way).
- "Patch up" the components.

Proposed Approach

- Identify a subset of agents D ⊂ V such that D is a weakly connected dominated set.
- Define edge tension energies

$$\mathcal{E}_{ij}(x) = \begin{cases} \frac{\|x_i - x_j\|^2}{\Delta - \|x_i - x_j\|} & \text{if } i \in D \text{ and } j \in \mathcal{N}_i, \\\\ \frac{1}{2} \|x_i - x_j\|^2 & \text{if } i \in V \setminus D \text{ and } j \in \mathcal{N}_i, \\\\ 0 & \text{otherwise.} \end{cases}$$

Lemma

Given a Δ -disk graph $G(V, E, \Delta)$ that is connected at t = 0 such that $||x_i(0) - x_j(0)|| < (\Delta - \epsilon)$ for all $(i, j) \in E(0)$, where ϵ is some small non-negative scalar. Then, under the control law

$$\dot{x}_i = -\sum_{j\in\mathcal{N}_i} \frac{\partial \mathcal{E}_{ij}(x)}{\partial x_i},$$

the graph $G(V, E, \Delta)$ remains connected $\forall t > 0$.

Proposed Approach

Proof Sketch:

• Total energy of the systems is

$$\mathcal{E}(x) = \sum_{i=1}^{N} \sum_{j \in \mathcal{N}_i} \mathcal{E}_{ij}(x)$$

We show that

$$\dot{\mathcal{E}}(x) = \frac{\partial \mathcal{E}}{\partial x} \dot{x} < 0,$$

for the proposed controller.

- *Implication:* If $i \in D$, agent *i* never loses its edges.
- All the critical edges are maintained under the proposed controller

Theorem

Given a Δ -disk graph which is connected at t = 0 with edge lengths less than $(\Delta - \epsilon)$ for some $0 < \epsilon < \Delta$. Under the controller

$$\dot{x}_i = -\sum_{j \in \mathcal{N}_i} \frac{\partial \mathcal{E}_{ij}(x)}{\partial x_i} = -\sum_{j \in \mathcal{N}_i} w_{ij}(x_i - x_j)$$

where

$$w_{ij} = \begin{cases} \frac{2\Delta - \|x_i - x_j\|}{\left(\Delta - \|x_i - x_j\|\right)^2} & \text{if } i \in D \text{ and } j \in \mathcal{N}_i, \\ 1 & \text{if } i \in V \setminus D \text{ and } j \in \mathcal{N}_i, \\ 0 & \text{otherwise.} \end{cases}$$

the system converges asymptotically to the weighted initial centroid of the network.

Illustration

- In a simplistic model, energy consumption due to mobility (E_{acc}) is related directly to the acceleration.
- N = 15 and $\Delta = 3$

- P. Tokekar et al. "Energy-optimal trajectory planning for car-like robots," Autonomous Robots, 2013.
- M. Ji and M. Egerstedt, "Distributed coordination control of multiagent systems while preserving connectedness," *IEEE Tran. on Robotics*, 2007.

Hassan Jaleel & Waseem Abbas Connectivity Preserving Framework~ 28/29

Conclusions

- Connectivity is ensured if a small subset of nodes maintain their edges instead of all the nodes maintaining all edges.
- Such a small subset of nodes constitute a (minimum) weakly connected dominating set.
- Using the edge tension function, appropriate weights can be designed for the connectivity preserving weighted consensus equation.

