Pg. 880, #21, 23, 25 and 31 Pg. 806, #15, 17,19, 21, 23 and 25 Pg. 892, #44, 45, 46, 51 and 52. Pg. 880

Find the domain and range of the following functions. Sketch the domain in the *xy* plane.

#21
$$f(x,y) = 3x^2 - y$$

#23 $g(x,y) = x\sqrt{y}$
#25 $z = \frac{x+y}{xy}$
#31 $f(x,y) = \ln(5-x-y)$

Pg. 806

Sketch and name the following quadratic surfaces

#15
$$4x^2 - y^2 - z^2 = 1$$

#17 $16x^2 - y^2 + 16z^2 = 4$
#19 $x^2 + \frac{y^2}{4} + z^2 = 1$
#21 $z^2 = x^2 + \frac{y^2}{9}$
#23 $x^2 - y^2 + z = 0$
#25 $x^2 - y + z^2 = 0$

Pg. 892

Show, following two different paths, that the limit of the following do not exist.

$$\begin{array}{rcl}
\#44 & \lim_{(x,y)\to(0,0)} \frac{-xy^2}{x^2+y^4} \\
\#45 & \lim_{(x,y)\to(0,0)} \frac{y}{x^2+y^2} \\
\#46 & \lim_{(x,y)\to(0,0)} \frac{2x-y^2}{2x^2+y}
\end{array}$$

Pg. 892

Using the squeeze thm, prove the limit exists for the following

#51
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$$

#52 $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^4}$