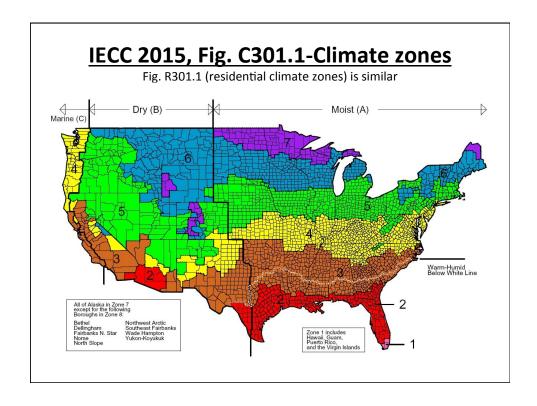


SOPREMA Consultant Forum Gulfport, MS

April 12-14, 2016

Roofing industry update

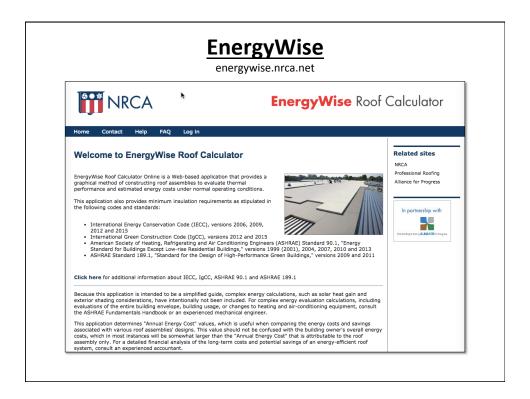

presented by

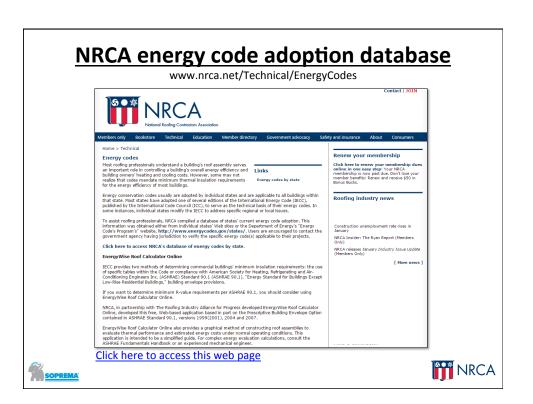
Mark S. Graham

Vice President, Technical Services National Roofing Contractors Association

Energy Code

Comparison of IECC's various editions


Commercial Buildings (Insulation component R-value-based method)


Climate Zone	IECC 2006	IECC 2009	IECC 2012*	IECC 2015*
1		R-15 ci	R-20 ci	R-20 ci
2	D 15 a:	D 45 .:		D 25 e;
3	R-15 ci			R-25 ci
4		R-20ci		
5	D 20 -:		R-25 ci	R-30 ci
6	R-20 ci			
7	5.05	2.25	5.00	5.05
8	R-25 ci	R-25 ci	R-30 ci	R-35 ci

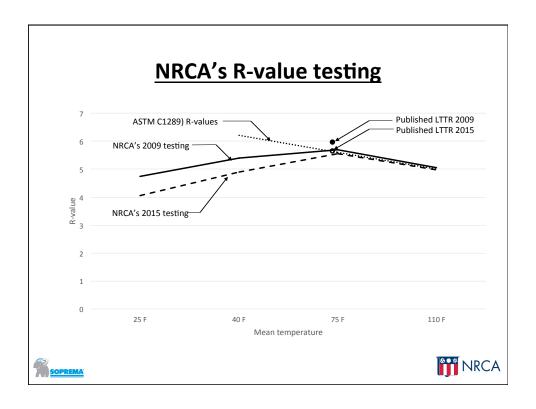
^{*} Applies to roof replacement projects

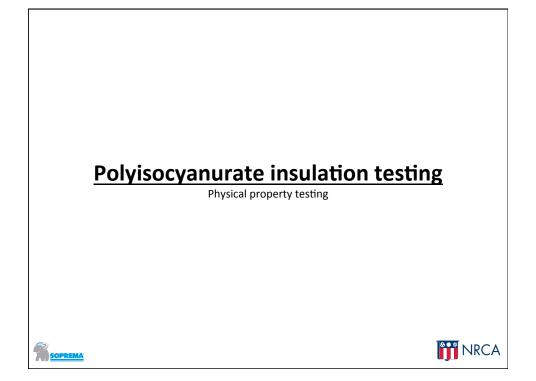
ci = continuous insulation

Polyisocyanurate insulation

NRCA's revised polyiso. R-value recommendation

NRCA recommends designers:


- Use an in-serve design R-value of 5.0 per inch thickness for polyiso.
- Specify insulation by its thickness, not its R-value


NRCA's recommendation is based upon our own testing, and confirming replicate testing by:

- Building Science Corp.
- RDH Building Engineering, Ltd.

Purpose

NRCA's polyisocyanurate insulation testing

Analyze critical physical properties of faced polyisocyanurate insulation products and compare results to applicable the ASTM product standard and past test results

Past testing

NRCA's polyisocyanurate insulation testing

2002 testing:

- HCFC-141b blowing agent
- Hydrocarbon-based blowing agent (current)

2009 testing:

Hydrocarbon-based blowing agent (current)

2015 testing

NRCA's polyisocyanurate insulation testing

- Density (not in ASTM C1289)
- Compressive strength
- Dimensional stability
- Flexural strength
- Tensile strength
- Knit line assessment (not in ASTM C1289)

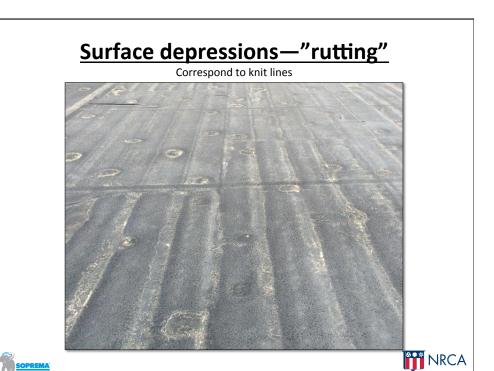
Sample	Facer type	Density (lb/ft³)			
		Apparent overall density	Apparent foam core density		
1-A	Cellulosic (Class 1)	2.16	1.57		
1-B	Coated fiberglass (Class 2)	3.80	1.68		
2	Cellulosic (Class 1)	2.25	1.56		
3	Cellulosic (Class 1)	2.26	1.65		
4	Cellulosic (Class 1)	2.25	1.64		
5	Coated fiberglass (Class 2)	3.16	1.79		
6	Cellulosic (Class 1)	2.39	1.68		

Sample	Compressive strength (psi)				
	With facers	Machine direction	Cross-machine direction		
1-A	22.3	16.1	26.5		
1-B	28.4	21.2	29.8		
2	24.4	16.7	22.0		
3	24.5	17.5	19.4		
4	23.5	18.5	21.0		
5	24.4	20.6	19.8		
6	24.5	18.9	21.1		
ASTM C1289,	Grade 1: 16 (minimum)	No requiren	nent		
Type II requirement	Grade 2: 20 (minimum)				
	Grade 3: 25 (minimum)				

Sample	Dimensional stability					
	(Percent linear change after seven days at 158 F and 97 percent relative humidity)					
	Machine direction	Cross-machine direction	Thickness			
1-A	1.22	1.27	1.77			
1-B	0.54	1.31	5.88			
2	3.35	2.91	-1.11			
3	2.42	1.53	3.19			
4	2.14	2.24	1.21			
5	0.56	0.75	3.74			
6	2.52	1.96	1.68			
ASTM C1289, Type II requirement	2.0 (maximum) 4.0 (maxim		4.0 (maximum)			

Shaded cells denote values in excess of maximal ASTM allowable requirement NRCA

<u>Dimensional stability – "Edge growth"</u>


View from board topside (top facer) looking down.

Sample	Flexural strength	Tensile strength		
	Modulus of rupture (psi)	Break strength (lbf)	perpendicular to surface (lbf/ft³)	
1-A	MD: 79.6	MD: 64.8	3259	
	XMD: 61.2	XMD: 49.3		
1-B	MD: 127.9	MD: 102.4	2590	
	XMD: 135.5	XMD: 108.2		
2	MD: 93.0	MD: 75.4	3080	
	XMD: 64.1	XMD: 51.1		
3	MD: 98.4	MD: 75.8	3083	
	XMD: 59.5	XMD: 47.2		
4	MD: 73.0	MD: 58.1	2904	
	XMD: 52.6	XMD: 42.2		
5	MD: 121.1	MD: 92.9	3668	
	XMD: 93.6	XMD: 76.9		
6	MD: 96.3	MD: 71.3	2657	
	XMD: 55.8	XMD: 41.7		
ASTM C1289, Type II requirement	40	17	500	

Sample	Board side indication	Knit line	Knit line depth (inch)							
		Line 1	Line 2	Line 3	Line 4	Line 5	Line 6	Line 7	Line 8	
1-A	None	-0.084	-0.078	-0.068	_	_	_	_	_	
	"This side down"	-0.061	-0.137	-0.110						
1-B	None	-0.038	-0.030	-0.048	_	_	_	_	_	
	None	-0.049	-0.085	-0.041						
2	None	-0.015	-0.059	-0.060	-0.028	-0.020	-0.028	-0.010	-0.00	
	"This side down"	-0.130	-0.167	-0.161	-0.193	-0.210	-0.166	-0.171	-0.14	
3	None	-0.023	-0.049	-0.046	-0.051	-0.047	_	_	_	
	None	-0.015	-0.031	-0.045	-0.036	-0.021				
4	None	-0.035	-0.038	-0.068	-0.055	-0.062	_	_	_	
	"This side down"	-0.091	-0.112	-0.122	-0.114	-0.072				
5	None	-0.023	-0.036	-0.045	-0.040	-0.025	_	_	_	
	None	-0.013	-0.016	-0.013	-0.013	-0.012				
6	None	-0.136	-0.169	-0.189	-0.170	-0.171	-0.173	-0.165	-0.14	
	None	-0.035	-0.015	-0.017	-0.007	-0.005	-0.018	-0.036	-0.03	

MRCA

Combining dimensional stability and knit lines issues

As delivered by manufacturer.

<u>Combining dimensional stability</u> <u>and knit lines issues – cont.</u>

After conditioning

<u>Combining dimensional stability</u> <u>and knit lines issues – cont.</u>

After conditioning

<u>Combining dimensional stability</u> <u>and knit lines issues – cont.</u>

Knit line and V-groove close-up (after conditioning)

Conclusions

NRCA's polyisocyanurate insulation testing

- Only 2 of the 7 products tested comply with ASTM C1289
- Revisions to ASTM C1289 are needed:
 - Address knit lines and "rutting"

NRCA has already met with several polyisocyanurate insulation manufacturers... and we look forward to working constructively with individual manufacturers at ASTM International and elsewhere in the industry to address these issues.

Modified bitumen sheet testing

<u>Purpose</u>

NRCA's MB sheet testing

Analyze critical physical properties of popular MB sheet products and compare results to applicable ASTM product standards and past test results

Modified bitumen sheet testing

ASTM D5147-Test methods for MB sheet materials

Low-temperature flexibility test:

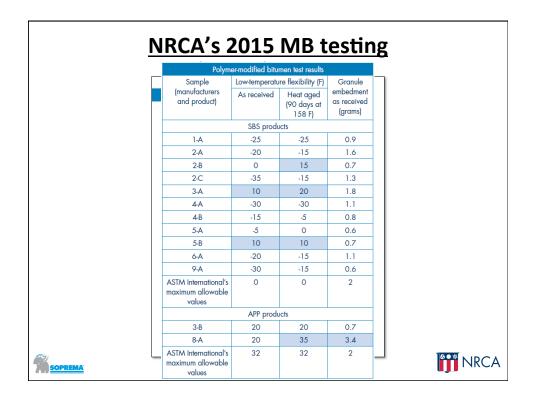
- 1" diameter mandrel
- 180° bend
- Visually observe cracking

Granule loss test:

- Weigh specimen
- 50 scrub cycles
- Re-weigh specimen
- Calculate difference

NRCA's 2011 MB testing

2 / 1 /2 // 11 3013					
Polymer-modified bitumen test results					
Product	Low-tem	perature flexibility	Granule		
(manufacturer and product)	As received	Heat aged (90 days at 158 F)	embedment (as received)		
	SI	3S products			
1-1	-5	+5	0.8		
1-2	-15	-10	1.0		
2-1	+5	+20	1.4		
2-2	-20	-15	1.8		
2-3	-5	+20	3.2		
2-4	+10	+15	1.2		
3-1	+30	+45	0.3		
3-2	-5	0	0.3		
3-3	+25	+40	1.5		
4-1	-5	+5	1.1		
5-1	+5	+10	0.5		
6-1	-5	-5	0.7		
6-2	+10	+20	1.7		
	A	PP products			
1-3	+30	+15	1.5		
3-4	+35	+20	0.4		
<i>7</i> -1	+15	+15	1.6		


Summary of results

NRCA's 2011 MB testing

- 9 of 13 SBS products did not comply with ASTM's low-temp. flex requirement (0 F max.)
- 1 of 3 APP products did not comply with ASTM's low-temp. flex requirement (32 F max.)
- 1 of 16 products did not comply with ASTM's granule loss requirement (2 grams max.)

Summary of results

NRCA's 2015 MB testing

- 3 of 11 SBS products did not comply with ASTM's low-temp. flex requirement (0 F max.)
- 1 of 2 APP products did not comply with ASTM's low-temp. flex requirement (32 F max.)
- 1 of 13 products did not comply with ASTM's granule loss requirement (2 grams max.)

Recommendations

NRCA's 2011 and 2015 MB testing

Seek third-party certifications of compliance with the applicable ASTM product standard:

- UL product certification
- ICC-ES evaluation report
- Miami-Dade County product approval

Wind design for roof assemblies

Specifying a wind warrantee, in itself, is not proper wind design

Proper wind design

- Determine wind loads
 - IBC Ch. 16-Structural Design
 - ASCE 7-10, "Minimum Design Loads for Buildings and Other Structures"
- Design for resistance
 - FM 4474
 - UL 580 or UL 1897

IBC requires (Sec. 1603) design wind loads to be shown in the Construction Documents

www.roofwinddesigner.com

FM 1-28 has been updated

www.fmglobal data sheets.com

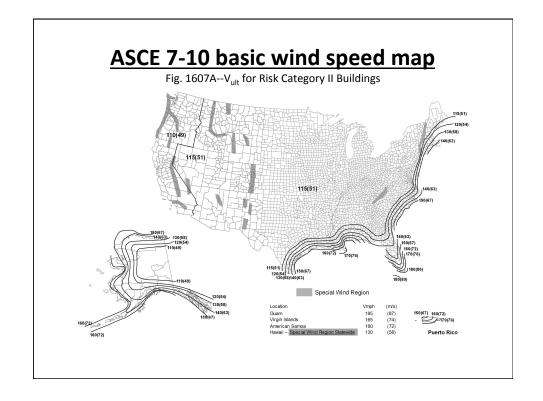
- October 2015 update
- Based upon ASCE 7-05 with enhancements
- Reformatted
- Be cautious of FMinsured projects
- See *Professional* Roofing, March 2016

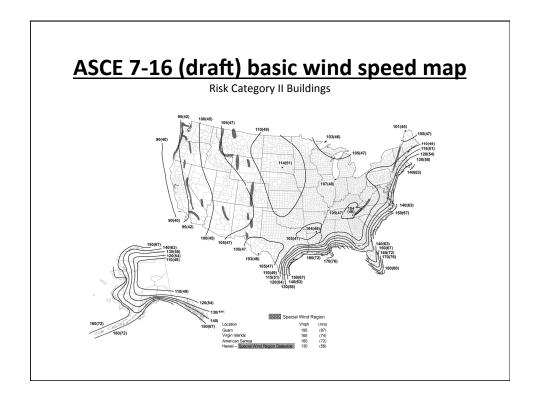
- Use RoofNav's ratings calculator
- Apply a 2.0 safety factor
- Roof overhang factors (Table 7)
- Windborne debris separation distances
- Roof-mounted equipment (ASCE 7-10)
- Tornado-resistant design (Appendix)

Comparing FM 1-28 to ASCE 7-05 and ASCE 7-10

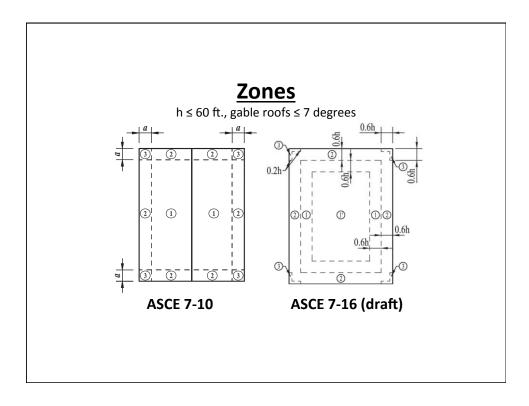
Example: A manufacturing building located in New Orleans, LA. The building is an enclosed structure with a low-slope roof system and a roof height of 33 ft. The building is located in an area that is categorized as Exposure Category C.

Document	Basic wind speed	Des	sign wind pressure (psf)
	(mph)	Zone 1 (Field)	Zone 2 (Perimeter)	Zone 3 (Corner)
FM 1-28 (without SF)	120	43	72	108
FM 1-28 (w/ 2.0 SF)	v = 120	86	144	216
ASCE 7-05 (without SF)	120	38	63	95
ASCE 7-05 (w/ 2.0 SF)	v = 120	76	126	190
ASCE 7-10 Strength design	v _{ULT} = 150	59	99	148
ASCE 7-10 ASD (without SF)	116	35	59	89
ASCE 7-10 ASD (w/ 2.0 SF)	v _{ASD} = 116	71	118	178

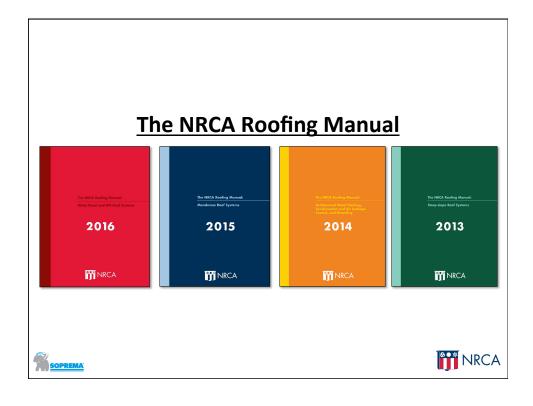

ASCE 7-16 (public review draft)


- Revised basic wind speed map
- Changes (and new) pressure coefficients
- Revised perimeter and corner zones

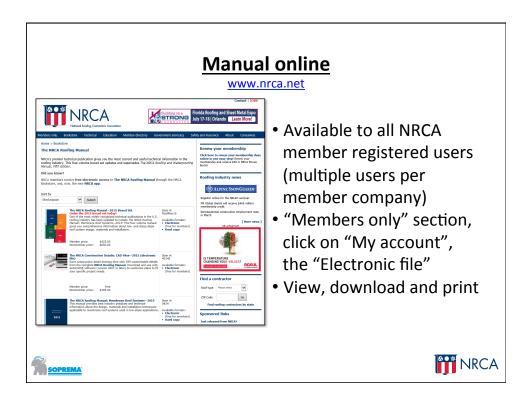
Expect higher field, perimeter and corner uplift pressures

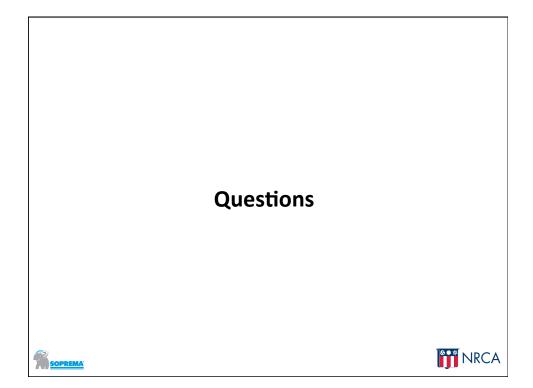


GC_p pressure coefficients h \leq 60 ft., gable roofs \leq 7 degrees


Zone	ASCE 7-10	ASCE 7-16 (draft)
1′		-0.9
1	-1.0	-1.7
2 (perimeter)	-1.8	-2.3
3 (corners)	-2.8	-3.2

Proper wind design is oftentimes avoided... and it's only going to get more complicated


NRCA App



- NRCA App available on the Apple Store and Google Play Store for tablets
- iPhone App also available
- Register within App as being an NRCA member
- The NRCA Roofing Manual is viewable to NRCA members
- Favorite and send pages features

Mark S. Graham Vice President, Tech

Vice President, Technical Services National Roofing Contractors Association 10255 West Higgins Road, 600 Rosemont, Illinois 60018-5607

(847) 299-9070 mgraham@nrca.net www.nrca.net

Twitter: @MarkGrahamNRCA

Personal website: www.MarkGrahamNRCA.com