1) A game has 2 spinners. Spinner #1 has a probability of landing red of 2/3. And, spinner #2 has a probability of landing red of 1/5.

What is the probability spinner #1 lands red AND spinner #2 does NOT land red?

- b) 8/15
- c) 13/15
- d) 1/5
- e) 3/5
- 2) For some positive real number 'b', b-1, b+4, 3b+2. What is the
 - a) 16
 - b) 20
 - c) 24
 - d) 28
 - e) 40

150 SAT Subject Test Math Level 2 **Practice Questions**

(and, Solutions)

3) Which equation best models the following data in the table:

a)
$$y = 1.2(4.4)^X$$

b)
$$y = 4.4(1.2)^X$$

c)
$$y = -1.2(4.4)^X$$

d)
$$y = -4.4(1.2)^X$$

e)
$$y = 1.2x^{4.4}$$

X	-6.7	-1.3	3.2	8.8
у	1.30	3.47	7.89	21.89

by Lance Friedman

- 4) The figure shows a square region divided into 4 rectangle regions. If the area of ABCD is 100 what is the area of MOCP?
 - a) 16
 - b) 24
 - c) 28
 - d) 36
 - e) 64

В R x^2 4x O 4x

- 5) $\sin(\tan^{-1} 3) =$

 - a) $\frac{1}{3}$ b) $\frac{3\sqrt{10}}{10}$ c) $\frac{1}{2}$ d) $\frac{\sqrt{2}}{3}$
- e) $\frac{3}{10}$

PREVIEW/SAMPLE

150 SAT Subject Test **Math Level 2** Practice Questions (and Solutions)

Introduction

Three key aspects of a standardized test are knowledge of content, time management, and accuracy. The following practice quizzes will address all 3 aspects and likely improve your scores.

- Content The questions are composed from algebra II, geometry, trigonometry, and precalculus. You may discover specific math subjects you need to review or relearn.
 (**Note: Some of the questions are difficult and meant to challenge you. Don't get discouraged!). Solutions follow each test.
- 2) *Time Management* Each section is 23-27 questions and should be completed at a rate of 1+ minute per question. (For example, if a test is 23 questions, try to complete in 25 minutes or less). Practice working with a time limit. (**Suggestion: Do the easy questions first! Skip the time-consuming, difficult problems save them for later.)
- 3) Accuracy Read the questions carefully!

Best of luck!

Lance

www.mathplane.com

Contents

Test I (25 questions)	3
Test II (24 questions)	13
Test III (24 questions).	26
Test IV (27 questions)	38
Test V (23 questions)	52
Test VI (23 questions)	64
(Plus, 4 comic questions)	

Testing the limits of endurance, these math figures will run on and on...

LanceAF #87 5-24-13 www.mathplane.com

- 1) If $f(x) = \frac{3x + 7}{6x + 4}$ what value does f(x) approach as x gets infinitely larger?
 - a) 0
 - b) 1/2
 - c) 3/4
 - d) 7/4
 - e) infinity
- 2) O is the center of the circle, and the diameter is 12. What is the arc length \widehat{AB} ?

- b) 6 ∏
- c) 9刊
- d) 18 ∏
- e) 36 TT

- 3) What is the distance in space between (1, 0, 5) and (-3, 6, 3)?
 - a) 4
 - b) 6
 - c) $2\sqrt{11}$
 - d) $2\sqrt{14}$
 - e) 12
- 4) |5-7|-|7-5|=
 - a) -4
 - b) 0
 - c) 2
 - d) 4
 - e) 12
- 5) A line has the parametric equation x = t + 5 and y = t + 10. What is the slope of the line?
 - a) 1
 - b) 2
 - c) 5
 - d) 10
 - e) 50

- 6) Two dice are tossed. What is the probability that neither die is a 4?
 - a) 1/6
 - b) 1/3
 - c) 2/3
 - d) 25/36
 - e) 5/6
- 7) (1, 6), (3, -2), and (-2, K) are collinear points. What is K?

 - a) -6 b) 2 c) 8
 - d) 10
 - e) 18
- 8) Vectors u and v are given by u = (3, 0) and v = (1, -4). What is the length of vector w, given by w = 2u v?
 - a) $2\sqrt{10}$
 - b) $\sqrt{41}$
 - c) 6 $\sqrt{17}$
 - d) 3
 - e) $\sqrt{23}$
- 9) The domain of $g(x) = \frac{3}{\sqrt{4-x^2}}$ is:
 - a) [-2, 2]
 - b) (-2, 2)
 - c) (0, 2)
 - d) (^{-∞} , -2)
 - e) $(-\infty, 2)$
- 10) The radius of circle $x^2 4x + y^2 + 6y = 3$
 - a) 3
 - b) √3
 - c) 4
 - d) 8
 - e) 16

11)
$$f(x) = 2x + 1$$
 $g(x) = x^2 - 1$

$$(f \circ g)(x) =$$

a)
$$x^2 + 2x$$

b)
$$2x^3 + x^2 - 2x - 1$$

c)
$$2x^2 - 1$$

d)
$$4x^2 + 4x$$

e)
$$2(x^2 + x + 1)$$

12) The intersection of line x + y = 2 and circle $x^2 + y^2 = 4$ occurs when x =

13) Which is a zero of the function
$$f(x) = \sin 2(x) - 1/2$$
?

$$\sum_{n=1}^{100} (n-2)$$

SOLUTIONS

1) If $f(x) = \frac{3x+7}{6x+4}$ what value does f(x) approach as x gets infinitely larger?

a) 0 b) 1/2

Since the rational expression is neither "top heavy" nor "bottom heavy", look at the lead coefficients....

 $\frac{3}{6} = 1/2$

c) 3/4d) 7/4

e) infinity

2) O is the center of the circle, and the diameter is 12. What is the arc length \widehat{AB} ?

a) 3 ∏

b) 6 ∏ c) 9 ∏

So, circumference of circle O is 12 1

d) 18 TT

e) 36 ↑ Since ∠ AOB is 90 degrees, the arc length of AB is 1/4 of the circumference

 $\frac{90^{\circ}}{360^{\circ}}$ • $\uparrow \uparrow (12) = 3 \uparrow \uparrow$

3) What is the distance in space between (1, 0, 5) and (-3, 6, 3)?

a) 4

b) 6

c) 2/\sqrt{11}

d) 2 $\sqrt{14}$

e) 12

distance = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$

 $=\sqrt{(1-(-3))^2+(0-6)^2+(5-3)^2} = \sqrt{16+36+4} = \sqrt{56}$ $2\sqrt{14}$

4) |5-7|-|7-5|=

a) -4

b) 0

c) 2

d) 4

e) 12

5) A line has the parametric equation x = t + 5 and y = t + 10. What is the slope of the line?

|-2| - |2| = 2 - 2 = 0

a) 1

b) 2

x = t + 5

c) 5

so,

t = x -

⁻⁵ then, using substitution,

d) 10

e) 50

y = (x - 5) + 10 \longrightarrow y = x + 5 (slope is 1)

SOLUTIONS

6) Two dice are tossed. What is the probability that neither die is a 4?

a) 1/6

p(1st is NOT 4) = 5/6

b) 1/3 c) 2/3

p(2nd is NOT 4) = 5/6

since each die is independent,

d) 25/36 e) 5/6

p(neither is 4) = (5/6)(5/6) = 25/36

7) (1, 6), (3, -2), and (-2, K) are collinear points. What is K?

a) -6

If 3 points are collinear, they are on the same line ---- i.e. each pair with have the same slope!

b) 2

slope of (1, 6) and (3, -2) is $\frac{-2 - 6}{3 - 1} = -4$

c) 8 d) 10 e) 18

 $\frac{K-6}{-2-1} = -4$ K = 18

slope of (1, 6) and (-2, K) must be -4

8) Vectors u and v are given by u = (3, 0) and v = (1, -4). What is the length of vector w, given by w = 2u - v?

a) $2\sqrt{10}$

b) $\sqrt{41}$

w = 2(3, 0) - (1, -4)

w = (5, 4)

d) 3

 $\|\mathbf{w}\| = \sqrt{(5)^2 + (4)^2} = \sqrt{41}$

e) $\sqrt{23}$

9) The domain of $g(x) = \frac{3}{\sqrt{4-x^2}}$ is:

a) [-2, 2]

b) (-2, 2)

c) (0, 2)

cannot have negative under a radical and cannot have zero in the denominator...

d) $(-\infty, -2)$

e) $(-\infty, 2)$

so, must be between -2 and 2

10) The radius of circle $x^2 - 4x + y^2 + 6y = 3$

a) 3

complete the square to change into standard form...

b) √ 3

c) 4

 $x^2 - 4x + 4 + y^2 + 6y + 9 = 3 + 4 + 9$

d) 8

 $(x-2)^2 + (y+3)^2 = 16$

radius = 4

e) 16

 $(x - h)^2 + (y - k)^2 = r^2$

SOLUTIONS

 $g(x) = x^2 - 1$ 11) f(x) = 2x + 1

$$(f \circ g)(x) =$$

a) $x^2 + 2x$

b)
$$2x^3 + x^2 - 2x - 1$$

$$f(g(x)) = 2(x^2 - 1) + 1$$

c) $2x^2 - 1$

$$2x^2 - 2 + 1$$

d) $4x^2 + 4x$

$$2x^{2} - 1$$

e) $2(x^2 + x + 1)$

12) The intersection of line x + y = 2 and circle $x^2 + y^2 = 4$ occurs when x =

solve algebraically:

a) -2, 2

$$y = -x + 2$$

$$x^2 + (-x + 2)^2 = 4$$

b) -2, 0, 2

$$x^2 + y^2 = 4$$

$$x^2 + x^2 - 4x + 4 = 4$$

c) -2, 4

$$2x^2 - 4x = 0$$

$$2x(x-2) = 0$$
 $x = 0, 2$

13) Which is a zero of the function $f(x) = \sin 2(x) - 1/2$?

$$\sin 2x - 1/2 = 0$$

$$\sin 2x = 1/2$$

$$2x = \frac{\uparrow \uparrow}{6}$$

$$x = \frac{\uparrow \uparrow}{12}$$

14) A circle is inscribed in a square. If the area of the square is 36 sq. units, what is the area of the circle?

Area of circle =
$$\uparrow \uparrow r^2$$

area =
$$\uparrow \uparrow \uparrow 3$$
²

since area of square is 36, each side is 6...

If a side is 6, then the radius

15) Find the sum

$$\frac{100}{\sum} (n-2)$$

must be 3...

6

$$\frac{100}{\sum} (n-2)$$

 $\sum_{n=1}^{100} n - \sum_{n=1}^{100} 2$

number first term last term of terms

sum formula:
$$\frac{n(a_1 + a_n)}{2}$$

c) 4500 d) 4550 e) 4850

$$(100 + 1)(50)$$
 — $2(100)$
= 4850

If you found this (SAT Subject Test Practice – **Math LEVEL 2**) preview useful, consider ordering the full packet or visit mathplane.com

We appreciate your support. Any proceeds go to website maintenance (and treats for Oscar the dog!)