The Asymptotic Existence of Orthogonal Designs

Ebrahim Ghaderpour

University of Lethbridge

March 18, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

-

• Let
$$A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
, so $AA^t = (a^2 + b^2)I_2$ which is an $OD(2; 1, 1)$.

_

(ロ) (四) (E) (E) (E)

-

• Let
$$A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
, so $AA^t = (a^2 + b^2)I_2$ which is an $OD(2; 1, 1)$.
• Let $B = \begin{bmatrix} a & bi \\ bi & a \end{bmatrix}$, so $BB^* = (a^2 + b^2)I_2$ which is a $COD(2; 1, 1)$.

_

<ロ> (四) (四) (三) (三) (三)

• Let
$$A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
, so $AA^t = (a^2 + b^2)I_2$ which is an
 $OD(2; 1, 1)$.
• Let $B = \begin{bmatrix} a & bi \\ bi & a \end{bmatrix}$, so $BB^* = (a^2 + b^2)I_2$ which is a
 $COD(2; 1, 1)$.
• Let $C = \begin{bmatrix} a & b & c & c \\ -b & a & c & -c \\ c & c & -a & -b \\ c & -c & b & -a \end{bmatrix}$, so $CC^t = (a^2 + b^2 + 2c^2)I_4$
which is an $OD(4; 1, 1, 2)$.

<ロ> (四) (四) (三) (三) (三)

	ai	Ь	Ь	Ь	Ь	Ь	
Let D =	Ь	ai	Ь	- <i>b</i>	- <i>b</i>	Ь	, so $DD^* = (a^2 + 5b^2)I_6$
	Ь	Ь	ai	Ь	- <i>b</i>	-b	
	Ь	- <i>b</i>	Ь	ai	Ь	-b	
	Ь	- <i>b</i>	- <i>b</i>	Ь	ai	Ь	
	Ь	Ь	- <i>b</i>	- <i>b</i>	Ь	ai	
which is a $COD(6; 1, 5)$.							

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Definition

A complex orthogonal design of order *n* and type (s_1, \ldots, s_k) , denoted $COD(n; s_1, \ldots, s_k)$, is an n by n matrix X entries in $\{0, \epsilon_1 x_1, \ldots, \epsilon_k x_k\}$, where the x_j 's are commuting variables and $\epsilon_j \in \{\pm 1, \pm i\}$ for each *j*, that satisfies

$$XX^* = \left(\sum_{j=1}^k s_j x_j^2\right) I_n,$$

where X^* denotes the conjugate transpose of X and I_n is the idetity matrix of order n.

- A complex orthogonal design in which *ϵ_j* ∈ {±1} for all *j* is called an *orthogonal design*, denoted *OD*(*n*; *s*₁,..., *s_k*).
- A complex orthogonal design (=COD) in which there is no zero entry is called a *full* COD.
- An orthogonal design (=OD) in which there is no zero entry is called a *full* OD.

(日)

Definition

Equating all variables to 1 in any COD of order n gives us a complex weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the COD. We denote this complex weighing matrix by CW(n, k).

Definition

- Equating all variables to 1 in any COD of order n gives us a complex weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the COD. We denote this complex weighing matrix by CW(n, k).
- Equating all variables to 1 in any OD of order n gives us a weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the OD. We denote this weighing matrix by W(n, k).

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

- Equating all variables to 1 in any COD of order n gives us a complex weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the COD. We denote this complex weighing matrix by CW(n, k).
- Equating all variables to 1 in any OD of order n gives us a weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the OD. We denote this weighing matrix by W(n, k).
- Equating all variables to 1 in any full COD results in a complex Hadamard matrix. In other word, a CW(n, n).

- 4 同 2 4 日 2 4 日 2

Definition

- Equating all variables to 1 in any COD of order n gives us a complex weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the COD. We denote this complex weighing matrix by CW(n, k).
- Equating all variables to 1 in any OD of order n gives us a weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the OD. We denote this weighing matrix by W(n, k).
- Equating all variables to 1 in any full COD results in a complex Hadamard matrix. In other word, a CW(n, n).
- Equating all variables to 1 in any full OD results in a Hadamard matrix. In other word, a W(n, n).

A *circulant matrix* $B = [b_{ij}]$ of order *n* with the first row (a_1, a_2, \ldots, a_n) is one for which $b_{ij} = a_{j-i+1}$, where j - i + 1 is reduced modulus *n*. We denote this matrix by $circ(a_1, a_2, \ldots, a_n)$.

白 と く ヨ と く ヨ と

A *circulant matrix* $B = [b_{ij}]$ of order *n* with the first row (a_1, a_2, \ldots, a_n) is one for which $b_{ij} = a_{j-i+1}$, where j - i + 1 is reduced modulus *n*. We denote this matrix by $circ(a_1, a_2, \ldots, a_n)$.

Exam	ple			
	- a ₁	a 2	a 3	
B =	a 3	a_1	a 2	is a circulant matrix of order 3.
	a 2	a 3	a ₁	

・ 同 ト ・ 三 ト ・ 三 ト

A *circulant matrix* $B = [b_{ij}]$ of order *n* with the first row (a_1, a_2, \ldots, a_n) is one for which $b_{ij} = a_{j-i+1}$, where j - i + 1 is reduced modulus *n*. We denote this matrix by $circ(a_1, a_2, \ldots, a_n)$.

Fact

• If
$$B = circ(a_1, a_2, ..., a_n)$$
, then $B^* = circ(a_1^*, a_n^*, ..., a_2^*)$.

æ

・ロト ・同ト ・ヨト ・ヨト

A *circulant matrix* $B = [b_{ij}]$ of order *n* with the first row (a_1, a_2, \ldots, a_n) is one for which $b_{ij} = a_{j-i+1}$, where j - i + 1 is reduced modulus *n*. We denote this matrix by $circ(a_1, a_2, \ldots, a_n)$.

Fact

• If
$$B = circ(a_1, a_2, ..., a_n)$$
, then $B^* = circ(a_1^*, a_n^*, ..., a_2^*)$.

Any two complex circulant matrices commute.

æ

Amicable and Anti-Amicable Matrices

Definition

- Two matrices A and B are called amicable if $AB^* = BA^*$.
- They are called anti-amicable if $AB^* = -BA^*$.

・ 回 と ・ ヨ と ・ ヨ と

Amicable and Anti-Amicable Matrices

Definition

- Two matrices A and B are called amicable if $AB^* = BA^*$.
- They are called anti-amicable if $AB^* = -BA^*$.

・ロト ・回ト ・ヨト ・ヨト

Amicable and Anti-Amicable Matrices

Definition

- Two matrices A and B are called amicable if $AB^* = BA^*$.
- They are called anti-amicable if $AB^* = -BA^*$.

Example Let $P := \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $Q := \begin{bmatrix} 1 & 0 \\ 0 & - \end{bmatrix}$, and $R := \begin{bmatrix} 0 & 1 \\ - & 0 \end{bmatrix}$. Then • $PQ^t = -QP^t$, • $PR^t = RP^t$, • $RQ^t = QR^t$.

Example

Any two Hermitian circulant matrices are amicable. This follows from the fact that any two complex circulant matrices commute.

소리가 소문가 소문가 소문가

э

Kronecker Product

Definition

The *Kronecker product* of two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ of orders respectively $m \times n$ and $r \times s$, denoted by $A \otimes B$ is a matrix of order $mr \times ns$ and is given by

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & & & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}$$

イロン イヨン イヨン イヨン

Kronecker Product

Definition

The *Kronecker product* of two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ of orders respectively $m \times n$ and $r \times s$, denoted by $A \otimes B$ is a matrix of order $mr \times ns$ and is given by

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & & & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}$$

Example

Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$ then

Kronecker Product

Definition

The *Kronecker product* of two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ of orders respectively $m \times n$ and $r \times s$, denoted by $A \otimes B$ is a matrix of order $mr \times ns$ and is given by

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & & & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}$$

Example Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$ then $A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{bmatrix}$

Ebrahim Ghaderpour The Asymptotic Existence of Orthogonal Designs

Suppose that A and B are $n \times n$, and C and D are $m \times m$ matrices. Then, we have the following properties

- 4 回 2 - 4 □ 2 - 4 □

Suppose that A and B are $n \times n$, and C and D are $m \times m$ matrices. Then, we have the following properties

 $A\otimes (C+D) = A\otimes C + A\otimes D,$

マロト イヨト イヨト

Suppose that A and B are $n \times n$, and C and D are $m \times m$ matrices. Then, we have the following properties

$$A \otimes (C + D) = A \otimes C + A \otimes D,$$

$$\blacksquare (A \otimes C)^* = A^* \otimes C^*,$$

(4月) (日) (日)

Suppose that A and B are $n \times n$, and C and D are $m \times m$ matrices. Then, we have the following properties

 $A\otimes (C+D) = A\otimes C + A\otimes D,$

$$\blacksquare (A \otimes C)^* = A^* \otimes C^*,$$

$$(A \otimes C)(B \otimes D) = (AB \otimes CD).$$

- 4 回 2 - 4 □ 2 - 4 □

Suppose that A and B are two square matrices of order n. We denote the Hadamard product of A and B by A * B which is a square matrix of order n such that it's (i, j) entry is the product of the (i, j) entry of A with the (i, j) entry of B.

向下 イヨト イヨト

Suppose that A and B are two square matrices of order *n*. We denote the Hadamard product of A and B by A * B which is a square matrix of order *n* such that it's (i,j) entry is the product of the (i,j) entry of A with the (i,j) entry of B. A and B are called disjoint if A * B = 0.

向下 イヨト イヨト

Suppose that A and B are two square matrices of order *n*. We denote the Hadamard product of A and B by A * B which is a square matrix of order *n* such that it's (i,j) entry is the product of the (i,j) entry of A with the (i,j) entry of B. A and B are called disjoint if A * B = 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose that A and B are two square matrices of order *n*. We denote the Hadamard product of A and B by A * B which is a square matrix of order *n* such that it's (i,j) entry is the product of the (i,j) entry of A with the (i,j) entry of B. A and B are called disjoint if A * B = 0.

▲帰▶ ★ 国▶ ★ 国▶

A necessary and sufficient condition that there exists an $OD(n; s_1, ..., s_k)$ is that there exist $\{0, \pm 1\}$ matrices $A_1, ..., A_k$ of order n such that

(1日) (1日) (日)

A necessary and sufficient condition that there exists an $OD(n; s_1, ..., s_k)$ is that there exist $\{0, \pm 1\}$ matrices $A_1, ..., A_k$ of order n such that

•
$$A_i * A_j = 0$$
 for $1 \le i \ne j \le k$,

(1日) (1日) (日)

A necessary and sufficient condition that there exists an $OD(n; s_1, ..., s_k)$ is that there exist $\{0, \pm 1\}$ matrices $A_1, ..., A_k$ of order n such that

•
$$A_i * A_j = 0$$
 for $1 \le i \ne j \le k$,

•
$$A_i A_i^t = \underline{s_i} I_n$$
, for $1 \le i \le k$,

(4月) (4日) (4日)

4

A necessary and sufficient condition that there exists an $OD(n; s_1, ..., s_k)$ is that there exist $\{0, \pm 1\}$ matrices $A_1, ..., A_k$ of order n such that

$$A_i * A_j = 0 \text{ for } 1 \le i \ne j \le k,$$

$$A_i A_i^t = s_i I_n, \text{ for } 1 \le i \le k,$$

$$A_i A_i^t = -A_j A_i^t, \text{ for } 1 \le i \ne j \le k.$$

向下 イヨト イヨト

Theorem (Radon)

The maximum number of variables in an orthogonal design of order $n = 2^{a}b$, b odd, where a = 4c + d, $0 \le d < 4$, is $\le \rho(n) = 8c + 2^{d}$. This bound is achieved!

Theorem (Radon)

The maximum number of variables in an orthogonal design of order $n = 2^{a}b$, b odd, where a = 4c + d, $0 \le d < 4$, is $\le \rho(n) = 8c + 2^{d}$. This bound is achieved!

Example

The maximum number of variables in orthogonal designs of order 2,4,8,16,32,64,128 are 2,4,8,9,10,12,16, respectively.

・ 同 ト ・ 三 ト ・ 三 ト

Let	۲1000 - ۲
$A_1 = I \otimes I = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} =$	0 1 0 0
	0 0 1 0 '
$A_{2} = I \otimes R = \begin{bmatrix} 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \end{bmatrix} =$	- 0 0 0
$A_2 = V \otimes K = \begin{bmatrix} 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} - & 0 \end{bmatrix} =$	0 0 0 1

・ロト ・回ト ・ヨト ・ヨト

æ

Example

$$A_{3} = R \otimes Q = \begin{bmatrix} 0 & 1 \\ - & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & - \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & - \\ - & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$
$$A_{4} = R \otimes P = \begin{bmatrix} 0 & 1 \\ - & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & - & 0 & 0 \\ - & 0 & 0 & 0 \end{bmatrix}.$$

・ロン ・回 と ・ ヨン ・ ヨン

æ

Example

$$A_{3} = R \otimes Q = \begin{bmatrix} 0 & 1 \\ - & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & - \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & - \\ - & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$
$$A_{4} = R \otimes P = \begin{bmatrix} 0 & 1 \\ - & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & - & 0 & 0 \\ - & 0 & 0 & 0 \end{bmatrix}.$$
It is provide the form the set of the set o

It is easy to check $A = aA_1 + bA_2 + cA_3 + dA_4$ is an OD(4; 1, 1, 1, 1):

$$A = \begin{bmatrix} a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a \end{bmatrix}$$

The Asymptotic Existence of Orthogonal Designs

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Ebrahim Ghaderpour

Lemma (Wolfe)

Given an integer $n = 2^{s}d$, where d is odd and $s \ge 1$, there exist sets $A = \{A_1, \ldots, A_{s+1}\}$ and $B = \{B_1, \ldots, B_{s+1}\}$ of signed permutation matrices of order n such that

A consists of pairwise disjoint anti-amicable matrices,

伺 ト イヨト イヨト

Lemma (Wolfe)

Given an integer $n = 2^{s}d$, where d is odd and $s \ge 1$, there exist sets $A = \{A_1, \ldots, A_{s+1}\}$ and $B = \{B_1, \ldots, B_{s+1}\}$ of signed permutation matrices of order n such that

- A consists of pairwise disjoint anti-amicable matrices,
- B consists of pairwise disjoint anti-amicable matrices,

伺 ト イヨト イヨト

Lemma (Wolfe)

Given an integer $n = 2^{s}d$, where d is odd and $s \ge 1$, there exist sets $A = \{A_{1}, \ldots, A_{s+1}\}$ and $B = \{B_{1}, \ldots, B_{s+1}\}$ of signed permutation matrices of order n such that

- A consists of pairwise disjoint anti-amicable matrices,
- B consists of pairwise disjoint anti-amicable matrices,
- For each *i* and *j*, $A_i B_j^t = B_j A_i^t$.

<回> < 回 > < 回 > < 回 >

The *non-periodic autocorrelation function* of a sequence $A = (x_1, ..., x_n)$ of commuting square complex matrices of order t, is defined by

$$N_A(j) := \begin{cases} \sum_{m=1}^{n-j} x_{m+j} x_m^* & \text{if } j = 1, 2, \dots, n-1 \\ 0 & \text{otherwise} \end{cases}$$

where x_m^* denotes the Hermitian conjugate of x_m , and N_A maps the set of natural numbers into the set of complex matrices of order *m*.

向下 イヨト イヨト

Let
$$A = (1, i, 1)$$
. Consider circ $(A) = \begin{bmatrix} 1 & i & 1 \\ 1 & 1 & i \\ i & 1 & 1 \end{bmatrix}$. Now consider it's upper triangular matrix; i.e, $U = \begin{bmatrix} 1 & i & 1 \\ 0 & 1 & i \\ 0 & 0 & 1 \end{bmatrix}$.

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Let
$$A = (1, i, 1)$$
. Consider circ $(A) = \begin{bmatrix} 1 & i & 1 \\ 1 & 1 & i \\ i & 1 & 1 \end{bmatrix}$. Now consider it's upper triangular matrix; i.e, $U = \begin{bmatrix} 1 & i & 1 \\ 0 & 1 & i \\ 0 & 0 & 1 \end{bmatrix}$.
So, $N_A(1) = 0$ (the inner product of first row and conjugate of second row of U),

(ロ) (四) (E) (E) (E)

Let
$$A = (1, i, 1)$$
. Consider circ $(A) = \begin{bmatrix} 1 & i & 1 \\ 1 & 1 & i \\ i & 1 & 1 \end{bmatrix}$. Now consider it's
upper triangular matrix; i.e, $U = \begin{bmatrix} 1 & i & 1 \\ 0 & 1 & i \\ 0 & 0 & 1 \end{bmatrix}$.
So, $N_A(1) = 0$ (the inner product of first row and conjugate of second
row of U),
and $N_A(2) = 1$ (the inner product of first row and conjugate of third row
of U).

(ロ) (四) (E) (E) (E)

A set of near type 1 matrices is a set X of commuting square complex matrices of order m with $cd^* = d^*c$ for all $c, d \in X$.

A set of near type 1 matrices is a set X of commuting square complex matrices of order m with $cd^* = d^*c$ for all $c, d \in X$.

Example

 The set of all circulant matrices is a set of near type 1 matrices.

イロト イポト イヨト イヨト

A set of near type 1 matrices is a set X of commuting square complex matrices of order m with $cd^* = d^*c$ for all $c, d \in X$.

Example

- The set of all circulant matrices is a set of near type 1 matrices.
- The set of negacirculant matrices in two variables is a set of near type 1 matrices, i.e, the set of all matrices of the form

$$\begin{bmatrix} x_i & y_j \\ -y_j & x_i \end{bmatrix}$$

伺下 イヨト イヨト

Complex Golay Sequences

Definition

Let $A = (x_1, ..., x_n)$ and $B = (y_1, ..., y_n)$ be two $\{\pm 1, \pm i\}$ sequences such that $N_A(j) + N_B(j) = 0$ for all j. Then A and B are called *complex Golay complementary sequences of length n*.

<回> < 回> < 回> < 回>

Let $A = (x_1, ..., x_n)$ and $B = (y_1, ..., y_n)$ be two $\{\pm 1, \pm i\}$ sequences such that $N_A(j) + N_B(j) = 0$ for all *j*. Then *A* and *B* are called *complex Golay complementary sequences of length n*.

Example

Let A = (1, i, 1) and B = (1, 1, -). Then $N_A(1) + N_B(1) = 0 + 0 = 0$ and $N_A(2) + N_B(2) = 1 + (-1) = 0$. Thus, A and B are complex Golay complementary sequences of length 3.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let $A = (x_1, ..., x_n)$ and $B = (y_1, ..., y_n)$ be two $\{\pm 1, \pm i\}$ sequences such that $N_A(j) + N_B(j) = 0$ for all *j*. Then *A* and *B* are called *complex Golay complementary sequences of length n*.

Example

Let A = (1, i, 1) and B = (1, 1, -). Then $N_A(1) + N_B(1) = 0 + 0 = 0$ and $N_A(2) + N_B(2) = 1 + (-1) = 0$. Thus, A and B are complex Golay complementary sequences of length 3. In other word, if we let $A_1 = circ(A)$ and $B_1 = circ(B)$, then we have $A_1A_1^* + B_1B_1^* = 3I_3$. We say that A_1 and B_1 are complementary circulant matrices of order 3.

イロン イヨン イヨン イヨン

Conjecture (P. Eades and J. Seberry)

For any k-tuple $(v_1, v_2, ..., v_k)$ of positive integers, if all of $v_1, v_2, ..., v_k$ are sufficiently divisible by 2, then there is an

$$OD\left(\sum_{j=1}^{k} v_j; v_1, v_2, \ldots, v_k\right).$$

Conjecture (P. Eades and J. Seberry)

For any k-tuple $(v_1, v_2, ..., v_k)$ of positive integers, if all of $v_1, v_2, ..., v_k$ are sufficiently divisible by 2, then there is an

$$OD\left(\sum_{j=1}^{k} v_j; v_1, v_2, \ldots, v_k\right).$$

Theorem (P. Eades and J. Seberry)

Suppose that (w_1, \ldots, w_k) is a binary expansion of t and there is an $OD(t; w_1, \ldots, w_k)$. Then, for every m-tuple (u_1, \ldots, u_m) such that $u_1 + \cdots + u_m = 2^a t$, there is an integer N such that for each $n \ge N$, there is an

$$OD(2^{n+a}t; 2^nu_1, \ldots, 2^nu_m).$$

For any k-tuple $(u_1, u_2, ..., u_k)$ of positive integers, there exists an integer N such that for each $n \ge N$ there is an

$$OD\left(2^n\sum_{j=1}^k u_j; \ 2^n u_1, 2^n u_2, \dots, 2^n u_k\right).$$

Thank you for your attention!

æ