The Asymptotic Existence of Orthogonal Designs

Ebrahim Ghaderpour

University of Lethbridge

March 18, 2013

Example

- Let $A=\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$, so $A A^{t}=\left(a^{2}+b^{2}\right) I_{2}$ which is an $O D(2 ; 1,1)$.

Example

- Let $A=\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$, so $A A^{t}=\left(a^{2}+b^{2}\right) I_{2}$ which is an $O D(2 ; 1,1)$.
- Let $B=\left[\begin{array}{rr}a & b i \\ b i & a\end{array}\right]$, so $B B^{*}=\left(a^{2}+b^{2}\right) l_{2}$ which is a $\operatorname{COD}(2 ; 1,1)$.

Example

- Let $A=\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$, so $A A^{t}=\left(a^{2}+b^{2}\right) l_{2}$ which is an $O D(2 ; 1,1)$.
- Let $B=\left[\begin{array}{rr}a & b i \\ b i & a\end{array}\right]$, so $B B^{*}=\left(a^{2}+b^{2}\right) l_{2}$ which is a $\operatorname{COD}(2 ; 1,1)$.
- Let $C=\left[\begin{array}{rrrr}a & b & c & c \\ -b & a & c & -c \\ c & c & -a & -b \\ c & -c & b & -a\end{array}\right]$, so $C C^{t}=\left(a^{2}+b^{2}+2 c^{2}\right) I_{4}$
which is an $O D(4 ; 1,1,2)$.

Example

Let $D=\left[\begin{array}{rrrrrr}a i & b & b & b & b & b \\ b & a i & b & -b & -b & b \\ b & b & a i & b & -b & -b \\ b & -b & b & a i & b & -b \\ b & -b & -b & b & a i & b \\ b & b & -b & -b & b & a i\end{array}\right]$, so $D D^{*}=\left(a^{2}+5 b^{2}\right) I_{6}$ which is a $\operatorname{COD}(6 ; 1,5)$.

Definition

A complex orthogonal design of order n and type (s_{1}, \ldots, s_{k}), denoted $\operatorname{COD}\left(n ; s_{1}, \ldots, s_{k}\right)$, is an n by n matrix X entries in $\left\{0, \epsilon_{1} x_{1}, \ldots, \epsilon_{k} x_{k}\right\}$, where the x_{j} 's are commuting variables and $\epsilon_{j} \in\{ \pm 1, \pm i\}$ for each j, that satisfies

$$
X X^{*}=\left(\sum_{j=1}^{k} s_{j} x_{j}^{2}\right) I_{n},
$$

where X^{*} denotes the conjugate transpose of X and I_{n} is the idetity matrix of order n.

- A complex orthogonal design in which $\epsilon_{j} \in\{ \pm 1\}$ for all j is called an orthogonal design, denoted $O D\left(n ; s_{1}, \ldots, s_{k}\right)$.
- A complex orthogonal design (=COD) in which there is no zero entry is called a full COD.
- An orthogonal design (=OD) in which there is no zero entry is called a full OD.

Definition

■ Equating all variables to 1 in any COD of order n gives us a complex weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the COD. We denote this complex weighing matrix by $C W(n, k)$.

Definition

■ Equating all variables to 1 in any COD of order n gives us a complex weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the COD. We denote this complex weighing matrix by $C W(n, k)$.

- Equating all variables to 1 in any OD of order n gives us a weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the OD. We denote this weighing matrix by $W(n, k)$.

Definition

■ Equating all variables to 1 in any COD of order n gives us a complex weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the COD. We denote this complex weighing matrix by $C W(n, k)$.

- Equating all variables to 1 in any OD of order n gives us a weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the OD. We denote this weighing matrix by $W(n, k)$.
- Equating all variables to 1 in any full COD results in a complex Hadamard matrix. In other word, a CW (n, n).

Definition

■ Equating all variables to 1 in any COD of order n gives us a complex weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the COD. We denote this complex weighing matrix by $C W(n, k)$.

- Equating all variables to 1 in any OD of order n gives us a weighing matrix of weight k, where k is the number of nonzero entries in each row or each column of the OD. We denote this weighing matrix by $W(n, k)$.
- Equating all variables to 1 in any full COD results in a complex Hadamard matrix. In other word, a CW (n, n).
- Equating all variables to 1 in any full OD results in a Hadamard matrix. In other word, a $W(n, n)$.

circulant matrices

Definition

A circulant matrix $B=\left[b_{i j}\right]$ of order n with the first row $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is one for which $b_{i j}=a_{j-i+1}$, where $j-i+1$ is reduced modulus n. We denote this matrix by $\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

circulant matrices

Definition

A circulant matrix $B=\left[b_{i j}\right]$ of order n with the first row $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is one for which $b_{i j}=a_{j-i+1}$, where $j-i+1$ is reduced modulus n. We denote this matrix by $\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Example

$B=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{3} & a_{1} & a_{2} \\ a_{2} & a_{3} & a_{1}\end{array}\right]$ is a circulant matrix of order 3.

circulant matrices

Definition

A circulant matrix $B=\left[b_{i j}\right]$ of order n with the first row $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is one for which $b_{i j}=a_{j-i+1}$, where $j-i+1$ is reduced modulus n. We denote this matrix by $\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Example

$B=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{3} & a_{1} & a_{2} \\ a_{2} & a_{3} & a_{1}\end{array}\right]$ is a circulant matrix of order 3.

Fact

■ If $B=\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then $B^{*}=\operatorname{circ}\left(a_{1}^{*}, a_{n}^{*}, \ldots, a_{2}^{*}\right)$.

circulant matrices

Definition

A circulant matrix $B=\left[b_{i j}\right]$ of order n with the first row $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is one for which $b_{i j}=a_{j-i+1}$, where $j-i+1$ is reduced modulus n. We denote this matrix by $\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Example

$B=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{3} & a_{1} & a_{2} \\ a_{2} & a_{3} & a_{1}\end{array}\right]$ is a circulant matrix of order 3.

Fact

- If $B=\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then $B^{*}=\operatorname{circ}\left(a_{1}^{*}, a_{n}^{*}, \ldots, a_{2}^{*}\right)$.
- Any two complex circulant matrices commute.

Amicable and Anti-Amicable Matrices

Definition

- Two matrices A and B are called amicable if $A B^{*}=B A^{*}$.
- They are called anti-amicable if $A B^{*}=-B A^{*}$.

Amicable and Anti-Amicable Matrices

Definition

- Two matrices A and B are called amicable if $A B^{*}=B A^{*}$.
- They are called anti-amicable if $A B^{*}=-B A^{*}$.

Example

Let $P:=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], Q:=\left[\begin{array}{cc}1 & 0 \\ 0 & -\end{array}\right]$, and $R:=\left[\begin{array}{cc}0 & 1 \\ - & 0\end{array}\right]$. Then

- $P Q^{t}=-Q P^{t}$,

■ $P R^{t}=R P^{t}$,

- $R Q^{t}=Q R^{t}$.

Amicable and Anti-Amicable Matrices

Definition

- Two matrices A and B are called amicable if $A B^{*}=B A^{*}$.
- They are called anti-amicable if $A B^{*}=-B A^{*}$.

Example

$$
\begin{aligned}
& \text { Let } P:=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right], Q:=\left[\begin{array}{cc}
1 & 0 \\
0 & -
\end{array}\right], \text { and } R:=\left[\begin{array}{cc}
0 & 1 \\
- & 0
\end{array}\right] . \text { Then } \\
& \quad \text { ■ } P Q^{t}=-Q P^{t}, \\
& P R^{t}=R P^{t}, \\
& R Q^{t}=Q R^{t} .
\end{aligned}
$$

Example

Any two Hermitian circulant matrices are amicable. This follows from the fact that any two complex circulant matrices commute.

Kronecker Product

Definition

The Kronecker product of two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ of orders respectively $m \times n$ and $r \times s$, denoted by $A \otimes B$ is a matrix of order $m r \times n s$ and is given by

$$
A \otimes B=\left[\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 n} B \\
a_{21} B & a_{22} B & \cdots & a_{2 n} B \\
\vdots & & & \vdots \\
a_{m 1} B & a_{m 2} B & \cdots & a_{m n} B
\end{array}\right]
$$

Kronecker Product

Definition

The Kronecker product of two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ of orders respectively $m \times n$ and $r \times s$, denoted by $A \otimes B$ is a matrix of order $m r \times n s$ and is given by

$$
A \otimes B=\left[\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 n} B \\
a_{21} B & a_{22} B & \cdots & a_{2 n} B \\
\vdots & & & \vdots \\
a_{m 1} B & a_{m 2} B & \cdots & a_{m n} B
\end{array}\right]
$$

Example

Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ and $B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$ then

Definition

The Kronecker product of two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ of orders respectively $m \times n$ and $r \times s$, denoted by $A \otimes B$ is a matrix of order $m r \times n s$ and is given by

$$
A \otimes B=\left[\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 n} B \\
a_{21} B & a_{22} B & \cdots & a_{2 n} B \\
\vdots & & & \vdots \\
a_{m 1} B & a_{m 2} B & \cdots & a_{m n} B
\end{array}\right]
$$

Example

Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ and $B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$ then
$A \otimes B=\left[\begin{array}{ll}a_{11} B & a_{12} B \\ a_{21} B & a_{22} B\end{array}\right]=\left[\begin{array}{llll}a_{11} b_{11} & a_{11} b_{12} & a_{12} b_{11} & a_{12} b_{12} \\ a_{11} b_{21} & a_{11} b_{22} & a_{12} b_{21} & a_{12} b_{22} \\ a_{21} b_{11} & a_{21} b_{12} & a_{22} b_{11} & a_{22} b_{12} \\ a_{21} b_{21} & a_{21} b_{22} & a_{22} b_{21} & a_{22} b_{22}\end{array}\right]$

Property

Suppose that A and B are $n \times n$, and C and D are $m \times m$ matrices. Then, we have the following properties

Property

Suppose that A and B are $n \times n$, and C and D are $m \times m$ matrices. Then, we have the following properties

- $A \otimes(C+D)=A \otimes C+A \otimes D$,

Property

Suppose that A and B are $n \times n$, and C and D are $m \times m$ matrices. Then, we have the following properties

■ $A \otimes(C+D)=A \otimes C+A \otimes D$,

- $(A \otimes C)^{*}=A^{*} \otimes C^{*}$,

Property

Suppose that A and B are $n \times n$, and C and D are $m \times m$ matrices. Then, we have the following properties

- $A \otimes(C+D)=A \otimes C+A \otimes D$,
- $(A \otimes C)^{*}=A^{*} \otimes C^{*}$,
- $(A \otimes C)(B \otimes D)=(A B \otimes C D)$.

Definition

Suppose that A and B are two square matrices of order n. We denote the Hadamard product of A and B by $A * B$ which is a square matrix of order n such that it's (i, j) entry is the product of the (i, j) entry of A with the (i, j) entry of B.

Definition

Suppose that A and B are two square matrices of order n. We denote the Hadamard product of A and B by $A * B$ which is a square matrix of order n such that it's (i, j) entry is the product of the (i, j) entry of A with the (i, j) entry of B.
A and B are called disjoint if $A * B=0$.

Definition

Suppose that A and B are two square matrices of order n. We denote the Hadamard product of A and B by $A * B$ which is a square matrix of order n such that it's (i, j) entry is the product of the (i, j) entry of A with the (i, j) entry of B.
A and B are called disjoint if $A * B=0$.

Example

$$
P:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and } Q:=\left[\begin{array}{cc}
1 & 0 \\
0 & -
\end{array}\right] \text { are disjoint. }
$$

Definition

Suppose that A and B are two square matrices of order n. We denote the Hadamard product of A and B by $A * B$ which is a square matrix of order n such that it's (i, j) entry is the product of the (i, j) entry of A with the (i, j) entry of B.
A and B are called disjoint if $A * B=0$.

Example

$$
\begin{aligned}
& P:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and } Q:=\left[\begin{array}{cc}
1 & 0 \\
0 & -
\end{array}\right] \text { are disjoint. } \\
& I:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } R:=\left[\begin{array}{cc}
0 & 1 \\
- & 0
\end{array}\right] \text { are disjoint. }
\end{aligned}
$$

Orthogonal Designs

Theorem

A necessary and sufficient condition that there exists an
$O D\left(n ; s_{1}, \ldots, s_{k}\right)$ is that there exist $\{0, \pm 1\}$ matrices A_{1}, \ldots, A_{k} of order n such that

Theorem

A necessary and sufficient condition that there exists an $O D\left(n ; s_{1}, \ldots, s_{k}\right)$ is that there exist $\{0, \pm 1\}$ matrices A_{1}, \ldots, A_{k} of order n such that

- $A_{i} * A_{j}=0$ for $1 \leq i \neq j \leq k$,

Theorem

A necessary and sufficient condition that there exists an
$O D\left(n ; s_{1}, \ldots, s_{k}\right)$ is that there exist $\{0, \pm 1\}$ matrices A_{1}, \ldots, A_{k} of order n such that

- $A_{i} * A_{j}=0$ for $1 \leq i \neq j \leq k$,
- $A_{i} A_{i}^{t}=s_{i} I_{n}$, for $1 \leq i \leq k$,

Theorem

A necessary and sufficient condition that there exists an $O D\left(n ; s_{1}, \ldots, s_{k}\right)$ is that there exist $\{0, \pm 1\}$ matrices A_{1}, \ldots, A_{k} of order n such that

- $A_{i} * A_{j}=0$ for $1 \leq i \neq j \leq k$,
- $A_{i} A_{i}^{t}=s_{i} I_{n}$, for $1 \leq i \leq k$,
- $A_{i} A_{j}^{t}=-A_{j} A_{i}^{t}$, for $1 \leq i \neq j \leq k$.

Theorem (Radon)

The maximum number of variables in an orthogonal design of order $n=2^{a} b, b$ odd, where $a=4 c+d, 0 \leq d<4$, is $\leq \rho(n)=8 c+2^{d}$. This bound is achieved!

Theorem (Radon)

The maximum number of variables in an orthogonal design of order $n=2^{a} b, b$ odd, where $a=4 c+d, 0 \leq d<4$, is $\leq \rho(n)=8 c+2^{d}$. This bound is achieved!

Example

The maximum number of variables in orthogonal designs of order $2,4,8,16,32,64,128$ are $2,4,8,9,10,12,16$, respectively.

Orthogonal Designs

Example

Let

$$
\begin{aligned}
& A_{1}=I \otimes I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
& A_{2}=I \otimes R=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \otimes\left[\begin{array}{ll}
0 & 1 \\
- & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
- & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & - & 0
\end{array}\right],
\end{aligned}
$$

Orthogonal Designs

Example

$$
\begin{aligned}
& A_{3}=R \otimes Q=\left[\begin{array}{cc}
0 & 1 \\
- & 0
\end{array}\right] \otimes\left[\begin{array}{cc}
1 & 0 \\
0 & -
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & - \\
- & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], \\
& A_{4}=R \otimes P=\left[\begin{array}{cc}
0 & 1 \\
- & 0
\end{array}\right] \otimes\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & - & 0 & 0 \\
- & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Orthogonal Designs

Example

$A_{3}=R \otimes Q=\left[\begin{array}{cc}0 & 1 \\ - & 0\end{array}\right] \otimes\left[\begin{array}{cc}1 & 0 \\ 0 & -\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & - \\ - & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$,
$A_{4}=R \otimes P=\left[\begin{array}{cc}0 & 1 \\ - & 0\end{array}\right] \otimes\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & - & 0 & 0 \\ - & 0 & 0 & 0\end{array}\right]$.
It is easy to check $A=a A_{1}+b A_{2}+c A_{3}+d A_{4}$ is an $O D(4 ; 1,1,1,1)$:

$$
A=\left[\begin{array}{rrrr}
a & b & c & d \\
-b & a & d & -c \\
-c & -d & a & b \\
-d & c & -b & a
\end{array}\right] .
$$

Lemma (Wolfe)

Given an integer $n=2^{s} d$, where d is odd and $s \geq 1$, there exist sets $A=\left\{A_{1}, \ldots, A_{s+1}\right\}$ and $B=\left\{B_{1}, \ldots, B_{s+1}\right\}$ of signed permutation matrices of order n such that

- A consists of pairwise disjoint anti-amicable matrices,

Lemma (Wolfe)

Given an integer $n=2^{s} d$, where d is odd and $s \geq 1$, there exist sets $A=\left\{A_{1}, \ldots, A_{s+1}\right\}$ and $B=\left\{B_{1}, \ldots, B_{s+1}\right\}$ of signed permutation matrices of order n such that

- A consists of pairwise disjoint anti-amicable matrices,
- B consists of pairwise disjoint anti-amicable matrices,

Lemma (Wolfe)

Given an integer $n=2^{s} d$, where d is odd and $s \geq 1$, there exist sets $A=\left\{A_{1}, \ldots, A_{s+1}\right\}$ and $B=\left\{B_{1}, \ldots, B_{s+1}\right\}$ of signed permutation matrices of order n such that

- A consists of pairwise disjoint anti-amicable matrices,
- B consists of pairwise disjoint anti-amicable matrices,

■ For each i and $j, A_{i} B_{j}{ }^{t}=B_{j} A_{j}{ }^{t}$.

Definition

The non-periodic autocorrelation function of a sequence $A=\left(x_{1}, \ldots, x_{n}\right)$ of commuting square complex matrices of order t, is defined by

$$
N_{A}(j):= \begin{cases}\sum_{m=1}^{n-j} x_{m+j} x_{m}^{*} & \text { if } j=1,2, \ldots, n-1 \\ 0 & \text { otherwise }\end{cases}
$$

where x_{m}^{*} denotes the Hermitian conjugate of x_{m}, and N_{A} maps the set of natural numbers into the set of complex matrices of order m.

Example

Let $A=(1, i, 1)$. Consider $\operatorname{circ}(A)=\left[\begin{array}{ccc}1 & i & 1 \\ 1 & 1 & i \\ i & 1 & 1\end{array}\right]$. Now consider it's
upper triangular matrix; i.e, $U=\left[\begin{array}{ccc}1 & i & 1 \\ 0 & 1 & i \\ 0 & 0 & 1\end{array}\right]$.

Example

Let $A=(1, i, 1)$. Consider $\operatorname{circ}(A)=\left[\begin{array}{ccc}1 & i & 1 \\ 1 & 1 & i \\ i & 1 & 1\end{array}\right]$. Now consider it's
upper triangular matrix; i.e, $U=\left[\begin{array}{ccc}1 & i & 1 \\ 0 & 1 & i \\ 0 & 0 & 1\end{array}\right]$.
So, $N_{A}(1)=0$ (the inner product of first row and conjugate of second row of U),

Example

Let $A=(1, i, 1)$. Consider $\operatorname{circ}(A)=\left[\begin{array}{ccc}1 & i & 1 \\ 1 & 1 & i \\ i & 1 & 1\end{array}\right]$. Now consider it's
upper triangular matrix; i.e, $U=\left[\begin{array}{ccc}1 & i & 1 \\ 0 & 1 & i \\ 0 & 0 & 1\end{array}\right]$.
So, $N_{A}(1)=0$ (the inner product of first row and conjugate of second row of U), and $N_{A}(2)=1$ (the inner product of first row and conjugate of third row of U).

Definition

A set of near type 1 matrices is a set X of commuting square complex matrices of order m with $c d^{*}=d^{*} c$ for all $c, d \in X$.

Definition

A set of near type 1 matrices is a set X of commuting square complex matrices of order m with $c d^{*}=d^{*} c$ for all $c, d \in X$.

Example

- The set of all circulant matrices is a set of near type 1 matrices.

Definition

A set of near type 1 matrices is a set X of commuting square complex matrices of order m with $c d^{*}=d^{*} c$ for all $c, d \in X$.

Example

- The set of all circulant matrices is a set of near type 1 matrices.
- The set of negacirculant matrices in two variables is a set of near type 1 matrices, i.e, the set of all matrices of the form

$$
\left[\begin{array}{rr}
x_{i} & y_{j} \\
-y_{j} & x_{i}
\end{array}\right]
$$

Definition

Let $A=\left(x_{1}, \ldots, x_{n}\right)$ and $B=\left(y_{1}, \ldots, y_{n}\right)$ be two $\{ \pm 1, \pm i\}$ sequences such that $N_{A}(j)+N_{B}(j)=0$ for all j. Then A and B are called complex Golay complementary sequences of length n.

Definition

Let $A=\left(x_{1}, \ldots, x_{n}\right)$ and $B=\left(y_{1}, \ldots, y_{n}\right)$ be two $\{ \pm 1, \pm i\}$ sequences such that $N_{A}(j)+N_{B}(j)=0$ for all j. Then A and B are called complex Golay complementary sequences of length n.

Example

Let $A=(1, i, 1)$ and $B=(1,1,-)$. Then
$N_{A}(1)+N_{B}(1)=0+0=0$ and $N_{A}(2)+N_{B}(2)=1+(-1)=0$.
Thus, A and B are complex Golay complementary sequences of length 3.

Definition

Let $A=\left(x_{1}, \ldots, x_{n}\right)$ and $B=\left(y_{1}, \ldots, y_{n}\right)$ be two $\{ \pm 1, \pm i\}$
sequences such that $N_{A}(j)+N_{B}(j)=0$ for all j. Then A and B are called complex Golay complementary sequences of length n.

Example

Let $A=(1, i, 1)$ and $B=(1,1,-)$. Then
$N_{A}(1)+N_{B}(1)=0+0=0$ and $N_{A}(2)+N_{B}(2)=1+(-1)=0$.
Thus, A and B are complex Golay complementary sequences of length 3.
In other word, if we let $A_{1}=\operatorname{circ}(A)$ and $B_{1}=\operatorname{circ}(B)$, then we have $A_{1} A_{1}{ }^{*}+B_{1} B_{1}{ }^{*}=3 I_{3}$. We say that A_{1} and B_{1} are complementary circulant matrices of order 3.

Conjecture (P. Eades and J. Seberry)

For any k-tuple $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ of positive integers, if all of $v_{1}, v_{2}, \ldots, v_{k}$ are sufficiently divisible by 2 , then there is an

$$
O D\left(\sum_{j=1}^{k} v_{j} ; v_{1}, v_{2}, \ldots, v_{k}\right) .
$$

Conjecture (P. Eades and J. Seberry)

For any k-tuple $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ of positive integers, if all of $v_{1}, v_{2}, \ldots, v_{k}$ are sufficiently divisible by 2 , then there is an

$$
O D\left(\sum_{j=1}^{k} v_{j} ; v_{1}, v_{2}, \ldots, v_{k}\right)
$$

Theorem (P. Eades and J. Seberry)

Suppose that $\left(w_{1}, \ldots, w_{k}\right)$ is a binary expansion of t and there is an $O D\left(t ; w_{1}, \ldots, w_{k}\right)$. Then, for every m-tuple $\left(u_{1}, \ldots, u_{m}\right)$ such that $u_{1}+\cdots+u_{m}=2^{a} t$, there is an integer N such that for each $n \geq N$, there is an

$$
O D\left(2^{n+a} t ; 2^{n} u_{1}, \ldots, 2^{n} u_{m}\right)
$$

Theorem

For any k-tuple ($u_{1}, u_{2}, \ldots, u_{k}$) of positive integers, there exists an integer N such that for each $n \geq N$ there is an

$$
O D\left(2^{n} \sum_{j=1}^{k} u_{j} ; 2^{n} u_{1}, 2^{n} u_{2}, \ldots, 2^{n} u_{k}\right)
$$

Thank you for your attention!

