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Example

Let A =

[
a b

−b a

]
, so AAt = (a2 + b2)I2 which is an

OD(2; 1, 1).

Let B =

[
a bi

bi a

]
, so BB∗ = (a2 + b2)I2 which is a

COD(2; 1, 1).

Let C =


a b c c

−b a c −c

c c −a −b

c −c b −a

 , so CC t = (a2 + b2 + 2c2)I4

which is an OD(4; 1, 1, 2).
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Example

Let D =



ai b b b b b

b ai b −b −b b

b b ai b −b −b

b −b b ai b −b

b −b −b b ai b

b b −b −b b ai


, so DD∗ = (a2 + 5b2)I6

which is a COD(6; 1, 5).
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Orthogonal Designs

Definition

A complex orthogonal design of order n and type (s1, . . . , sk), denoted
COD(n; s1, . . . , sk 1x1, . . . , εkx

j ’s are commuting variables and εj ∈ {±1,±i} for each j ,
that satisfies

XX ∗ =

(
k∑

j=1

sjx
2
j

)
In,

where X ∗ denotes the conjugate transpose of X and In is the idetity

matrix of order n.

A complex orthogonal design in which εj ∈ {±1} for all j is called

an orthogonal design, denoted OD(n; s1, . . . , sk).

A complex orthogonal design (=COD) in which there is no zero

entry is called a full COD.

An orthogonal design (=OD) in which there is no zero entry is

called a full OD.
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Orthogonal Designs

Definition

Equating all variables to 1 in any COD of order n gives us a
complex weighing matrix of weight k , where k is the number
of nonzero entries in each row or each column of the COD.
We denote this complex weighing matrix by CW (n, k).

Equating all variables to 1 in any OD of order n gives us a
weighing matrix of weight k, where k is the number of
nonzero entries in each row or each column of the OD. We
denote this weighing matrix by W (n, k).

Equating all variables to 1 in any full COD results in a
complex Hadamard matrix. In other word, a CW (n, n).

Equating all variables to 1 in any full OD results in a
Hadamard matrix. In other word, a W (n, n).
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circulant matrices

Definition

A circulant matrix B = [bij ] of order n with the first row
(a1, a2, . . . , an) is one for which bij = aj−i+1, where j − i + 1 is
reduced modulus n. We denote this matrix by circ(a1, a2, . . . , an).

Example

B =


a1 a2 a3

a3 a1 a2

a2 a3 a1

 is a circulant matrix of order 3.

Fact

If B = circ(a1, a2, . . . , an), then B∗ = circ(a∗1, a
∗
n, . . . , a

∗
2).

Any two complex circulant matrices commute.
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Amicable and Anti-Amicable Matrices

Definition

Two matrices A and B are called amicable if AB∗ = BA∗.

They are called anti-amicable if AB∗ = −BA∗.

Example

Let P :=

[
0 1
1 0

]
, Q :=

[
1 0
0 −

]
, and R :=

[
0 1
− 0

]
. Then

PQt = −QPt ,

PRt = RPt ,

RQt = QRt .

Example

Any two Hermitian circulant matrices are amicable. This follows
from the fact that any two complex circulant matrices commute.
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Kronecker Product

Definition

The Kronecker product of two matrices A = [aij ] and B = [bij ] of orders respectively
m × n and r × s, denoted by A⊗ B is a matrix of order mr × ns and is given by

A⊗ B =

26664
a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

am1B am2B · · · amnB

37775 .

Example

Let A =

"
a11 a12

a21 a22

#
and B =

"
b11 b12

b21 b22

#
then

A⊗ B =

"
a11B a12B

a21B a22B

#
=

2666664
a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

3777775
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Kronecker Product

Property

Suppose that A and B are n × n, and C and D are m ×m
matrices. Then, we have the following properties

A⊗ (C + D) = A⊗ C + A⊗ D,

(A⊗ C )∗ = A∗ ⊗ C ∗,

(A⊗ C )(B ⊗ D) = (AB ⊗ CD).
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Disjoint Matrices

Definition

Suppose that A and B are two square matrices of order n. We
denote the Hadamard product of A and B by A ∗ B which is a
square matrix of order n such that it’s (i , j) entry is the product of
the (i , j) entry of A with the (i , j) entry of B.

A and B are called disjoint if A ∗ B = 0.

Example

P :=

[
0 1
1 0

]
and Q :=

[
1 0
0 −

]
are disjoint.

I :=

[
1 0
0 1

]
and R :=

[
0 1
− 0

]
are disjoint.
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Orthogonal Designs

Theorem

A necessary and sufficient condition that there exists an
OD(n; s1, . . . , sk) is that there exist {0,±1} matrices A1, . . . ,Ak of
order n such that

Ai ∗ Aj = 0 for 1 ≤ i 6= j ≤ k,

AiA
t
i = si In, for 1 ≤ i ≤ k ,

AiA
t
j = −AjA

t
i , for 1 ≤ i 6= j ≤ k.

‘
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Radon number

Theorem (Radon)

The maximum number of variables in an orthogonal design of order
n = 2ab, b odd, where a = 4c + d , 0 ≤ d < 4, is ≤ ρ(n) = 8c + 2d .

This bound is achieved!

Example

The maximum number of variables in orthogonal designs of order

2,4,8,16,32,64,128 are 2,4,8,9,10,12,16, respectively.
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Orthogonal Designs

Example

Let

A1 = I ⊗ I =

»
1 0
0 1

–
⊗
»

1 0
0 1

–
=

2666664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3777775,

A2 = I ⊗ R =

»
1 0
0 1

–
⊗
»

0 1
− 0

–
=

2666664
0 1 0 0

− 0 0 0

0 0 0 1

0 0 − 0

3777775,
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Orthogonal Designs

Example

A3 = R ⊗ Q =

»
0 1
− 0

–
⊗
»

1 0
0 −

–
=

2666664
0 0 1 0

0 0 0 −

− 0 0 0

0 1 0 0

3777775,

A4 = R ⊗ P =

»
0 1
− 0

–
⊗
»

0 1
1 0

–
=

2666664
0 0 0 1

0 0 1 0

0 − 0 0

− 0 0 0

3777775.

It is easy to check A = aA1 + bA2 + cA3 + dA4 is an OD(4; 1, 1, 1, 1) :

A =

2666664
a b c d

−b a d −c

−c −d a b

−d c −b a

3777775 .
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Lemma (Wolfe)

Given an integer n = 2sd , where d is odd and s ≥ 1, there exist
sets A =

{
A1, . . . ,As+1

}
and B =

{
B1, . . . ,Bs+1

}
of signed

permutation matrices of order n such that

A consists of pairwise disjoint anti-amicable matrices,

B consists of pairwise disjoint anti-amicable matrices,

For each i and j , AiBj
t = BjAi

t .
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Non-Periodic Autocorrelation Function

Definition

The non-periodic autocorrelation function of a sequence A = (x1, . . . , xn)
of commuting square complex matrices of order t, is defined by

NA(j) :=


n−j∑
m=1

xm+jx
∗
m if j = 1, 2, . . . , n − 1

0 otherwise

where x∗m denotes the Hermitian conjugate of xm, and NA maps the set

of natural numbers into the set of complex matrices of order m.
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Example

Let A = (1, i , 1). Consider circ(A) =

 1 i 1
1 1 i
i 1 1

 . Now consider it’s

upper triangular matrix; i.e, U =

 1 i 1
0 1 i
0 0 1

 .

So, NA(1) = 0 (the inner product of first row and conjugate of second
row of U),

and NA(2) = 1 (the inner product of first row and conjugate of third row

of U).
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Near Type 1 Matrices

Definition

A set of near type 1 matrices is a set X of commuting square
complex matrices of order m with cd∗ = d∗c for all c , d ∈ X .

Example

The set of all circulant matrices is a set of near type 1
matrices.

The set of negacirculant matrices in two variables is a set of
near type 1 matrices, i.e, the set of all matrices of the form[

xi yj

−yj xi

]
.
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Complex Golay Sequences

Definition

Let A = (x1, . . . , xn) and B = (y1, . . . , yn) be two {±1,±i}
sequences such that NA(j) + NB(j) = 0 for all j . Then A and B are
called complex Golay complementary sequences of length n.

Example

Let A = (1, i , 1) and B = (1, 1,−). Then
NA(1) + NB(1) = 0 + 0 = 0 and NA(2) + NB(2) = 1 + (−1) = 0.
Thus, A and B are complex Golay complementary sequences of
length 3.
In other word, if we let A1 = circ(A) and B1 = circ(B), then we
have A1A1

∗ + B1B1
∗ = 3I3. We say that A1 and B1 are

complementary circulant matrices of order 3.
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Asymptotic Existence for OD’s

Conjecture (P. Eades and J. Seberry)

For any k-tuple (v1, v2, . . . , vk) of positive integers, if all of
v1, v2, . . . , vk are sufficiently divisible by 2, then there is an

OD

( k∑
j=1

vj ; v1, v2, . . . , vk

)
.

Theorem (P. Eades and J. Seberry)

Suppose that (w1, . . . ,wk) is a binary expansion of t and there is
an OD(t; w1, . . . ,wk). Then, for every m-tuple (u1, . . . , um) such
that u1 + · · ·+ um = 2at, there is an integer N such that for each
n ≥ N, there is an

OD(2n+at; 2nu1, . . . , 2
num).
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Asymptotic Existence for OD’s

Theorem

For any k-tuple (u1, u2, . . . , uk) of positive integers, there exists an
integer N such that for each n ≥ N there is an

OD

(
2n

k∑
j=1

uj ; 2nu1, 2
nu2, . . . , 2

nuk

)
.

Conjecture (P. Eades and J. Seberry)

For any k-tuple (v1, v2, . . . , vk) of positive integers, if all of
v1, v2, . . . , vk are sufficiently divisible by 2, then there is an

OD

( k∑
j=1

vj ; v1, v2, . . . , vk

)
.
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Thank you for your attention!
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