Calculus 3 - Triple Integrals

We introduced triple integrals where we integrate surface to surface, then curve to curve, then point to point

$$
\begin{equation*}
\int_{P_{1}}^{P_{2}} \int_{C_{1}}^{C_{2}} \int_{S_{1}}^{S_{2}} f(x, y, z) d V \tag{1}
\end{equation*}
$$

and $d V$ is

$$
\begin{align*}
d V & =d z d x d y=d z d y d x \\
& =d y d x d z=d y d z d x \tag{2}\\
& =d x d y d z=d x d z d y
\end{align*}
$$

Top View

Front View

Side View

Example 1 Set up the triple integral for the volume bound by

$$
\begin{equation*}
z=0, z=1-y^{2}, x=0, x=2 \tag{3}
\end{equation*}
$$

Top View

Front View

Side View

Example 2 Set up the triple integral for the volume bound by

$$
\begin{equation*}
z=0, z=1-x^{2}, y=1-x, x=0 . \tag{4}
\end{equation*}
$$

Top View

Front View

Side View

