

Intake of ambient air

Efficient Snow & Droplet Separation

Munters - The Humidity Expert

Founded in 1955 by the Swedish inventor Carl Munters.

3 Global Divisions:

Dehumidification (DH)

A global, application and service driven niche business in air treatment from a base in dehumidification

Moisture Control Services (MCS)

A global leader in temporary humidity control and damage restoration services

HumiCool (HC), including Mist Elimination (ME)

A global leader in systems for selected cooling/ humidification and mist elimination applications

Public company listed at the **SSE** Subsidiaries in more than **30 countries**, +**3400** employees Representatives and agents in many more countries Annual sales of more than 550 M€

Global Business Area Mist Elimination

<u>Setup</u>

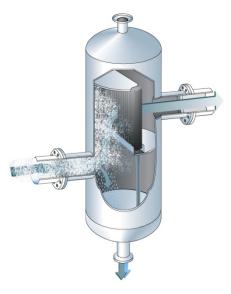
<u>R&D</u>

Business fields

Products

Applications

Installations & References

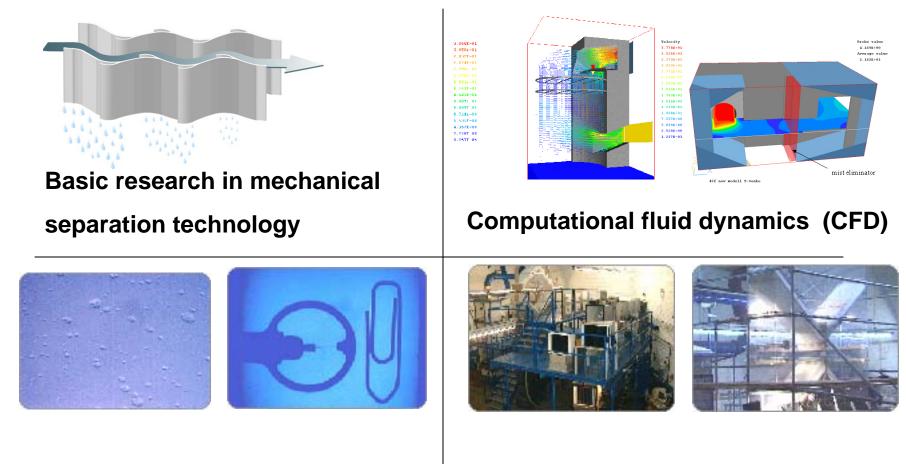


Global Business Area Mist Elimination

Staff size: Annual Sales (2006): Distribution: Headquarter: Experience: Characteristic:

300 50 Mio EUR EMEA /Asia / Americas Aachen, Germany 43 years in business World market leader in vane separation technology for exhaust gas cleaning applications

BACK to main menu



Global Business Area Mist Elimination

ME - R&D Services

Field measurements

BACK to main menu

Laboratory testing facility

ME Business fields

Exhaust gas cleaning

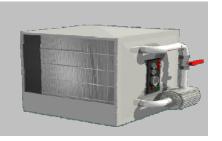
Flue gas desulphurization Exhaust systems Gas cleaning scrubbers Stack rain separation

Evaporation

Pulp and paper Sugar Seawater desalination Distillation processes

Intake of ambient air

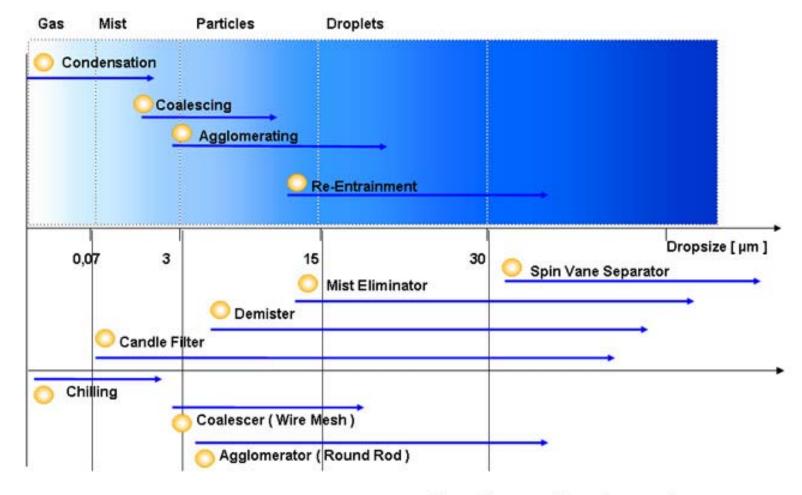
Gas turbine inlets Inlets Landbased Marine & Offshore Coastal / Arctic / Desert


Gas cooling

Compressor stations Intercooler for diesel engines General process gas cooling

BACK to main menu

Oil & Gas Process carry-over Condensed liquids Contamination


Air conditioning (HVAC)

Air washers Condense water removal Spray humidification Spray cooling

Mist Elimination – Droplet Sizes

See also: creation of aerosols

E

Vane type mist eliminator – working principle

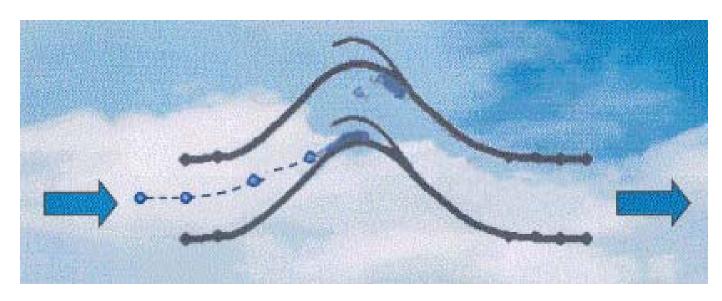
67 iquid

Vertical upflow of vapour

Collection of droplets in drain channels

Liquid drains down by gravity Turning the direction of the vapour

Liquid impinges on vane surface and coalesces to a film

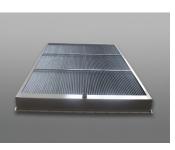

Liquid drains down by gravity

iquid

FLO

Mist Elimination – Working principle

The liquid droplets are not following the path of the gas but inertial forces brings them into contact with the surface of the lamella. They form a film on the surface of the profile.


The hook generates a dead zone in front of the hook where the liquid film builds up and drains down to the bottom.

Single stage units

Munters DF Series Munters 25 & 35 Munters DFH

3 - stage systems

Munters **DFF** Series

2 - stage systems

Munters **DCF** Series

Type 1, 2, 3

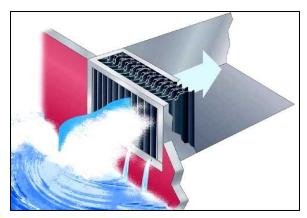
Munters 35F

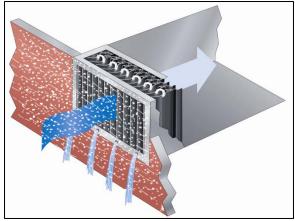
BACK to main menu

Filterboxes

Munters G-Series

Munters F-Series


Single stage units

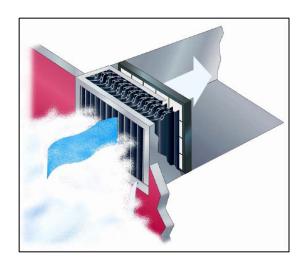

DF & DFH-Series

Single stage mist eliminators Prevention against rain, heavy rain, larger sea spray particles, snow and prevention of icing

Typical applications:

AC-unit air-intakes less critical engine room ventilation intakes

2 stage systems


DCF-Series

2 -stage systems

Prevention against all liquid particles, sand and dust-particles;

Typical applications:

High-quality supply air of AC-units Supply air for diesel engines and compressor intakes

3 stage systems

DFF-Series

3-stage mist eliminators

Prevention against all sort of particles coming from the ambient air

Typical applications:

Supply air for diesel engines gas turbine supply air

BACK to main menu

Applications

Combustion air for gas turbines

(Protection against compressor fouling and corrosion)

Process air in marine and offshore climates

(Protection of ventilation systems against corrosion and prevention of mildew)

Process air in land-based facilities

(Protection of ventilation systems against corrosion and prevention of mildew)

Process air in cold climates

(Prevention of icing and protection of filters against snow and other liquid droplets)

Applications

Intake of combustion air for gas turbines

(Protection against compressor fouling, corrosion and "wet" pressure loss)

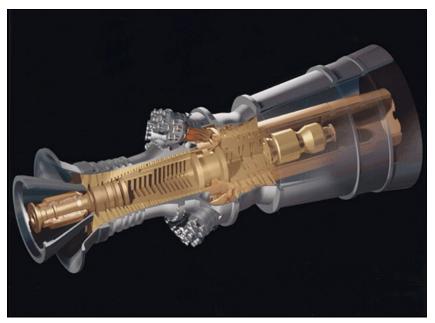
Application

Area of application field:	Intake of ambient a	ir
Name of application:	Intake of combustion air	
Number of application:	71	
Typical velocity range:	2 to 5 m/s. Offshore can be higher	
Typical temperature range:	-40°C to +45 °C	
Typical static pressure:	ambient conditions	
Typical liquid loads:	Typically very low loads up to flushes of sea water, salt crystals	
Sizes of particles	Rain	>300µm
	Heavy rain	>1000µm
	Snow / Hail	>1000µm
	Sea spray & salt	>1µm
	Mist & Fog	>10-20µm

Problem description

Objective of gas turbine:

- 1. Maximize continuous power output
- 2. Maximize life time of equipment



Power loss due to compressor fouling

Down time for washing

Loss of production

Power loss caused by
high pressure lossDown time
for repair

Problem description

Sizes of particles	Source	Min Design velocity	Particle size
	Rain	1 m/s	>300µm
	Heavy rain	1 m/s	>1000µm
	Snow / Hail	2-3 m/s	>1000µm
	Sea spray & salt	Appr. 3m/s	>1µm
	Mist & Fog	>5m/s	>10-20µm

Design of velocities

Wash through effect

Application

Production Loss

Gas Turbine

Operating days		365	days
availability		97%	
hours		24	h
Yield		100%	
Change in net power		500	MW
Selling value		4.248.600	MWh
cts/KWh	3	127.458.000	€
Interruptions [days]	1	338.724	€
Loss percentage		0,08%	
Pressure loss [Pa]	50	95.594	€

Total loss	434.318 €	

Applications

Process air in marine and offshore climates

(Protection of ventilation systems from corrosion and prevention of mildew)

Problem description

Objective of ventilation intake systems for AC units:

- 1. Maximize continuous air volume, minimize pressure loss
- 2. Maximize life time of filter elements
- 3. Maximize life time of ventilation equipment

Objective of engine room ventilation intake

- 1. Maximize continuous air intake, minimize pressure loss
- 2. Maximize life time of filter elements
- 3. Maximize life time of ventilation equipment

Problem description

Energy consumption Ventilation intake system

Operating hours	5.000	h
Airvolume	800.000	m³/h
Pressure loss	50	Ра
Electrical efficiency	85%	-
Diesel efficiency	33%	-
Energy consumption	198.059	KWh
Diesel consumption	39.612	Liters

- 2. Filter changing cycles and related costs
- 3. Costs of the investment

Applications

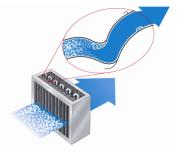
Process air in land-based facilities

Problem description

Process air in land-based facilities

Objective of ventilation intake systems for AC units:

- 1. Maximize continuous air volume, minimize pressure loss
- 2. Maximize life time of filter elements
- 3. Maximize life time of ventilation equipment



Applications

Process air in cold climates

January 06, northern Germany (coastal)

Problem description

Process air in cold climates

Objective of ventilation intake systems for AC units:

- 1. Maximize continuous air volume, minimize pressure loss
- 2. Maximize life time of filter elements
- 3. Maximize life time of ventilation equipment

BACK to main menu

Containership

Deckhouse of the containership

Air volume:1.069.000 m³/hSurface:94m² Intake sectionsSystem:Munters DCF 2 stage

Type of vessel: **Container – PANMAX** Name of vessel: **MAERSK BOSTON** Shipyard: **Volkswerft Stralsund GmbH**

Front view of Mist eliminators

Containership

DCF 2 (left) and DCF 1 (right) Quick-opening device for filter-change

DCF 2 from the backside in the workshop:

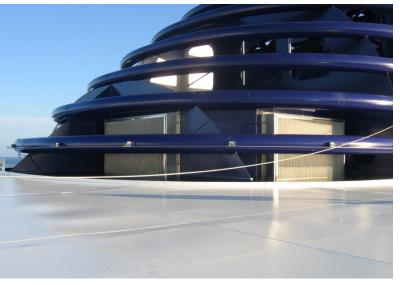
- 316L Stainless frame
- PP-Low temperature vanes
- Glasfibre double layer filter

Utility vessel for arctic climates

DFH installed in the intake section for engine room ventilation Type of vessel: **Research Vessel** Name of vessel: **Maria S. Merian** Shipyard: **Gdynia Shipyard**

Airvolume:262.000 m³/hSurface:17 m² Intake sectionsSystem:Munters DFH single stageDesign-30°C

Utility vessel for arctic climates


Munters DFH

Cruiser

Type of vessel: **Cruiser** Name of vessel: **Norwegian Jewel** Shipyard: **Josef L. Meyer GmbH**

Deck 16 engine room intakes

AC-Air volume:	1.463.000 m³/h
Engine-room:	1.032.000 m³/h
Surface:	114 m ² AC-Intake sections
System:	Munters DF2100
-	Munters DF3500

Cruiser

Deck 5 splash proof DF3500

System:

Half round shaped DF3500 Aluminum splash proof single stage Mist eliminator

FPSO

Type of vessel: **FPSO** Name of vessel: **P43 Caratinga** Shipyard: **Jurong, Singapore**

AC-Airvolume:820.000 m³/hSurface:48 m² Intake sectionsSystem:Munters DF2100Munters DCF 2 stage

PetroBras P43 FPSO

FPSO

DCF Type 2 with Magnehelic and extended surface design (ESD)

DF2100 Single stage

Filterbox

Special Utility vessel

DF3500 Single stage mounted into the pylons

Type of vessel: Utility vessel Shipyard: Barkmeijer, Netherlands

Platform

AC-Airvolume:	45.000 m³/h
Surface:	12 m ² Intake sections
System:	Munters DCF 2 stage

Type: **Platform** Maker: **De Ruijter, Netherlands** Operator: **Wintershall, BASF Group**

BACK to main menu

Key References

Cruisers

Alstom Chantier de L'atlantique Fincantieri Meyerwerft Aker Finnyards

Container

Volkswerft Stralsund GmbH IHI Kure MHI Nagasaki Meyerwerft

Utility

Barkmeijer HDW Damen Shipyards

BACK to main menu

MUNTERS INTERNATIONAL INC.

1964 N. Town & River Dr. Fort Myers, FL 33919, USA T: +1 540-0006 F: +1 481-3566 WWW.muntersinternational.com E:anders@muntersinternational.com

Vessels for arctic climates

Aker Langsten Gdynia Krögerwerft Novenco Offshore

+ another <u>60 shipyards</u> in US, Italy, Spain, UK, France, Norway, Denmark, Benelux, Finland

