Math 6345 - Advanced ODEs

Elementary ODE Review

1 Second Order Equations

Ordinary differential equations of the form

$$
\begin{equation*}
y^{\prime \prime}=F\left(x, y, y^{\prime}\right) \tag{1}
\end{equation*}
$$

are called second order ordinary differential equations. We usually only consider linear equations. These are of the form

$$
\begin{equation*}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x) \tag{2}
\end{equation*}
$$

or, dividing by $a(x)$ gives

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \tag{3}
\end{equation*}
$$

noting that we have called $f / a=f$. If $f=0$, we say the equation is "homogeneous", otherwise, it is "nonhomogeneous."

1.1 Reduction of Order

Given a second order homogeneous equation equation like (3), if we know one solution, say $y=y_{0}(x)$, then it is possible to reduce the order of the original equation using the substitution $y=u y_{0}$. The following example demonstrates. Consider

$$
(x-1) y^{\prime \prime}-x y^{\prime}+y=0
$$

We see that one solution is $y=e^{x}$. If we let $y=e^{x} u$, then substituting all derivatives and expanding, we obtain

$$
(x-1) u^{\prime \prime}+(x-2) u^{\prime}=0 .
$$

If we let $u^{\prime}=v$, then

$$
(x-1) v^{\prime}+(x-2) v=0
$$

a separable ODE. Integrating gives

$$
v=(x-1) e^{-x}
$$

and since $u^{\prime}=v$, we integrate further gives

$$
u=-x e^{-x}
$$

Therefore,

$$
y=e^{x} u=e^{x}\left(-x e^{-x}\right)=-x
$$

As we can suppress the negative sign, we obtain

$$
y_{2}=x,
$$

as the second independent solution. To show this, we consider the Wronskian. Recall that the Wronskian is defined by

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

Here, we see that $W=(x-1) e^{x} \neq 0 \forall x$. Thus, the solutions are independent. The general solution is

$$
y=c_{1} x+c_{2} e^{x}
$$

1.2 Constant Coefficient Equations

If the coefficients in (2) (with $f=0$) are constant, we then have

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{4}
\end{equation*}
$$

Motivated by first order constant coefficient equations

$$
y^{\prime}-m y=0
$$

where the solution $y=e^{m x}$, we seek solutions of this form for second order equations. Substitution into (4) gives

$$
\begin{equation*}
\left(a m^{2}+b m+c\right) e^{m x}=0 \tag{5}
\end{equation*}
$$

from which we deduce that

$$
\begin{equation*}
a m^{2}+b m+c=0 \tag{6}
\end{equation*}
$$

This is called the "characteristic equation" since it characterizes the solution. Solutions for m gives rise to three cases:
(i) two real distinct roots,
(ii) two real repeated roots,
(iii) two complex roots.

1.2.1 Two real distinct roots

If the roots are $m=r_{1}$ and $m=r_{2}$, then the solution is

$$
y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

1.2.2 Two real repeated roots

If both roots are $m=r$, then the solution is

$$
y=c_{1} e^{r x}+c_{2} x e^{r x} .
$$

1.2.3 Two complex roots

If the roots are $m=\alpha \pm \beta i$, then the solution is

$$
y=c_{1} e^{\alpha x} \sin \beta x+c_{2} e^{\alpha x} \cos \beta x
$$

Example 1

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

Here, the characteristic equation is

$$
m^{2}-5 m+6=0
$$

Thus, the roots are $m=2$ and $m=3$ and the solution is

$$
y=c_{1} e^{2 x}+c_{2} e^{3 x}
$$

Example 2

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

Here, the characteristic equation is

$$
m^{2}-6 m+9=0 .
$$

Here, the roots are $m=3$ and $m=3$, (repeated). Thus, the solution is

$$
y=c_{1} e^{3 x}+c_{2} x e^{3 x}
$$

Example 3

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

Here, the characteristic equation is

$$
m^{2}+4 m+13=0
$$

The roots are $m=-2 \pm 3 i$, and the solution is

$$
y=c_{1} e^{-2 x} \sin 3 x+c_{2} e^{-2 x} \cos 3 x
$$

1.3 Cauchy-Euler Equations

Equations of the form

$$
\begin{equation*}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \tag{7}
\end{equation*}
$$

are called Cauchy-Euler equation. Motivated by its first order equivalent

$$
\begin{equation*}
x y^{\prime}-m y=0 \tag{8}
\end{equation*}
$$

who has solution $y=x^{m}$, we could seek solutions in this form (and we did). However, under the transformation $x=e^{t}$, the derivatives transform as

$$
\begin{equation*}
x \frac{d}{d x}=\frac{d}{d t}, \quad x^{2} \frac{d^{2}}{d x^{2}}=\frac{d^{2}}{d t^{2}}-\frac{d}{d t} \tag{9}
\end{equation*}
$$

and (7) transforms to

$$
\begin{equation*}
a \ddot{y}+(b-a) \dot{y}+c y=0 \tag{10}
\end{equation*}
$$

a constant coefficient 2 nd order ODE! Thus, the results from the previous section apply.

1.4 Nonhomogeneous Equations

To solve equation (3), we solve this in two parts. We first solve the complementary equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

which gives rise to $y=y_{c}(x)$, then we find a particular solution $y=y_{p}(x)$ to

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

The general solution is then given by

$$
y=y_{c}+y_{p}
$$

To find a particular solution, we use the "variation of parameters" technique. From the complementary solution we have

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

We replace the constants with parameters u and v and substitute into the original equation, i.e.

$$
\begin{equation*}
y=u y_{1}+v y_{2} . \tag{11}
\end{equation*}
$$

As there are two unknowns, u and v, we have some flexibility. After taking the first derivative of (11)

$$
\begin{equation*}
y^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime}+v^{\prime} y_{2}+v y_{2}^{\prime} \tag{12}
\end{equation*}
$$

we set

$$
\begin{equation*}
u^{\prime} y_{1}+v^{\prime} y_{2}=0 \tag{13}
\end{equation*}
$$

leaving

$$
\begin{equation*}
y^{\prime}=u y_{1}^{\prime}+v y_{2}^{\prime} . \tag{14}
\end{equation*}
$$

Further, substitution of this and the second derivative into the original equation leads to

$$
\begin{equation*}
u^{\prime} y_{1}+v^{\prime} y_{2}^{\prime}=f(x) \tag{15}
\end{equation*}
$$

from which we can solve (13) and (15) for the unknowns for u^{\prime} and v^{\prime}. After integrating u^{\prime} and v^{\prime}, we obtain the particular solution from (11). The following example illustrates.

Example 4

$$
\begin{equation*}
y^{\prime \prime}+y=\sec x \tag{16}
\end{equation*}
$$

The solution of the homogeneous problem

$$
y^{\prime \prime}+y=0
$$

is

$$
y=c_{1} \sin x+c_{2} \cos x
$$

Thus, we look for a particular solution in the form

$$
\begin{equation*}
y=u \sin x+v \cos x \tag{17}
\end{equation*}
$$

Taking the first derivative gives

$$
\begin{equation*}
y^{\prime}=u^{\prime} \sin x+u \cos x+v^{\prime} \cos x-v \sin x \tag{18}
\end{equation*}
$$

on which we set

$$
\begin{equation*}
u^{\prime} \sin x+v^{\prime} \cos x=0 \tag{19}
\end{equation*}
$$

This leaves

$$
\begin{equation*}
y^{\prime}=u \cos x-v \sin x \tag{20}
\end{equation*}
$$

The second derivative gives

$$
\begin{equation*}
y^{\prime \prime}=u^{\prime} \cos x-u \sin x-v^{\prime} \sin x-v \cos x \tag{21}
\end{equation*}
$$

Substituting (17), (20) and (21) into (16) and simplifying gives

$$
\begin{equation*}
u^{\prime} \cos x-v^{\prime} \sin x=\sec x \tag{22}
\end{equation*}
$$

Solving (19) and (22) for u^{\prime} and v^{\prime} gives

$$
u^{\prime}=1, \quad v^{\prime}=-\tan x
$$

These are easily solved giving

$$
\begin{equation*}
u=x, \quad v=\ln |\cos x| \tag{23}
\end{equation*}
$$

and thus, from (17) and (23) we obtain the particular solution

$$
\begin{equation*}
y_{p}=x \sin x+\cos x \ln |\cos x| \tag{24}
\end{equation*}
$$

The general solution is then given by

$$
\begin{align*}
y & =y_{c}+y_{p} \\
& =c_{1} \sin x+c_{2} \cos x+x \sin x+\cos x \ln |\cos x| \tag{25}
\end{align*}
$$

