Geometry April 6, 2023

MA+ㅂ
$x A+1 \cdot 1$

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

@sarahpowellphd

Say hello.

Share something from our sessions that you have used in your teaching this year.

Early Numeracy

- Counting principles
- Connecting number
- Comparison of numbers
- Addition and subtraction concepts

Addition and Subtraction

- Addition computation
- Subtraction computation
- Addition and subtraction fluency
- Addition and subtraction word problems

April 2023

Geometry

- Identification of shapes
- Composing and decomposing shapes
- Representing thousands, hundreds, tens, and ones
- Money

Le November 2022
Operations

- Addition and subtraction concepts
- Multiplication and division concepts
- Computation with addition, subtraction, multiplication, and division

March 2023
Word-Problem Solving

- Attack strategies
- Schemas

January 2023

Fractions

- Length, area, and set models
- Comparison of fractions
- Ordering of fractions
- Computation of fractions

April 2023

Geometry

- Understanding twodimensional shapes
- Lines and angles
- Understanding threedimensional shapes

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes:
 Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

Instructional Platform

$\times A+1 \dot{1}$

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

What is math content you have modeled in the last month?

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

What supports are most important for your students during modeling and practice?

Use formal math language

Use terms precisely

What is one way you support the math vocabulary of students?

Share a virtual manipulative you use in your teaching.

How do you practice fact fluency with your students?

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

UPSV

$\bigcup_{\substack{\text { Read anderepanin. }}}^{\text {NDERSTAND }}$
Plan
How will you solve the problem?

Solve
 Set up and do the math!

Difference

Change

Equal Groups

Comparison

Share your approach to wordproblem solving.

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes:
 Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

What difficulties do your students have with two-dimensional (2D) shapes?

Identifying 2D Shapes

Two-dimensional (2D) figures first

Students need to learn to:

- Identify
- Name
- Draw
- Locate in environment

Anglegs

Pattern
Blocks

2D Shape Vocabulary

Closed figure versus open figure
Polygon

- Regular
- All angles equal and all sides equal
- Irregular

Line

- Line segment

Angle

- Space between 2 intersecting lines at the point where the lines meet

Describing Objects

Ask children to identify shapes in their environment.

- On our walk to the park, let us identify objects that are rectangles. Call out when you see a rectangle!

Students should also be familiar with spatial vocabulary, including terms such as: above, below, beside, in front of, behind, and next to.

- When asking questions during read-alouds, ask children to identify objects on the page using these terms
- Play "I spy" activities using these terms

Naming Shapes

Students should be able to name shapes, regardless of other attributes such as size.

Recognize and Drawing Shapes

Circle all of the closed shapes with three sides

Hands-On Materials

Shapes

Pattern blocks

Polygons

Describe 1 activity to identify or name.
Describe 1 activity to locate in the environment.

| Triangles | |
| :--- | :--- | :--- |
| Name Properties Examples
 Equilateral
 Isosceles
 Scalene
 Acute
 Obtuse
 Right | |

Quadrilaterals

Name	Properties	Examples
Parallelogram		
Rectangle		
Rhombus		
Square		
Kite		
Trapezoid		

Understanding Triangles

Property of a triangle

- A closed figure with 3 line segments and 3 angles

| Triangles | |
| :--- | :--- | :--- |
| Name Properties Examples
 Equilateral
 Isosceles
 Scalene
 Acute
 Obtuse
 Right | |

Geoboard

Polygons

Understanding Quadrilaterals

Property of a quadrilateral

- A closed figure with four line segments

Types of quadrilaterals

Geoboard

Quadrilaterals

Name	Properties	Examples
Parallelogram		
Rectangle		
Rhombus		
Square		
Kite		
Trapezoid		

Polygons

Understanding Other Polygons

These shapes can be regular and irregular

Name	Sides	Example
Pentagon	5	
Hexagon	6	
Heptagon	7	
Octagon	8	
Nonagon	9	
Decagon	10	
Hendecagon	11	
Dodecagon	12	

Hands-On Materials

Shapes

Pattern blocks

Polygons

Which other polygons are most important for your students to understand?

What is a favorite polygon activity?

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes:
 Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

Composing and Decomposing - Spatial Reasoning
Tangrams

Tetrominoes/Pentominoes

Pattern Blocks

Composing Shapes and Figures

Can you join these triangles to create a square?

Tangrams

Use the shapes to make a square

Tangram

Composing Shapes and Figures

How many different shapes can you create using the shapes on your screen? Make sure to draw your shapes as a record of your thinking!

Tetrominoes and Pentominoes

Use the shapes to make a rectangle

Pentominoes

https://benhoyt.com/writings/python-pentomino/

Partitioning Shapes

First Grade
Second Grade

Pattern blocks

Rows and Columns

Students can explore dividing rectangles into same size squares, and then identifying the number of columns and rows.

How many squares?

How many squares?

Hands-On Materials

Tangram

Pattern blocks

Pentominoes

믄

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes:
 Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

2D Shape Vocabulary

Closed figure versus open figure
Polygon

- Regular
- All angles equal and all sides equal
- Irregular

Line

- Line segment

Angle

- Space between 2 intersecting lines at the point where the lines meet

Lines

$$
0^{A}
$$

Hands-On Materials

Lines

Utensils

At your grade level, what is important for students to understand about lines?

Angles

Anglegs
Angles

Name	Properties	Examples
Right		
Acute		
Obtuse		
Straight		

 Protractor

64埗 回解期

Lines

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes:
 Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

Three-Dimensional Shapes

Name	Properties (Faces, Edges, Vertices)	Examples
Rectangular Prism		
Cube		
Triangular Prism		
Hexagonal Prism		
Rectangular Pyramid		
Triangular Pyramid		
Hexagonal Pyramid		
Cylinder		
Cone		

What difficulties do your students have with three-dimensional (3D) shapes?

Identifying 3D Shapes

A three-dimensional (3D) figure has height, width, and depth
Students need to learn to:

- Identify
- Name
- Locate in environment

Identifying 3D Shapes

One of the trickiest aspects for students is interpreting pictorial representations

- Must teach dashed lines

WHAT SHAPE IS IT?

3D Shape Vocabulary

Solid figure

- A three-dimensional, closed figure

Face
Vertex/Vertices
Edge

Identifying 3D Shapes

Manipulatives

- Sort and group
- Identify
- Face
- Vertex/Vertices
- Edge

Books

Creating 3D Shapes

$x A+1$

Identifying 3D Shapes

Objects in the home

What are 3D objects your students can use from their home?

Understanding 3D Shapes

Name	Faces	Edges	Vertices
Rectangular Prism	0	0	0
Cube	6	12	8
Cuboid Triangular Prism Hexagonal Prism	Prism: Solid figure with two end faces that are equal and all sides are parallelograms		
Rectangular Pyramid			
Triangular Pyramid			
Hexagonal Pyramid Cylinder Cone	Pyramid: Solid figure with polygon base and triangular faces that meet at a common point		
Sphere			

Cube Builder

Geometric Solids

Three-Dimensional Shapes

Name	Properties (Faces, Edges, Vertices)	Examples
Rectangular Prism		
Cube		
Triangular Prism		
Hexagonal Prism		
Rectangular Pyramid		
Triangular Pyramid		
Hexagonal Pyramid		
Cylinder		
Cone		

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes:
 Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

Explicit Instruction
Problem
Step-by-Step Explanation

1. Choose a math problem.
2. Write a step-by-step explanation. Focus on the language of math in your explanation. Consider the representations you will use.

Explicit Instruction

1. Describe the practice opportunities you will use.
2. Write 3 high-level questions.
3. Write 3 low-level questions.
4. Write 2 ways to provide affirmative feedback.
5. Write 2 ways to provide corrective feedback.

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

@sarahpowellphd

