Geometry

April 6, 2023

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

www.sarahpowellphd.com

Say hello.

Share something from our sessions that you have used in your teaching this year.

November 2022

Early Numeracy

- Counting principles
- Connecting number
- Comparison of numbers
- Addition and subtraction concepts

March 2023

Place value and money

- Understanding tens and ones
- Representing thousands, hundreds, tens, and ones
- Money

January 2023

Addition and Subtraction

- Addition computation
- Subtraction computation
- Addition and subtraction fluency
- Addition and subtraction word problems

April 2023

Geometry

- Identification of shapes
- Composing and decomposing shapes

November 2022

Operations

- Addition and subtraction concepts
- Multiplication and division concepts
- Computation with addition, subtraction, multiplication, and division

March 2023

Word-Problem Solving

- Attack strategies
- Schemas

January 2023

Fractions

- Length, area, and set models
- Comparison of fractions
- Ordering of fractions
- Computation of fractions

April 2023

Geometry

- Understanding twodimensional shapes
- Lines and angles
- Understanding threedimensional shapes

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes: Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

Instructional Platform

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

Precise language

Multiple representations

INSTRUCTIONAL STRATEGIES

Fluency building

Problem solving instruction

MODELING

Step-by-step explanation

Planned examples

PRACTICE

Guided practice

Independent practice

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

What is math content you have modeled in the last month?

MODELING

Step-by-step explanation

Planned examples

PRACTICE

Guided practice

Independent practice

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

What supports are most important for your students during modeling and practice?

Use formal math language

Use terms precisely

What is one way you support the math vocabulary of students?

Share a virtual manipulative you use in your teaching.

bit.ly/srpowell

How do you practice fact fluency with your students?

UPS./ JNDERSTAND How will you solve the problem?

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Total

Difference

Change

Equal Groups

Comparison

Share your approach to wordproblem solving.

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes: Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

What difficulties do your students have with two-dimensional (2D) shapes?

Shape Recognition

circle

triangle square rectangle

- 1. Identify
- 2. Name
- 3. Draw
- 4. Locate in environment

Identifying 2D Shapes

Two-dimensional (2D) figures first

Students need to learn to:

- Identify
- Name
- Draw
- Locate in environment

Anglegs

Pattern Blocks

2D Shape Vocabulary

Closed figure versus open figure

- <u>Polygon</u>
- Regular
 - All angles <u>equal</u> and all <u>sides</u> equal
- <u>Irregular</u>

<u>Line</u> <

Line segment

<u>Angle</u>

 Space between 2 <u>intersecting</u> lines at the <u>point</u> where the lines meet

Describing Objects

Ask children to identify shapes in their environment.

• On our walk to the park, let us identify objects that are rectangles. Call out when you see a rectangle!

Students should also be familiar with spatial vocabulary, including terms such as: *above, below, beside, in front of, behind*, and *next to*.

- When asking questions during read-alouds, ask children to identify objects on the page using these terms
- Play "I spy" activities using these terms

Naming Shapes

Students should be able to name shapes, regardless of other attributes such as size.

Recognize and Drawing Shapes

Circle all of the closed shapes with three sides

Hands-On Materials

Shapes

Pattern blocks

Polygons

Describe 1 activity to identify or name.

Describe 1 activity to locate in the environment.

Triangles		
Name	Properties	Examples
Equilateral		
Isosceles		
Scalene		
Acute		
Obtuse		
Right		
Quadrilate Name	Properties	Examples
Parallelogra	m	
Rectangle		
Rhombus		
Square		
Kite		
Trapezoid		

Understanding Triangles

Property of a triangle

A closed figure with 3 line segments and 3 angles

Name	Properties	Examples	
Equilateral	,		
Isosceles			
Scalene			
Acute			
Acute			
Obtuse			
Right			
Quadrilatero	alo.		
Name	Properties	Examples	
Parallelogram	1 Toperties	Examples	
- aranologian	`		
Rectangle			
Rhombus			

Geoboard

Polygons

Understanding Quadrilaterals

Property of a quadrilateral

A closed figure with four line segments
 Types of quadrilaterals

		Examples	
Obtuse			
Right			
Quadrilaterals			
Quadrilaterals Name	Properties	Examples	
	Properties	Examples	
Name Parallelogram	Properties	Examples	
Name	Properties	Examples	
Name Parallelogram Rectangle	Properties	Examples	
Name Parallelogram	Properties	Examples	
Name Parallelogram Rectangle Rhombus	Properties	Examples	
Name Parallelogram Rectangle	Properties	Examples	
Name Parallelogram Rectangle Rhombus Square	Properties	Examples	
Name Parallelogram Rectangle Rhombus	Properties	Examples	
Name Parallelogram Rectangle Rhombus Square	Properties	Examples	

Geoboard

Polygons

Understanding Other Polygons

These shapes can be regular and irregular

Name	Sides	Example
<u>Pentagon</u>	5	
<u>Hexagon</u>	6	
<u>Heptagon</u>	7	
<u>Octagon</u>	8	
Nonagon	9	
<u>Decagon</u>	10	
Hendecagon	11	
Dodecagon	12	

Hands-On Materials

Shapes

Pattern blocks

Polygons

Which other polygons are most important for your students to understand?

What is a favorite polygon activity?

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes: Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

Composing and Decomposing - Spatial Reasoning Tangrams Tetrominoes/Pentominoes Pattern Blocks

Composing Shapes and Figures

Can you join these triangles to create a square?

Tangrams

Use the shapes to make a square

Tangram

Composing Shapes and Figures

How many different shapes can you create using the shapes on your screen? Make sure to draw your shapes as a record of your thinking!

Tetrominoes and Pentominoes

Use the shapes to make a rectangle

Pentominoes

https://benhoyt.com/writings/python-pentomino/

Partitioning Shapes

Pattern blocks

Rows and Columns

Students can explore dividing rectangles into same size squares, and then identifying the number of columns and rows.

Hands-On Materials

Tangram

Pattern blocks

Pentominoes

What is 1 activity for composing shapes?

What is 1 activity for decomposing shapes?

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes: Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

Lines		
Name	Properties	Examples
Point		
Line		
Line Segment		
D		
Ray		
Angles	I-	
Name Right	Properties	Examples
Right		
Acute		
Obtuse		
Obluse		
Straight		
	<u> </u>	

2D Shape Vocabulary

Closed figure versus open figure

- Polygon
- Regular
 - All angles <u>equal</u> and all <u>sides</u> equal
- <u>Irregular</u>

<u>Line</u> <

Line segment

<u>Angle</u>

 Space between 2 <u>intersecting</u> lines at the <u>point</u> where the lines meet

Lines

Lines

Name	Properties	Examples	
Point			
Line			
1: 6			
Line Segment			
Ray			
	•	<u> </u>	
Angles			
Name	Properties	Examples	
Right	Froperties	Examples	
Right			
Acute			
Obtuse			
Straight			
	/		

Hands-On Materials

Utensils

At your grade level, what is important for students to understand about lines?

Angles

Anglegs

Protractor

Lines

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes: Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

Name	Properties (Faces, Edges, Vertices)	Examples	
Rectangular Prism			
Cube			
Triangular Prism			
Hexagonal Prism			
Rectangular Pyramid			
Triangular Pyramid			
Hexagonal Pyramid			
Cylinder			
Cone			

What difficulties do your students have with three-dimensional (3D) shapes?

Identifying 3D Shapes

A <u>three-dimensional</u> (3D) figure has <u>height</u>, <u>width</u>, and <u>depth</u>

Students need to learn to:

- Identify
- Name
- Locate in environment

Identifying 3D Shapes

One of the trickiest aspects for students is interpreting

pictorial representations

Must teach dashed lines

3D Shape Vocabulary

Solid figure

• A three-dimensional, closed figure

<u>Face</u>

Vertex/Vertices

<u>Edge</u>

Identifying 3D Shapes

Manipulatives

- Sort and group
- Identify
 - Face
 - Vertex/Vertices
 - Edge

Books

Creating 3D Shapes

Identifying 3D Shapes

Objects in the home

What are 3D objects your students can use from their home?

Understanding 3D Shapes

Name		Faces	Edges	Vertices	
Rectangular Prism		0	0	0	
<u>Cube</u>		6	12	8	
<u>Cuboid</u>					
<u>Triangular Prism</u>			igure with two end faces that are d all sides are parallelograms		
<u>Hexagonal Prism</u>	equal and all sides are parallelograms			clogi ams	
<u>Rectangular Pyramid</u>					
<u>Triangular Pyramid</u>					
<u>Hexagonal Pyramid</u>					
<u>Cylinder</u>	<u>Pyramid</u> : Solid figure with polygon <u>base</u> and triangular faces that meet at a common poin				
<u>Cone</u>		alai races ti		ommon ponti	
<u>Sphere</u>					

Hands-On Materials

Cube Builder

Geometric Solids

Name	Properties (Faces, Edges, Vertices)	Examples	
Rectangular Prism			
Cube			
Triangular Prism			
Hexagonal Prism			
Rectangular Pyramid			
Triangular Pyramid			
Hexagonal Pyramid			
Cylinder			
Cone			

Two-dimensional shapes: Identification of shapes

Two-dimensional shapes: Composing and decomposing shapes

Lines and angles

Three-dimensional shapes

- 1. Choose a math problem.
- 2. Write a step-by-step explanation. Focus on the language of math in your explanation. Consider the representations you will use.

Explicit Instruction		
Problem	Practice Opportunities	
	High-Level Questions	
	Low-Level Questions	
	Affirmative Feedback	
	Corrective Feedback	

- 1. Describe the practice opportunities you will use.
- 2. Write 3 high-level questions.
- 3. Write 3 low-level questions.
- 4. Write 2 ways to provide affirmative feedback.
- 5. Write 2 ways to provide corrective feedback.

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

www.sarahpowellphd.com

