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Abstract 

The least-squares wavelet analysis (LSWA) is a robust method of analyzing any type of 

time/data series without the need for editing and preprocessing of the original series. The 

LSWA can rigorously analyze any non-stationary and equally/unequally spaced series with an 

associated covariance matrix that may have trends and/or datum shifts. The least-squares cross-

wavelet analysis complements the LSWA in the study of the coherency and phase differences 

of two series of any type. A MATLAB software package including a graphical user interface 

is developed for these methods to aid researchers in analyzing pairs of series. The package also 

includes the least-squares spectral analysis, the antileakage least-squares spectral analysis, and 

the least-squares cross-spectral analysis to further help researchers study the components of 

interest in a series. We demonstrate the steps that users need to take for a successful analysis 

using three examples: two synthetic time series, and a Global Positioning System time series. 

 

Keywords Least-squares spectral analysis, Antileakage least-squares spectral analysis, GPS 

time series analysis, Least-squares wavelet analysis, Least-squares cross-spectral analysis, 

Least-squares cross-wavelet analysis 

  

Introduction 

Vanìček (1969) proposed the least-squares spectral analysis (LSSA) to analyze unequally 

spaced time series. The LSSA estimates the spectrum based on the least-squares fit of sinusoids 

of specified frequencies to the entire series. Pagiatakis (1999) studied the statistical properties 

of the least-squares spectrum and defined critical values at specific confidence levels to identify 

stochastically significant peaks in the spectrum.     
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 Ghaderpour et al. (2018b) proposed an iterative method based on the LSSA namely, 

the antileakage least-squares spectral analysis (ALLSSA) that uses a preselected set of 

frequencies to accurately estimate the statistically significant spectral peaks corresponding to 

the wide-sense stationary components of a series. After simultaneously suppressing several 

significant spectral peaks with the highest power/energy, an iterative process is performed to 

reoptimize the estimated frequencies, reducing the computational cost. They showed that the 

ALLSSA performs better than the antileakage Fourier transform (Xu et al. 2005), and 

interpolation by matching pursuit (Vassallo et al. 2010).    

 Ghaderpour and Pagiatakis (2017) developed a new method of spectral analysis, 

namely, the least-squares wavelet analysis (LSWA), that decomposes a time series into the 

time-frequency domain, allowing the detection of short-duration signatures in the series. The 

LSWA simultaneously considers the correlations between the sinusoidal functions and 

constituents of known forms, such as datum shifts, trends, and any correlated noise. The LSWA 

computes spectrograms rigorously for equally or unequally spaced series without any 

preprocessing, modification or editing. The stochastic surfaces defined for the spectrogram 

show the significant spectral peaks at a certain confidence level that is usually 95% or 99%. 

Ghaderpour and Pagiatakis (2017) showed the robust performance of the LSWA compared to 

the state-of-the-art time series analysis methods, such as the continuous wavelet transform 

(Daubechies 1990), weighted wavelet Z-transform (Foster 1996), Hilbert-Huang transform 

(Huang and Wu 2008) and constrained least-squares spectral analysis (Puryear et al. 2012).

 Pagiatakis et al. (2007) proposed the least-squares self-coherency analysis to analyze 

two series together, based on the LSSA. Ghaderpour et al. (2018a) proposed an alternative 

method, namely, the least-squares cross-spectral analysis (LSCSA), to compute the cross-

spectrum of two series. The LSCSA obtains a cross-spectrum by multiplying the least-squares 

spectra of the two series, an appropriate coherence analysis of wide-sense stationary series. 

Ghaderpour et al. (2018a) also developed the least-squares cross-wavelet analysis (LSCWA), 

a novel method of analyzing two series, based on the LSWA. The LSCWA shows how much 

constituents with common frequencies in both series are coherent and whether the coherency 

is significant at a certain confidence level using rigorous statistical inference. In the LSCWA, 

the series do not have to be equally spaced and equally weighted, and they do not need to have 

the same sampling rate. The LSCWA does not require any preprocessing or editing of the 

original series, superseding the state-of-the-art methods, such as the cross-spectral analysis 

(von Storch and Zwiers 2001) and cross-wavelet transform (Torrence and Compo 1998).   
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  Ghaderpour (2018) illustrated the ALLSSA and LSWA algorithms with detailed 

flowcharts in Chapters 3 and 6, respectively. These algorithms can be used with any series. The 

least-squares based methods, namely, the LSSA, ALLSSA, LSWA, LSCSA, and LSCWA, 

have been all programmed in MATLAB. A user-friendly graphical user interface (GUI) is also 

designed for these methods. We briefly describe our software features and then using synthetic 

and real examples, we demonstrate how one can appropriately analyze any series. 

 

Software features and spectral analysis 

The spectral analysis methods presented here are based on Ghaderpour and Pagiatakis (2017) 

and Ghaderpour et al. (2018a, b), using the same symbols. The main purpose of these methods 

is studying the periodicities of constituents, coherency, and hidden signatures in any series. For 

example, accurate estimation of frequencies, amplitudes, and phases of components in Global 

Positioning System (GPS) time series are often challenging because these series are often 

unequally spaced, unequally weighted, non-stationary, and present datum shifts and trends. 

 

Software Inputs 

The main input data sets are column vectors for the times and series values along with the 

associated covariance matrices of the series values if they exist. A set of frequencies 𝛀 =

 {𝜔𝑘;  𝑘 =  1, 2, . . . , 𝜅} (cycles per unit time) defining the spectrum bandwidth of interest may 

also be entered that can be any set of positive real numbers based on the scope of analysis. A 

lower bound of this set may be the inverse of twice of the series length under consideration 

with upper bound 𝑀/2, where 𝑀 is the average sampling rate.     

 In the LSWA and LSCWA, the translating (shifting) window size parameters, 𝑀, 𝐿1, 

and 𝐿0 may also be entered. Parameter 𝑀 determines the Nyquist frequency when series is 

equally spaced. Since the Nyquist frequency is not explicitly defined for inherently unequally 

spaced series, 𝑀/2 may be selected as an upper bound for the frequency band. Craymer (1998) 

showed how to explicitly determine the Nyquist frequency for series that are equally spaced as 

multiples of some common interval or equally spaced with gaps.    

 Parameter 𝐿1 defines the number of cycles of sinusoids within the translating windows, 

and 𝐿0 is an additional number of samples within the translating windows in the least-squares 

fitting process. These parameters determine the segment size, 𝐿 =  ⌊𝐿1𝑀/𝜔𝑘⌋  +  𝐿0 , where 

⌊⋅⌋ is the floor function. If 𝐿1 > 0, the window size decreases when the frequency increases, 
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allowing the detection of short-duration signals. In unequally spaced series, the sinusoids of 

frequency 𝜔𝑘 within the translating windows may not exactly complete 𝐿1 cycles, and so 𝐿1 is 

approximate. The larger the 𝐿0, the higher the frequency resolution but the poorer the time 

resolution will be in the spectrogram. The GUI sets 𝐿1  =  2 and 𝐿0  =  20 as default. 

 Foster (1996) recommended an effective scale for the Morlet wavelet in the least-

squares sense, that is 0.0125. By selecting this scale, the weight matrix within each translating 

window will be a diagonal matrix whose diagonal elements are the Gaussian values. 

Ghaderpour and Pagiatakis (2017) showed that this selection smooths the spectral peaks in the 

spectrogram with an optimal time-frequency resolution.     

 When the series values have been derived from populations of random variables 

following multidimensional normal distributions, one can rigorously identify the statistically 

significant peaks in the spectrum, cross-spectrum, spectrogram, and cross-spectrogram at a 

certain confidence level. The critical value increases when the window size decreases and vice 

versa.           

 Series may have datum shifts or jumps. For example, in GPS time series, shifts in 

position are mainly caused by a change in the antenna reference point or tectonic displacement. 

Rodionov (2004) proposed a sequential algorithm for early detection of datum shifts. It is 

recommended that users enter the indices of the start times of datum shifts prior to the analysis. 

Since the LSWA is a segment-wise algorithm, it is not as sensitive as the LSSA or ALLSSA 

to datum shifts. The software has an option to fit and remove a polynomial of degree three or 

less from each segment of series, being considered simultaneously with sinusoids.                 

 In certain experiments, there are some constituents of known frequencies that 

contaminate the series. The software can remove them simultaneously with the trends to study 

the residual segments for any hidden signatures, coherency, and phase differences. These 

constituents can also be estimated by analyzing the original series, so they will be known to 

users for the next round of analysis.  There is an option in the GUI to choose the number of 

phase arrows being plotted toward time and frequency axes in the LSCWA. Ghaderpour et al. 

(2018a) showed that the direction of an arrow indicates how much the constituent of the second 

series segment lags or leads the constituent of the first series segment 

 

Software Outputs 

The main outputs from the analysis of a single series are the spectrum, antileakage spectrum, 

and spectrogram; and from the two series analysis, the cross-spectrum and cross-spectrogram 
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with their critical values and phase information. Other outputs from the LSSA or ALLSSA are 

the estimated coefficients of the constituents of known forms and their estimated covariance 

matrix. The diagonal entries of this covariance matrix from top left to bottom right are the 

variances of estimated coefficients for datum shifts, trends, and cosine and sine functions of 

known frequencies/wavenumbers in ascending order. The GUI calculates the amplitudes and 

phases from the estimated coefficients of sinusoids with their errors (Appendix A). To display 

the stochastic surfaces, we use the ‘freezeColors’ tool developed by John Iversen that enables 

multiple colormaps (available from the Mathworks File Exchange).  

 

Examples 

 

A synthetic example 

Two experimental time series are simulated in a controlled environment. Suppose that the first 

series is a voltage series simulated at 450 unequally spaced random times 𝑡𝑗’s from zero to 

three hours using the MATLAB command rand, sorted in an ascending order. The voltages 

are: 

   𝑓1(𝑡𝑗) = {

ℎ(𝑡𝑗) + 15                                                if  1 ≤ 𝑗 < 101     

ℎ(𝑡𝑗) + 30 + 2 sin(60 ⋅ 2𝜋𝑡𝑗)            if  101 ≤ 𝑗 < 321

ℎ(𝑡𝑗) + 10                                                if  321 ≤ 𝑗 ≤ 450

              (1) 

where ℎ(𝑡𝑗) =  4 sin(5 ·  2𝜋𝑡𝑗  + 𝜋/6) +  2 sin(10 ·  2𝜋𝑡𝑗  +  15𝜋𝑡𝑗
2)  +  0.5 wgn(𝑡𝑗) that 

contains a quadratic chirp signal, and MATLAB command ‘wgn’ is used to generate white 

Gaussian noise. This time series has two large datum shifts whose breaks are at 𝑗 =  101 and 

𝑗 =  321 (Fig. 1, top panel).        

 Suppose that the second series is an ambient temperature series simulated at 600 

unequally spaced random times 𝑡𝑗
′ ’s from zero to three hours. The temperature values in 

degrees Celsius (°C) are:         

  𝑓2(𝑡𝑗
′) =  4 sin (5 ·  2𝜋𝑡𝑗

′  +
𝜋

3
) +  sin(35 ·  2𝜋𝑡𝑗

′) +  0.5 wgn(𝑡𝑗
′)              (2) 

where 1 ≤  j ≤  600 and 0 ≤ tj
′ ≤ 3.  The GUI calculates M1  = 449/(t450  −  t1) ≅ 150 

(samples/h) and M2 =  599/(t600
′ −  t1

′ )  ≅ 200  (samples/h) and sets L1  =  2  cycles and 

L0  =  20 samples for both series. Using the average sampling rates M1  and M2 , the GUI 

internally calculates the common upper bound for the frequency band as the minimum of M1/2  
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Fig. 1 A synthetic unequally spaced time series and its analysis result. The top panel shows the 

time series with two datum breaks shown by blue bars, and the bottom panel shows its residual 

spectrogram with its stochastic surface at 99% confidence level in gray 

 

and M2/2, that is approximately 75 c/h. We choose 74 equally spaced frequencies from 1 c/h 

to 75 c/h to generate an equally spaced spectrum at frequencies, 𝛀 =  {1,2, . . . ,74} c/h. We 

also choose the significance level to be α = 0.01 for a more robust determination of the 

spectral peaks. 

 

Analysis of the first series  

We enter the indices of datum shifts and apply the LSWA. After the LSWA detects the 

dominant sine wave of 5 c/h and amplitude 4 volts and the short duration sine wave 60 c/h and 

amplitude 2 volts, we suppress their spectral peaks from the spectrogram by entering their 

frequencies as known frequencies in a designed GUI panel and rerun the analysis. The bottom 

panel in Fig. 1 shows the result, the residual spectrogram. The dashed vertical lines in the 

spectrogram are displayed using the ‘mesh’ MATLAB command to show the series gaps. The 
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spectrogram clearly shows the peaks corresponding to the quadratic chirp signal whose 

frequencies increase over time, unlike the spectrum not shown here.   

 

Analysis of both series together 

To study the coherency and phase differences between the components of the two series shown 

in the top panel of Fig. 2, we enter the datum breaks of the first series and apply the LSCWA. 

The bottom panel clearly shows the coherency between the sine wave of 5 c/h in the residual 

cross-spectrogram. The arrows on the cross-spectrogram show that the sine wave of 5 c/h in 

the temperature series leads the one in the voltage series about π/6 as we expected because 

𝜋/6 −  𝜋/3 =  −𝜋/6 . One may suppress the peaks at frequency 5  c/h in the cross-

spectrogram to search for any other hidden coherency. 

 

 

 

Fig. 2 Two synthetic time series and their coherency analysis. The first and second series are 

shown in blue and pink in the top panel, respectively. The bottom panel is their residual cross-

spectrogram with stochastic surface at 99% confidence level in gray and phase arrows in white 



8 

Spectral analysis of a GPS time series  

We analyze a GPS height time series from https://sideshow.jpl.nasa.gov/post/series.html. The 

station selected for this study is PRDS located in Priddis, Alberta, Canada. The top panel in 

Fig. 3 shows the time series, containing 5986  unequally spaced and unequally weighted 

samples. The average sampling rate is 358 samples/y or about 1 sample/d. To investigate if 

there are any annual, semi-annual, seasonal, and every two months components in the series, 

we choose 𝛀 =  {0.2, 0.4, . . . , 8} c/y for the entire analysis.      

 We use the same estimated datum breaks posted in the website above  that are 

2002.9406 , 2003.3841 , 2006.6146 , and 2012.5722  whose time indices are 304 , 427 , 

1588 , and 3737 , respectively. Since in many cases, such as GPS time series, there is a 

consistent trend for all the series segments between offsets, the LSSA and ALLSSA are 

programmed to estimate the datum shifts and estimate one single slope for the entire series 

simultaneously. In the LSWA, the same process will be applied but within each frequency-

dependent segment.           

 The bottom panel in Fig. 3 shows the least-squares spectrum after simultaneously 

removing the datum shifts and linear trend. The peaks approximately at frequencies 1, 2, and 

4 c/y are statistically significant at 99% confidence level, correspond to the annual, semi-

annual, and seasonal components in the series, respectively. A denser set of frequencies can be 

selected to estimate the signal frequencies more accurately.    

 Using set 𝛀, the ALLSSA will search around a small neighbourhood of significant 

peaks to estimate the signal frequencies more accurately in an iterative manner. Therefore, the 

estimated amplitudes for the annual and semi-annual components are 2.787 ±  0.097 mm and 

1.217 ±  0.069 mm, respectively. These values are approximately in agreement with the ones 

posted in the website above that are 2.804 ±  0.9 mm and 1.226 ±  0.9 mm.   

 The frequencies of significant components with their corresponding amplitudes and 

total shifts of each segment in ascending order and the common slope are estimated and shown 

in Table 1. We also used another set of frequencies 𝛀 = {0.2, 0.4, . . . , 200} c/y and obtained 

the same results as listed in Table 1. The L2 norm of the original series and residual series are 

498.28 mm and 398.20 mm, respectively. This low reduction of norm is due to random noise 

and other constituents, such as short duration signatures, daily periodic or aperiodic 

components.  
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Fig. 3 The GPS height time series for PRDS and its spectral analyses. The top panel shows the 

series with its error bars in red and datum breaks shown by blue bars. The middle panel is the 

residual spectrogram with stochastic surface in gray, and the bottom panel is the spectrum with 

its critical value at 99% confidence level in red 
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Table 1 The ALLSSA results for the PRDS GPS height time series using the given set of 

frequencies at 99% confidence level 

Freq.  (c/y) Amplitude (mm)   Phase (radians)   Intercepts (mm)    Slope (mm/y) 

0.240 1.591 ±  0.000 −0.406 ±  1.365     0.210 ±  0.426 0.096 ±  0.043 

    0.350 1.367 ±  0.122 −2.134 ±  0.052   12.725 ±  0.603  

    1.012 2.787 ±  0.097    2.247 ±  0.035  −1.455 ±  0.219  

    1.200 0.897 ±  0.099    1.992 ±  0.111  −3.848 ±  0.357  

    2.002 1.217 ±  0.069 −1.204 ±  0.086  −1.787 ±  0.607  

    4.216 0.901 ±  0.114    0.774 ±  0.074   

 

             

  The middle panel in Fig. 3 shows the residual spectrogram with its stochastic surface 

at 99% confidence level, using the Morlet wavelet. The annual peaks are stronger from year 

2010 to year 2016. On the other hand, the semi-annual peaks are stronger from year 2004 to 

year 2009. A possible explanation could be the impact of weather on the presence of ground 

water, contributing to a semi-annual behavior of the motions of the geodetic monuments. The 

measurement errors and noise might partially contribute to this behavior too. The spectrogram 

shows inter-annual peaks at 0.35 c/y that are more significant from year 2002 to year 2006. 

This inter-annual behavior may also be linked to the warming effect that could cause monument 

motion. Furthermore, the short duration bi-monthly peaks at 6 c/y during years 2010 and 2014 

are statistically significant. Since the dominant spectral peaks are the annual peaks, one may 

suppress them to search for any other hidden components.  

 

Discussion 

The computational complexity of the LSWA and LSCWA will be dependent on several factors, 

such as the window size parameters, covariance matrices, number of constituents of known 

forms, set of frequencies, and the translating windows. The LSWA can be set up to achieve 

𝑂(𝑛) complexity per frequency like the fast algorithm of the continuous wavelet transform 

when windows do not overlap, and covariance matrices are ignored. It can also be as slow as 
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𝑂(𝑛3) for a series of size n with n frequencies to be examined when the windows overlap. The 

appropriate selection of the window size parameters can considerably reduce the computational 

cost. In many fields of science, the quality and reliability of the spectral peaks corresponding 

to periodic and/or aperiodic signals are more important than the speed. We recommend users 

to consider splitting series of sizes more than 10,000  for better performance and display 

purposes using the GUI.       

 Astronomers are usually interested in analyzing light curves of variable stars whose 

brightness as seen from the Earth fluctuates. Such astronomical time series are often unequally 

spaced and weighted. The LSWA is expected to show its robust performance in detecting and 

quantifying periodic and aperiodic signals in these series. Atmospheric scientists or 

agronomists may want to interpolate/extrapolate atmospheric temperature time series for 

various purposes, such as crop disease forecasting (De Wolf et al. 2003). The ALLSSA may 

be used for these purposes.        

 Physicians may be interested in studying the coherency between the heart rate 

variability and brain waves (Niedermeyer and da Silva 2005). The LSCWA may be applied to 

investigate the coherency between the components of these time series rigorously, or the 

LSWA may be applied to the brain time series to search for brain tumors and other space-

occupying lesions. Financial analysts may be interested in analyzing certain time series to 

estimate trends in the overall unemployment rate as well as any periodicity in such series, or 

occasional trends in price movement in intraday transaction prices of International Business 

Machines (IBM) stock and its coherency with transactions that resulted in price change (Tsay 

2010). The ALLSSA and LSWA may be able to accurately estimate such trends simultaneously 

with other periodic or aperiodic components in such series for making a reliable decision. 
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Computer Code 

The MATLAB software package (open-access) is available at www.ghader.org, on GitHub at 

https://github.com/Ghaderpour/LSWAVE-SignalProcessing, and at the GPS Toolbox website 

at https://www.ngs.noaa.gov/gps-toolbox. 

 

Appendix A. Error estimation of the least-squares coefficients 

We show how one may calculate the unbiased covariance matrix of simultaneously estimated 

coefficients in the LSSA or ALLSSA. Then we show how the GUI calculates the amplitudes 

and phases of sine waves with their errors.        

  Let 𝐟 =  [𝑓(𝑡)] be a time series of size 𝑛 with associated covariance matrix 𝐂𝐟  and 

𝐏 =  𝐂𝐟
−𝟏. Assume that 𝐟 has d significant datum shifts, and so column vectors 𝚽1  = [𝟏1], 

𝚽2  = [𝟏2], …, 𝚽𝑑  = [𝟏𝑑], of size n whose elements are zeros and ones will estimate the total 

shifts of data. The elements of each vector are ones if their locations align with a datum shift 

segment and zeros elsewhere. Assume that 𝚽𝑑+1  = [𝐭], 𝚽𝑑+2  = [𝐭2], and 𝚽𝑑+3  = [𝐭3] to 

estimate a consistent trend for all datum shifts.      

  Let 𝚽𝑑+4  =   cos(2𝜋𝜔1𝐭) , 𝚽𝑑+5  =   sin(2𝜋𝜔1𝐭) , ..., 𝚽𝑞−1  =   cos(2𝜋𝜔𝑘𝐭) , and 

𝚽𝑞  =   sin(2𝜋𝜔𝑘𝐭) be the constituents of known forms whose frequencies (𝜔𝑘’s) are either 

entered by users in the LSSA or estimated by the ALLSSA. Therefore, 𝚽 =

[𝚽1, … , 𝚽𝑑 , … , 𝚽𝑞] is the 𝑛 ×  𝑞 matrix of the constituents of known forms. In the LSSA or 

ALLSSA, the coefficients of constituents of known forms are estimated as follows 

 �̂�  = (𝚽T𝐏 𝚽)
−1

𝚽T𝐏 𝐟                             (A.1) 

that is a column vector of size 𝑞. Therefore, the residual series is �̂�  =  𝐟 −  𝚽 �̂�. From the 

covariance law, the covariance matrix of �̂� is estimated as  

                                                       𝐂�̂�  =  �̂�0
2 (𝚽T𝐏 𝚽)

−1
                                             (A.2) 

where �̂�0
2 = (�̂�T𝐏 �̂�)/(𝑛 − 𝑞) is unbiased estimator (Wells and Krakiwsky 1971, Chapter 7).

  Now from (A.1), suppose that ĉ1 and ĉ2 are the estimated coefficients of cos(2𝜋𝜔1𝐭) 

and sin(2𝜋𝜔1𝐭) whose variances �̂�1
2

 and �̂�2
2

 and covariance �̂�12 are obtained from the elements 

of 𝐂�̂�  in (A.2), respectively. To find the estimated amplitude 𝑎 ̂and phase 𝜃 , we use the 

following equations 

http://www.ghader.org/
https://github.com/Ghaderpour/LSWAVE-SignalProcessing
https://www.ngs.noaa.gov/gps-toolbox
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    𝑎 sin(2𝜋𝜔1𝑡 +  𝜃) =  𝑎 sin(𝜃) cos(2𝜋𝜔1𝑡) +  𝑎 cos(𝜃) sin(2𝜋𝜔1𝑡)     (A.3) 

       cos2(𝜃)  + sin2(𝜃)  =  1                                         (A.4) 

Thus, ĉ1  =  𝑎 ̂ sin(𝜃)  and ĉ2  =  𝑎 ̂ cos(𝜃) , so 𝑎 ̂ = √ĉ1
2 + ĉ2

2 ,  𝜃 = 2 tan−1(�̂� −  ĉ2)/ĉ1 , 

where −𝜋 <  𝜃  <  𝜋. If 𝐹 =  𝐹(𝑋, 𝑌) is a function of variables 𝑋 and 𝑌, then the uncertainty 

or error in 𝐹 may be obtained after approximation to a first-order Taylor series: 

     �̂�𝐹 = √(
𝜕𝐹

𝜕𝑋
)

2
�̂�𝑋

2 + (
𝜕𝐹

𝜕𝑌
)

2
�̂�𝑌

2 + 2 (
𝜕𝐹

𝜕𝑋
) (

𝜕𝐹

𝜕𝑌
) �̂�𝑋𝑌                             (A.5) 

where 𝜕𝐹/𝜕𝑋 is the partial derivative of 𝐹 with respect to 𝑋, �̂�𝑋
2

 is the variance of 𝑋, and �̂�𝑋𝑌  

is the covariance between X and Y (Ku 1966). Using (A.5), we obtain 

      �̂�𝑎 ̂ = (1/𝑎 ̂) √ĉ1
2�̂�1

2 + ĉ2
2�̂�2

2 + 2ĉ1ĉ2 �̂�12                            (A.6) 

     �̂��̂� =
2√((ĉ2/ĉ1)(�̂�− ĉ2))2 �̂�1

2+(�̂�− ĉ2)2�̂�2
2−2(ĉ2/ĉ1)(�̂�− ĉ2)2 �̂�12

|�̂� ĉ1|(1+(�̂�− ĉ2)2/ĉ1
2) 

                  (A.7) 

that are the errors of 𝑎 ̂ and 𝜃, respectively.  
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