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Vascular plants have been considered as autonomous  organisms 
especially when their performance has been interpreted at the 
genome and cellular level. In reality, vascular plants provide a 
unique ecological niche for diverse communities of cryptic symbi‑
otic microbes which often contribute multiple benefits, such as 
enhanced photosynthetic efficiency, nutrient and water use and 
tolerance to abiotic and biotic stress. These benefits are similar 
to improvements sought by plant scientists working to develop 
ecologically sustainable crops for food, fiber and biofuels.

Native desert plants include a community of indigenous 
endosymbiotic fungi that are structural components with cells, 
tissues, cell cultures and regenerated plants. These fungi regulate 
plant growth and development and contribute genes and natural 
products that enable plants to adapt to changing environments. 
A method developed for transferring these endophytes from cell 
cultures to non‑host plants promises to be a revolutionary approach 
for the development of novel plant germplasm and has application 
in the field of plant biotechnology.

Introduction

Population growth with corresponding decreases of arable land, 
available water and nutrients, under biotic and abiotic stress presents 
major challenges for the production of sufficient food, fiber and 
biofuels in the coming century.1 Food production has kept abreast of 
population growth through developing new cultivars that respond to 
increased inputs such as improved cultural practices, fertilizers and 
chemical pesticides. These advances have been based on the assump‑
tion that plants function as autonomous organisms regulated by their 
genetic code and cellular physiology. This concept was developed 
from early evolutionary theories that plants and animals evolved by 
accumulating gene changes within species.2

Yet in reality it is well recognized that symbiosis is a common 
and fundamental condition of plants.3 Current research suggests 

that all plants in native ecosystems are symbiotic with fungi and 
other microbes (bacteria, yeast) on their leaf and root surfaces, rhizo‑
sphere and internal tissues that influence their performance.4‑8 It 
was suggested in the late 1800’s and now confirmed by DNA based 
detection technology that plastids and mitochondria of the eukary‑
otic cell were derived from a consortium of primitive microbes.3,9,10 
Cytoplasmic organelles, each with their own DNA, are replicated 
and passed from generation to generation through the egg. Similar 
origins have been proposed for other cytoplasmically inherited 
organelles such as cilia and centrioles.2 The continuity of microbial 
associations with plants from their origin suggests that plants have 
not functioned as autonomous individuals, but their internal tissues 
provide a unique ecological environment for diverse communities 
of symbiotic microbes, which have had a major influence on plant 
adaptation and evolution.3,11‑17

Plants with endosymbiotic microbes have similarities to 
lichens.18‑20 Lichens are the simplest model of symbiosis between 
fungi and photosynthetic organisms. Fungi are structurally inte‑
grated with either photosynthetic algal or cyanobacterial cells to 
form a single thallus that dramatically differs from the component 
organisms and shows structural convergences with vascular plants. 
The fungus obtains carbon from the photosynthetic microbe, while 
providing a protective cortex composed of a dense layer of hyphae 
embedded within a polysaccharide matrix (biofilm) that accesses and 
retains water. Pigmentation within the cortex may protect photo‑
synthetic components from exposure to intense sunlight. Fungi also 
secrete organic acids and enzymes to acquire mineral nutrients from 
recalcitrant sources such as rock surfaces, soil and organic substrates. 
This unique sysbiosis results in a superorganism capable of coping 
with extreme stress in ecosystems where neither component could 
survive by its self.18 The similarity of symbiotic microbes associated 
with desert plants to lichens and their potential role in coping with 
severe drought stress in arid environments has stimulated our scien‑
tific investigations and this review.

Mycorrrhizal Fungi

Mycorrhizal like associations assisted the early colonization of 
terrestrial systems by vascular plants.12,21‑23 Early observations on 
mycorrhizal fungi in the late 1880’s and hypothesis on their role on 
evolution, ecology and physiology flew in the face of conventional 
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wisdom at that time. Those observations are now supported by 
tens of thousands of scientific papers, yet the full nature of symbi‑
otic fungal organisms is still in the process of examination by the 
scientific community.16 Most extensively studied fungal symbionts 
are the abuscular mycorrhizae (AM), which are associated with 
approximately 90% of all land plants and contribute multiple 
benefits to their host plants. Similar to the fungal component of 
lichens, mycorrhizal fungi mineralize and transfer phosphorous and 
other essential mineral nutrients to the plant. Other benefits include 
improved water acquisition and use, drought tolerance, increased 
tolerance to pathogens, heavy metals, herbivory and enhanced soil 
stability.23‑25 Similar to lichens, the fungal component contributes 
these benefits to the photosynthetic partner for organic carbon. 
Mycorrhizal fungi are perceived as essential for survival and well 
being of individual plants and they also influence community and 
ecosystem structure.16,23,25‑27 Attempts to incorporate these valuable 
symbionts into mainstream agricultural production practices have 
not been successful.25

Ectomycorrhizal fungi (EM) are the major root symbionts of 
important woody trees and shrubs of the northern boreal and 
temperate forests. EM fungi are generally free living in soil, exist 
on soil organic matter and are readily cultured on a wide range of 
simple to complex artificial media. A similarity between mycorrhizal 
roots and lichens is noted by the dense hyphal mantle that is formed 
on the surface of mycorrhizal roots and is similar to the fungal 
cortex in lichens. This interface between the root and soil suggests 
protection against pathogens and fluctuating soil moisture and is 
thought to regulate bidirectional flow of photosynthetic carbon and 
mineral nutrients between plants and fungi. EM fungi are transferred 
 horizontally from colonized roots or soil to new roots.23

Endosymbiotic Fungi

Numerous examples of other non‑mycorrhizal fungal endophytes 
associated with plants are accumulating. These fungal symbionts 
also had early origins with land plants. Thin petrographic sections 
of a 400‑year‑old Rhynie chert plant Nothia aphylla revealed three 
different non‑mycorrhizal fungal endophytes that modified root 
tissues.28 Currently the most extensively studied are the clavicipita‑
ceae (Ascomycota) endophytes of the cool season C3 forage grasses. 
These fungi grow within the intercellular spaces of above ground 
leaves and into developing embryos and are vertically transmitted 
by seed. They produce toxic alkaloids that protect host plants 
against insect and grazing herbivores and present a serious economic 
problem for the grazing livestock industry. They influence commu‑
nity structure, host metabolism and physiology which, similar to 
lichens, enable both fungus and photosynthetic host to exploit 
novel or extreme hot, dry habitats that are typically inhospitable to 
 perennial C3 grasses.14

As new examples of endosymbiotic fungi are discovered,  questions 
arise as to their role and function on the genetics, physiology, ecology 
and evolution of plants. The ability of these fungi to survive in 
extreme environments, harvest nutrients and transport them through 
filamentous hyphae over extended distances make them valuable 
symbionts of vascular plants.29 Our basic understanding of microbial 
morphology, taxonomy and molecular profiles has been derived from 
those that can be cultured on artificial media. Yet, 90 to 99% of 
microbes cannot be cultured using standard techniques.30 Currently 

fungal presence in plants has been determined by symptoms, by 
isolation and culture or by microscopic detection of specifically 
stained plant tissues that selectively highlight fungal wall components 
(chitin) with minimal background staining of plant tissue.31‑33

Many plant endophytes are cryptic since they induce no  symptoms 
and escape detection using current histochemical, microscopic, isola‑
tion and cultural methods.34,35 More innovative molecular and 
microscopy methods are required for more detailed studies. Even 
biochemical and molecular detection methods remain insufficient for 
appreciating synergistic roles endophytes play.36 In addition fungal 
colonization is often localized and minute fungal structures are hard 
to interpret. Active fungal structures may be over looked when they 
differ from typical recognized fungal morphology, particularly when 
they are intimately integrated with cell walls and membranes.37,38 
Successful chemical detection, immunological methods or direct 
amplification of fungal DNA from colonized plant tissues can 
occur, but proving that the detected products are of fungal origin 
still requires separating the fungus from plant tissues. Recognition 
of uncultured fungi is only successful if the molecular profiles of 
the uncultured species resemble profiles of known, cultured fungi. 
The unique plant environment that harbors diverse populations 
of endosymbiotic fungi suggests novel unexplored fungi that differ 
from existing fungal species described from other habitats, making 
molecular identification difficult. It has been estimated that these 
may represent a million or more new species.4,5,32,39 Their presence 
suggests enormous carbon expenditures by the host, which might be 
expected to place undue stress on the host metabolism.39 Numerous 
examples in the literature suggest that these novel endophytes have 
significantly contributed to the ability of host plants to adjust to 
multiple stresses induced by changing environments, which would 
justify their presence.39‑41 Little is known of their function, but 
endophytes that enhance nutrition, photosynthesis, productivity, 
resistance to stress and regulate ecosystem processes are more likely a 
benefit than a burden.32

Fungal Associations with Native Desert Plants
We extensively studied fungal endophytes associated with grasses 

and shrubs native to the Northern Chihuahuan Desert where organ‑
isms are exposed to chronic light and temperature extremes, extended 
drought periods and recalcitrant mineral availability. Initial inter‑
pretations were that roots were most extensively colonized by dark 
septate fungi (DSE).42 These fungi are characterized as melanized, 
dark pigmented hyphae and microsclerotia and are reported in some 
600 plants species in stressed environments.43‑46 They coexist with 
mycorrhizal fungi and are thought to benefit host plants in nutrient 
acquisition similar to mycorrhizal fungi.47‑50

Analysis of desert plants over years, seasons and variable climatic 
conditions revealed that the characteristic melanized structures 
were most prevalent in roots of dormant plants. Long periods of 
dormancy are interrupted by intense precipitation events during 
the summer monsoons which initiate growth and high levels of 
physiological activity. Dual staining methods that targeted fungal 
wall material and internal fungal lipid bodies revealed that fungal 
morphology in physiologically active plants was variable and fungal 
presence was more extensive than when only stained or melanized 
structures were considered. Fungal wall structure in physiologically 
active plants varied from melanized, stained to hyaline. Often fungi 
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functioned without walls as membrane bound protoplasts and 
escaped  detection by conventional staining methods.37,38 Fungi 
were found on both leaf and root surfaces and were observed to 
be associated with all cells of roots and leaves. We concluded that 
native desert plants are colonized by diverse groups of symbiotic 
fungi that differ from mycorrhizal, DSE and other recognized fungi. 
Plants were regenerated from cell cultures initiated from aseptically 
prepared embryonic tissues of germinating seedlings.51 Consistent 
with other reports,52‑54 we unexpectedly found that cell cultures 
and regenerated plants were not microbe free, but housed several 
different endosymbiotic fungi.55 We concluded that these cryptic 
endophytic fungi were generally noncultivable and were vertically 
transmitted from generation to generation.

An astonishing example of a conserved lichen‑like fungal 
 association was obtained by microscopic analysis of the epidermis of 
native C4 desert grasses that revealed an integrated chimera of plant 
and fungal cells. A precisely organized fungal network was associated 
with all epidermal plant cells. Bicellular cells attached to the fungal 
network, previously described as plant trichomes, were similar to 
teliospores produced by Uredomycetes. Their attachment to the 
fungal network, staining specifically for fungal tissue and initia‑
tion of fungal hyphae verified that these structures were fungal and 
not plant cells.56 This integrated pattern of plant and fungal tissue 
also developed on leaves of regenerated Bouteloua eriopoda plants 
confirming the conserved plant‑fungus association by vertical trans‑
mission from cell to cell in the regeneration process. This symbiotic 
association with fungi results in a superorganism where the fungal 
component similar to lichens, is essential for warm season C4 grasses 
to survive under arid conditions where they may retain water and 
regulate light.

Endophyte Transfer

Callus cultures initiated from aseptic tissues of native grasses and 
shrubs examined by scanning electron microscopy further revealed 
that they were completely encapsulated with a fungal enmeshed 
biofilm. Similar biofilms were reported encapsulating pine callus 
cultures suggesting a fungal role in pine bud development.52 We also 
observed fungal biofilms on root and leaf surfaces of native plants 
suggesting that they protect cells from desiccation and possibly 
pathogen invasion. Endophytes did not grow from cell cultures on to 
the enriched carbon‑nutrient media, nor could endophyte free plants 
be regenerated from axenic cell cultures of native plants. Aseptically 
cleansed germinating seedlings of tomato, chile and several native 
grasses were co‑cultured with callus tissues of native plants in an 
attempt to transfer indigenous native endophytes to non‑host 
plants.57,58 Fungal hyphae were microscopically observed growing 
from the callus to the seedlings. Phenomenal responses in root initia‑
tion, branching and biomass were observed in some combinations of 
co‑cultured non‑host plants. Transfers from calluses generated from 
some native plants to non‑host native grasses not only enhanced 
root and shoot biomass, but substantially induced earlier flowering, 
greater seed production and seedling vigor. Not all transfer combi‑
nations were positive, some were neutral and others were negative 
indicating differences in fungus‑host interactions. These differential 
responses suggested that indigenous endophytic microbes function 
to regulate photosynthesis, physiology and ecology of native plants 
in a complex fashion.

Symbiotic Microbes Offer Novel Tools for Biotechnology

Vascular plants do not function as autonomous individuals, but 
house diverse communities of symbiotic microbes. The role of these 
microbes can no longer be ignored. Like symbiotic lichens, microbial 
interactions are critical not only for host, but for fungal survival in 
stressed environments.59 To date, improvements in plant quality, 
production, abiotic and biotic stress resistance, nutrient and water 
use have relied largely on manipulating plant genomes by breeding 
and genetic modification.60 Increasing evidence indicates that the 
function of symbiotic microbes seem to parallel more than one of 
these characteristics. Past efforts to incorporate symbiotic microbe 
management into mainstream plant improvement and produc‑
tion practices have seen limited success for a number of reasons. 
These include difficulties associated with mass culture of microbes, 
performing inoculations and insuring persistence of beneficial 
symbionts in agricultural environments. The extreme and unquanti‑
fied genetic diversity among beneficial microbes signifies complex 
potential interactions with host plants, making it difficult to predict 
uniform, successful outcomes across diverse plant cultivars.25 Plant 
breeding has produced continuous supplies of improved cultivars 
and recent advances in genetic modification have successfully allowed 
transfer of desirable genes across kingdom barriers, yet these methods 
are expensive and time consuming and will be challenged by rapidly 
changing environments. It is becoming increasingly evident that 
cryptic symbiotic microbes may represent an enormous untapped 
genetic reservoir for plant improvement.25,39‑41,61 Transferring these 
endophytes from cell cultures of native plants to germinating seed‑
lings of non‑host plants promises a revolutionary biotechnology to 
rapidly improve plant germplasm.

A major objective of photosynthetic research is to increase its 
efficiency under biotic and abiotic stress.33,62,63 These include 
altering photosynthetic pathways and plastid modification; both are 
attractive means of sustainable plant improvement. An example of 
enhanced photosynthetic efficiency induced by a symbiotic microbe 
was demonstrated by inoculating regenerated Agave victoria‑reginae 
plants with a non‑pathogenic strain of Fusarium oxysporum, indig‑
enous to native plants. Inoculated plants had substantial increases in 
root length, branching, numbers of stomata, nocturnal acidity, malic 
acid, chlorophyll and sugar content compared to non‑inoculated 
control plants.64 Understanding physiological contributions of the 
fungal symbiont on enhancing photosynthetic efficiency should 
provide alternate approaches for plant improvement and manage‑
ment. Improved production of host plants by endosymbionts 
under stress suggests improvements in photosynthetic efficiency. 
Neotyphodium endophytes of cool season grasses also were shown to 
enhance photosynthetic rates under water and heat stress.65 Increased 
biomass induced by transfer of endophytes of native grasses also 
suggests enhanced photosynthesis.57,58

A unique fungus was identified in association with Dichanthelium 
lanuginosiae growing in Yellowstone National Park in geothermic 
soils ranging from 20°C to 50°C. Like lichen associations, neither the 
grass nor the fungus could survive alone in the extreme temperatures. 
Heat tolerance was generated by a tripartite grass‑fungus‑virus associ‑
ation in D. lanuginosiae.40,66 The genetic value of the endosymbiotic 
microbes was demonstrated when tomato and watermelon plants 
were able to survive temperatures of 50°C to 65°C after inoculation 
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with the endosymbiotic fungus Curvularia sp. The high level of 
heat tolerance conferred by the fungus‑virus combination not only 
suggests its compatibility with a wide host range but also reveals high 
levels of heat tolerance which would be difficult to obtain by plant 
breeding or genetic modification.67

Conclusion

A perceived future role of biotechnology is to introduce multiple 
choreographed genes into plants that would elicit multiple benefits 
to the plants such as resistance to stress, productivity and quality.68 
Microbial genomes that have co‑evolved with native plant species 
may already be choreographed and compatible with a wide range of 
plant genomes and available in this vast unexplored genetic reservoir. 
Understanding microbial DNA and how it communicates with plant 
DNA for their mutual welfare and could lead to innovative methods 
of plant improvement.

It is our contention that native plants survive and flourish in 
stressed ecosystems because of endosymbiotic organisms that have 
co‑evolved and were essential for their adaptation to changing envi‑
ronments. Some of these microbial components are non‑cultivable 
and vertically transmitted from generation to generation. They 
represent a vast reservoir of heritable DNA that can enhance plant 
performance in changing environments and add genetic flexibility 
to adaptation of long‑lived plants.40,69 Our preliminary results 
suggest that uncultured endosymbiotic microbes may be vertically 
transferred in succeeding generations. If such endophytes can be 
identified that not only persist in progeny of novel hosts, but can 
confer benefits in mechanized, agricultural systems, they would be 
increasingly important in agricultural production and lead to a rapid 
and economical method of providing novel germplasms of native 
and crop plants. Many questions must be answered before systemic 
endophyte transfer to crop or native plants can become a standard 
practice. Better methods for identifying what is being transferred and 
for monitoring, how long these associations persist in field settings 
are required. The answer to these questions and others will require 
novel approaches of molecular technology.

The growing consensus is that microbial associations with higher 
plants are universal.4‑8,33 Plant growth and development cannot be 
adequately described without acknowledging microbial interactions. 
We need to determine the extent of microbial associations in the 
plant kingdom. This question will only be answered as technology 
is developed to detect their presence in plant tissues. What we have 
learned is that there is a need to understand how plant‑microbes 
communicate in these endosymbiotic relationships, and how they 
regulate basic genetic and physiological functions.
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