
Multi-Task Learning for Subspace Segmentation

Yu Wang ∗ YW323@CAM.AC.UK
David Wipf † DAVIDWIP@MICROSOFT.COM
Qing Ling ♯ QINGLING@MAIL.USTC.EDU.CN
Wei Chen ∗ WC253@CAM.AC.UK
Ian Wassell ∗ IJW24@CAM.AC.UK
∗ Computer Laboratory, University of Cambridge, Cambridge, UK
† Microsoft Research, Beijing, China
♯ University of Science and Technology of China, Hefei, Anhui, China

Abstract

Subspace segmentation is the process of cluster-
ing a set of data points that are assumed to lie on
the union of multiple linear or affine subspaces,
and is increasingly being recognized as a fun-
damental tool for data analysis in high dimen-
sional settings. Arguably one of the most suc-
cessful approaches is based on the observation
that the sparsest representation of a given point
with respect to a dictionary formed by the oth-
ers involves nonzero coefficients associated with
points originating in the same subspace. Such s-
parse representations are computed independent-
ly for each data point via ℓ1-norm minimization
and then combined into an affinity matrix for use
in a final spectral clustering step. The downside
of this procedure is two-fold. First, unlike canon-
ical compressive sensing scenarios with ideally-
randomized dictionaries, the data-dependent dic-
tionaries here are unavoidably highly structured,
disrupting many of the favorable properties of the
ℓ1 norm. Secondly, by treating each data point
independently, we ignore useful relationships be-
tween points that can be leveraged for jointly
computing such sparse representations. Conse-
quently, we motivate a multi-task learning-based
framework for learning coupled sparse represen-
tations leading to a segmentation pipeline that is
both robust against correlation structure and tai-
lored to generate an optimal affinity matrix. The-
oretical analysis and empirical tests are provided
to support these claims.
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1. Introduction
Principal component analysis is a classical method for find-
ing a low-dimensional linear subspace that captures the ma-
jority of variance in a particular centered data set. Estimat-
ing this subspace and projecting onto it are trivial matter-
s using a simple eigen-decomposition. However, suppose
the data instead lie on or near the union of multiple low-
dimensional subspaces. In this revised scenario the goal is
to both estimate each of these subspaces and segment every
data point into the closest one, a considerably more chal-
lenging proposition with no closed-form solution. Note
that this problem is quite different than traditional cluster-
ing, where the objective is to find groups of points that are
closest to one another, rather than closest to or member-
s of some subspace. This so-called subspace clustering or
subspace segmentation problem (these terms are used in-
terchangeably) is relevant to numerous machine learning
and computer vision applications, including image repre-
sentation and compression (Hong et al., 2006), motion seg-
mentation (Rao et al., 2010), and face clustering (Liu et al.,
2013).

We define the subspace segmentation problem more for-
mally as follows. Let {Sk}Kk=1 represent a collection of
K linear subspaces in RD, where dim[Sk] = Dk for all
k. Now consider that we have a set of N points {xj}Nj=1

that have been sampled from this union of subspaces, with
Nk samples drawn from subspace k. We then let Xk de-
note the D × Nk matrix of points associated with the re-
spective subspace. The entire constellation of points can
be expressed as

X , [x1, . . . ,xN ] = [X1, . . . ,XK ]P ∈ RD×N , (1)
where P ∈ RN×N is some unknown permutation ma-
trix. The ultimate objective of subspace segmentation is
to learn the subspace membership of each xj , without any
prior knowledge of the cardinality or dimensionality of the
underlying union of subspaces. Extensions to affine sub-
spaces is straightforward and will be discussed later.
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Spectral clustering represents arguably the most popular
and robust recent method for subspace segmentation. The
basic idea proceeds by forming an affinity matrix A, where
the ij-th element aij quantifies the strength of the relation-
ship between points xi and xj . In traditional clustering,
this affinity is commonly computed using a Gaussian ker-
nel exp[−α∥xi − xj∥22] with α > 0, but this ignores the
subspace structure we seek to capture.

In contrast, a more effective construction of A exploits
the self-expressiveness property of X (Elhamifar & Vidal,
2013), namely that any xj can be expressed as a linear
combination of other data points in X within the same sub-
space, assuming suitable sampling of each subspace (i.e.,
each Nk is sufficiently large with points in general posi-
tion). In general, with N > D there will exist an infinite
number of such representations; however, in forming a vi-
able affinity matrix it is paramount that we find represen-
tations that heavily favor only using points from the same
subspace. From an optimization standpoint, this involves
solving

min
Z

f(Z) s.t. X = XZ, (2)

over the N × N coefficient matrix Z. Ideally the penalty
function f will encourage an optimal solution Z∗ to avoid
the degeneracy Z∗ = I and be such that P−1Z∗ is block
diagonal, with blocks aligned and sized according to the
columns of each Xk.

We may then form a symmetric affinity matrix as

A = |Z∗|+ |Z∗|⊤ (3)
and apply traditional spectral clustering (Luxburg, 2007)
to the normalized Laplacian of A to recover the under-
lying subspace segmentation. In brief, if we view data
points xj as nodes on a graph and elements of A as edge
weights between them, then spectral clustering estimates
the number of connected components in the graph, as well
as which data points are connected.1 Assuming Z∗ pro-
duces the correct block-diagonal structure, or approximate-
ly so, similar points will naturally be grouped together, and
we can expect to correctly learn which data points belong
to each Sk. If noise or outliers are present, we can al-
so relax the equality constraint in (2) with an appropriate,
application-specific data-fidelity term (Elhamifar & Vidal,
2013; Liu et al., 2013).

The differentiating factor in state-of-the-art spectral clus-
tering algorithms applied to subspace segmentation is pri-
marily in how the function f is chosen. One influential
class of algorithms called sparse subspace clustering (SS-
C) selects the sparsity-promoting penalty such as f(Z) =
∥Z∥1 ,

∑
j ∥zj∥1, along with the additional constraint

1Two nodes of the graph are connected if there exists a path
with nonzero edge weights between them, which will typically
occur in the present context due to the self-expressiveness prop-
erty described above.

diag[Z] = 0 (Elhamifar & Vidal, 2013). The latter is re-
quired to explicitly prevent Z = I (it can also be embed-
ded in the function f instead if preferred). Drawing on re-
lated ideas from compressive sensing, the motivation here
is that the sparsest solution to each individual constraint
{xj = Xzj , zjj = 0} will involve all or most nonzero co-
efficients belonging to the same subspace, or equivalently,
P−1zj will be block-sparse with favorable alignment.

An alternative proposal, frequently referred to as low-rank
represention (LRR), suggests penalizing rank[Z], in part
because rank[Z] will be small if each subspace dimension
Dk is sufficiently low permitting a low-rank feasible so-
lution, and the degenerate full-rank solution Z∗ = I can
naturally be avoided (Liu et al., 2013). Alternatively, relax-
ation of the rank to the convex nuclear norm f(Z) = ∥Z∥∗
is a popular surrogate. Notably, if the subspaces are inde-
pendent,2 then P−1Z∗ will provably display the desired
block-diagonal structure (Liu et al., 2013). Beyond LRR
and SSC, more recent methods have been proposed based
on the Frobenius norm (Lu et al., 2012), the Trace Lasso
(Lu et al., 2013), and non-convex constraints applied di-
rectly to the affinity matrix A to rigidly enforce block s-
parsity (Feng et al., 2014). Although not our central focus
here, many additional variants of these have been suggested
for tackling outliers.

All of the above have pros and cons, and there remain im-
portant potential directions for improving the state-of-the-
art in what amounts to a widely-applicable data analysis
tool. Similar to SSC we will herein investigate a penalty
function that explicitly favors block sparsity in each colum-
n of Z. However, unlike any existing SSC algorithm which
learns each column completely independently, we propose
to apply a Bayesian multi-task learning formulation such
that columns from the same subspace are linked during the
estimation process given their obvious similarities. Against
this backdrop our primary contributions are threefold:
• Analysis of intrinsic limitations of existing spectral

clustering approaches to subspace segmentation (Sec-
tion 2).

• Reframing of subspace segmentation as a principled
multi-task learning (MTL) problem (Section 3)

• Theoretical and empirical examination of a novel
Bayesian MTL pipeline (Sections 4 and 5).

2. Limitations of Current Methods
Sparse Subspace Clustering (SSC): The canonical moti-
vating form of SSC involves solving

min
Z

∥Z∥0 s.t. X = XZ, diag[Z] = 0, (4)

2A union of subspaces is independent if dim[
⊕K

k=1 Sk] =∑K
k=1 dim[Sk], where

⊕
denotes the direct sum.
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where ∥Z∥0 is the matrix ℓ0 norm. As long as each indi-
vidual subspace satisfies Dk < D for all k, and sampled
points are sufficiently dense in general position, then the
solution to (4) will be block diagonal and aligned with the
true clusters as desired. From a practical standpoint, based
on theoretical analysis from (Elhamifar & Vidal, 2013;
Mahdi & Candes, 2012), in certain cases as long as the an-
gles between subspaces are not too small, then we can re-
place the NP-hard matrix ℓ0-norm minimization in (4) with
∥Z∥1 and still expect this same desirable block-diagonal
structure.

However, as well-established in the literature on compres-
sive sensing, the equivalence between the maximally sparse
ℓ0-norm solution and the ℓ1-norm substitution is quite sen-
sitive to correlations in the data. When we are free to
choose a design matrix with randomized sampling as in
compressive sensing, this is not a problem; however, in the
subspace segmentation problem X is likely to have rich
structure and strong correlations, which is why we want to
cluster it in the first place. Therefore, it seems premature
to adopt the popular convex relaxation mantra in a prob-
lem domain that deviates substantially from the theoretical
realm where ℓ1-norm-based sparse estimation is motivated
to begin with.

A second difficulty with SSC applies even if the original ℓ0
norm is used to solve (4), and similarly with any other s-
tandard, element-wise separable sparsity-promoting penal-
ty function. The problem is that even if we achieve a per-
fect block-diagonal structure in some estimated P−1Ẑ, we
still are not guaranteed to arrive at the optimal segmenta-
tion after the final spectral clustering step. This is because
within each block there can exist latent disconnected com-
ponents such that intrinsic cluster memberships are falsely
estimated. More quantitatively, the affinity matrix defines
weighted edges between N nodes (data-points) as stated
previously. To guarantee the correct subspace segmentation
by spectral clustering, we require that within each block, al-
l points are fully connected, implying that there is a path
with non-zero edge weights between every node within
the block (Luxburg, 2007). The core issue regarding SS-
C is that, although sparsity (or all zero-valued elements of
Z) between blocks is desirable, the lack of sparsity within
blocks can potentially disrupt spectral clustering as pointed
out in (Elhamifar & Vidal, 2013).

Low Rank Representations (LRR): Although practically
successful, from a high-level conceptual standpoint LRR
suffers in the sense that low-rank solutions are often prov-
ably ineffectual. For example, consider the scenario where
M , dim[

⊕K
k=1 Sk] > D, meaning that the direct sum

of all subspaces is greater than the ambient dimension. As-
suming sufficient sampling in each subspace, this implies
that rank[X] = D, or full row rank. Then the optimal so-

lution to the LRR problem

min
Z

rank[Z] s.t. X = XZ (5)

will typically not (even approximately) produce a block di-
agonal P−1Z∗. In fact, we can always find some optimal
Z∗ with rank[Z∗] = D. However, any feasible block-
diagonal solution Z ′ aligning with the true clusters must
satisfy rank[Z ′] ≥ M > D, and hence cannot be opti-
mal. Therefore, solving (5) will not lead to a useful re-
sult. In practice however, LRR algorithms typically relax
rank[Z] to ∥Z∥∗. It can be shown that the resulting optimal
closed-form solution then becomes Z∗ = V V ⊤, where
UΣV ⊤ is the abbreviated svd of X (Liu et al., 2013).
Interestingly, this is likewise the optimal solution to (5)
when ∥Z∥F is used instead.3 Given that the Frobenius
norm is well known to encourage non-sparse solutions, we
may expect that either selection will lead to undesirable,
strong off-block-diagonal elements in P−1Z∗. There are
of course several modifications of the LRR paradigm, in-
cluding the inclusion of non-convex surrogate rank func-
tions (Babacan et al., 2012), but they possess similar limi-
tations, and closer approximations to the rank function may
actually perform worse. Overall, while the ℓ0 norm repre-
sents a viable, if not directly-computable target for SSC,
the rank function does not occupy a similar role with LRR.

Other Regularization Methods: Although the selection
f(Z) = ∥Z∥2F =

∑
j ∥zj∥22 does not produce block-

sparsity as discussed above, it does nonetheless exploit a
grouping effect that can act as a significant advantage over
SSC. In brief, the ℓ2 norm tends to assign similar values to
coefficients associated with correlated columns of a design
matrix (in this case X). Therefore, assuming some degree
of correlation between the columns of each Xk, we may
expect that coefficients associated with the same subspace
are likely to share significant, nonzero magnitudes (at least
to the extent that intra-subspace correlations are apprecia-
ble), leading to full intra-subspace connections on the as-
sociated graph as desired. To the extent which this dense
representation within blocks can outweigh the lack of s-
parsity outside of blocks, this so-called least squares rep-
resenation (LSR) method can potentially outperform SSC
(equivalently for LRR in the noiseless case).

To directly address the trade-off between the grouping ef-
fect and block sparsity, it has been proposed (Lu et al.,
2013) to replace the objective in (4) with

f(Z) =
∑
j

∥zj∥TL, ∥z∥TL , ∥Xdiag[z]∥∗. (6)

Here ∥ · ∥TL denotes the Trace Lasso norm which, roughly
speaking, interpolates between the ℓ1 and ℓ2 norms depend-

3Note however that this equivalence no longer holds once we
relax to the equality constraint and allow for differentiating error
penalties.
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ing on the correlation structure of X (Grave et al., 2011).
If X has highly correlated columns, the Trace Lasso nor-
m behaves like the ℓ2 norm, while for nearly uncorrelat-
ed columns it is similar to ℓ1. In the context of subspace
clustering, it is argued that this refined penalization then
can hopefully support both the grouping effect and block
sparse structure, assuming points within the same subspace
are more correlated than others.

The resulting algorithm, called correlation-adaptive sub-
space segmentation (CASS) unfortunately has a few linger-
ing problems. First, unlike all of the algorithms described
above, CASS is extremely sensitive to transformations of
the data. In particular, if X → QX for an arbitrary in-
vertible matrix Q, then the feasible set QX = QXZ is
unchanged, and so any optimization problem of the for-
m of (2) is unchanged provided that f is independent of
X . However, when f is given by (6), the effective penal-
ty function will change substantially as Q is varied. A
second related issue with CASS is that in many impor-
tant problem domains the latent subspaces are all highly
correlated due to the intrinsic geometry of the underlying
applications, e.g., face clustering and motion segmentation
(Elhamifar & Vidal, 2013). In this regime, CASS behaves
very much like LSR as the Trace Lasso converges to nearly
the ℓ2 norm across all columns of X .

Lastly, we close this section with one additional algorith-
m that implicitly attempts to enforce both block-sparsity
and the grouping effect simultaneously (Feng et al., 2014).
This procedure is presented as a modified form of either
LRR or SSC; in both cases an additional non-convex con-
straint is applied enforcing the resulting affinity matrix A
to have exactly K connected components (this disallows
disconnected components within a subspace block). While
this proposal is interesting, unlike all of the methods de-
scribed above, it requires explicit prior knowledge of the
cluster number K, and moreover, the provided code also
assumes that Dk = C for some constant C (all subspaces
have the same dimension), and that this C be provided to
the algorithm as well. Additionally, if X does not satisfy
some RIP-like conditions, which arguably will not hold for
subspace segmentation, the resulting algorithm is not even
guaranteed to reduce the underlying cost function at each
iteration.

3. Multi-Task Learning for Subspace
Segmentation

Subspace clustering algorithms and analysis have largely
been driven by the compressive sensing and signal process-
ing communities, as well as certain computer vision appli-
cations. However, while not previously explored in this
context, the gist of subspace segmentation, and the search
for dense block-diagonal structure in the relevant affinity

matrix, can be viewed as a multi-task learning (MTL) prob-
lem, treating each data point xj as an individual task.

Motivating Principles for MLT: Define X̄j as X with the
j-th column set to zero; this modification effectively allows
us to remove the constraint diag[Z] = 0 defined previously
for SSC (assuming any penalty that favors zero). Then for
each xj we first consider the following task-specific opti-
mization problem

min
zj

g(zj) s.t. xj = X̄jzj . (7)

Current SSC algorithms (as well as LSR and CASS) al-
l decompose into (7) for each task xj , and the solutions
are computed completely independently of one another and
then later merged together to form A. However, for tasks
associated with the same subspace, solutions to (7) should
ideally be very similar. More concretely, if xj and xj′ are
both from Sk, then we prefer that they both rely primarily
on columns from Xk for their respective block-sparse rep-
resentations. While we do not a priori know which tasks
should be clustered, we can however exploit the existence
of some underlying clustering, and it is here that MTL be-
comes especially relevant. In fact, as we will demonstrate
shortly, MTL can jointly serve two distinct purposes.

1. By jointly estimating task representations zj , MTL
can increase the chances that ideal block-sparse rep-
resentations are found (no tasks from different sub-
spaces are connected on the graph).

2. MTL can help to ensure that within a block all tasks
are fully connected, facilitating the final spectral clus-
tering step (dense representations within blocks).

We then motivate MTL as follows. Suppose we somehow
knew the number of clusters K. Then let the set {Ωk}Kk=1,
with each Ωk ⊂ {1, . . . , N}, denote a partitioning such
that

∪K
k=1 Ωk = {1, . . . , N} and Ωk∩Ωk′ = ∅ for all pairs

{k, k′}. Also let ZΩk
represent the columns of Z indexed

by Ωk. Now consider the joint optimization over all tasks

min
Z,{Ωk}

∑
k

h(ZΩk
) s.t. X = XZ, diag[Z] = 0, (8)

where the function h returns the number of nonzero rows
in Zk (a row-wise generalization of the ℓ0 norm) and the
set {Ωk} is optimized over all possible index partitions
per the above description. Under very minor condition-
s (the generic subspace model as defined in the next sec-
tion), it can be shown that the resulting optimal solution Z∗

and associated partition {Ω∗
k} will be such that, for all k,

h(Z∗
Ω∗

k
) = Dk + 1, with all nonzero rows aligned with the

respective columns of Xk. Moreover, all Nk indices with-
in each Ω∗

k are connected in the resulting affinity matrix.4

4This occurs because a minimum of Dk points are needed to
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The above is sufficient to guarantee that spectral cluster-
ing using the resulting A will produce the correct subspace
segmentation (Luxburg, 2007).

Although solving (8) is NP-hard, and K is typically not
known, a Bayesian MTL algorithm based on Dirichlet pro-
cess priors (DP) has previously been designed to accom-
plish something related, albeit in a more general context
(Qi et al., 2008). The advantage of this procedure, when
adapted to the subspace segmentation problem structure,
is that the DP prior putatively allows the algorithm to im-
plicitly learn the value of K. The downside though is that
the model is justified purely based on the validity of a pre-
sumed hierarchical probabilistic structure and the qualita-
tive effectiveness of subsequent variational mean-field ap-
proximations required for inference purposes. Consequent-
ly, while high-level motivating principles may be similar,
the actual connection to (8) remains tenuous.

Approximation for Subspace Segmentation: In the con-
text of generic compressive sensing, we have previous-
ly demonstrated that the DP-based algorithm from above
can be recast using alternative variational techniques into
a much simpler form that is both considerably more trans-
parent and amenable to analysis (Wang et al., 2015). Ulti-
mately this reformulation will allow us to reveal a deeper
connection with (8) and lead to a principled algorithmic
adaptation specialized to subspace segmentation problems.

This revised model begins with a Gaussian likelihood

p(X|Z) ∝
∏
j

exp

[
− 1

2ν

∥∥xj − X̄jzj

∥∥2
2

]
. (9)

Here we will assume that the noise variance ν is known (al-
though it can be learned as well). For the prior distribution
on Z we build upon the basic sparse Bayesian learning (S-
BL) framework from (Tipping, 2001), which in the present
circumstances would involve a zero-mean Gaussian with
an independent diagonal covariance for each column zj ;
however, this would not allow for task clustering. Instead
we assume the prior distribution

p(Z|Λ,W ) ∝
∏
j

exp

[
−1

2
z⊤
j Γ

−1
j zj

]
, (10)

where Λ ∈ RN×N and W ∈ RN×N are hyperparame-
ter matrices; Λ is constrained to have all non-negative ele-
ments, W ∈ Ω is defined such that each column wj is an
element of the probability simplex, i.e.,

Ω , {wj :
∑
i

wij = 1, wij ∈ [0, 1]}. (11)

span a given Dk-dimensional subspace, but we require one addi-
tional coefficient such that we can honor the diag[Zk] = 0 con-
straint. All points will then necessarily be connected because each
must be linked to Dk of these Dk + 1 points.

With some abuse of notation, we say that W ∈ Ω if every
column wj ∈ Ω. Finally, Γj is the diagonal covariance
matrix produced via

Γ−1
j =

∑
i

wijΛ
−1
i , (12)

where Λi is defined as a diagonal matrix formed from the
i-th column of matrix Λ. Although the unknown zj from
each task are assumed to be independent via the above dis-
tributions, they are nonetheless linked via the common set
of hyperparameters that will subsequently be learning from
the data in a multi-task fashion. Additionally, from (12) we
are expressing the j-th precision matrix as a linear com-
bination of N diagonal precision matrix basis functions.
This precision-based representation is chosen for algorith-
mic reasons.

Given this likelihood and prior, the posterior distribution
p(zj |xj ;Λ,W ) is also a Gaussian with mean

ẑj = ΓjX̄
⊤
j

(
νI + X̄jΓjX̄

⊤
j

)−1

xj . (13)

Thus if Λ and W were known, we have access to a sim-
ple closed-form estimator for zj . The most challenging
responsibility then becomes estimating these unknown hy-
perparameters. The empirical Bayesian solution to this
problem is to first apply hyperpriors to Λ and W , integrate
out the unknown X , and then compute MAP estimates via

max
Λ>0,W∈Ω

∫
p(X|Z)p(Z|Λ,W )p(Λ)p(W )dZ. (14)

For the covariance bases we simply assume a flat hyperior
p(Λ) = 1; for W we assume p(W ) ∝ exp[−1/2ρ(W )],
where ρ is a function (finite everywhere within the feasi-
ble set) designed to promote a clustering effect as will be
described later. Given the above, applying a −2 log trans-
formation to (14) produces the equivalent problem

min
Λ>0,W∈Ω

∑
j

[
xjΣ

−1
xj

xj + log
∣∣Σxj

∣∣]+ ρ(W ), (15)

where
Σxj , νI + X̄jΓjX̄

⊤
j .

To facilitate later optimization, a convenient approximation
to (15) can be formed using convex analysis and Jensen’s
inequality (Wang et al., 2015), leading to the multi-task ob-
jective function

L(Λ,W ) ,
∑
j

[
xjΣ

−1
xj

xj

]
+ ρ(W ) (16)

+
∑
j

log

∣∣∣∣∣∑
i

wijΛ
−1
i +

1

ν
X̄⊤

j X̄j

∣∣∣∣∣+∑
ij

wij log |Λi|

that we will henceforth seek to optimize. This can be ac-
complished using standard variational bounding techniques
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from (Wipf et al., 2011), with update rules contained in the
supplementary file. Close inspection reveals a strong re-
lationship with the updates from (Qi et al., 2008), the pri-
mary difference being how the parameter W is iterated. A
significant advantage here is that (16), unlike the DP model,
represents a closed-form cost function devoid of integrals
and amenable to analysis in the domain of subspace seg-
mentation. We henceforth refer to this paradigm as multi-
task subspace clustering (MTSC).

4. Analysis
We now describe some analytical properties of MTSC that
serve as justification for its application to subspace seg-
mentation. Consistent with (2), we consider the limit as
ν → 0. First we address the idealized scenario where the
set {Sk}Kk=1 contains independent subspaces. In this spe-
cial case, existing convex methods (e.g., SSC, LSR, LR-
R) have been previously shown to provide the ideal block-
diagonal affinity matrix when globally optimized. Howev-
er, MTSC involves a comparably complex non-convex ob-
jective. Fortunately though, it effectively still satisfies an
identical criterion at any stationary point of L(Λ,W ).
Definition 1 (Ideal Block-Sparse Solution). Without loss of
generality, assume that xj ∈ Sk for some k. We say that zj

is an ideal block sparse solution if, (i) xj = X̄jzj (feasi-
bility), and (ii) the support of zj is restricted to some subset
of indices corresponding with columns of Xk, i.e., zj has
no nonzero values multiplying columns of X in subspaces
outside of k.
Lemma 1. Let columns of X be drawn from a union of K
independent subspaces. Moreover, assume that the number
of samples from each subspace Nk is sufficiently large and
positioned such that for all xj there exists an ideal block
sparse solution. Then in the limit ν → 0, any stationary
point {Λ∗,W ∗} of L(Λ,W ) will produce an estimate z∗

j

via (13) that is also an ideal block sparse feasible solution
for all j = 1, . . . , N .

Proof of the above is confined to the supplementary file.
While the assumption of independent subspaces is some-
what restrictive, Lemma 1 nonetheless reassures us that at
least MTSC is equally robust relative to convex algorithms
in this regard, even though the former presumably possess-
es multiple local solutions. But to elucidate the real advan-
tage of MTSC, we must consider a much more challenging
and general model underlying our data set X .
Definition 2 (Generic Subspace Model). Let Sk =
span[BSk

+αRSk
], where BSk

is any D×Dk matrix with
D > Dk, RSk

is any random matrix with iid, continuously
distributed elements, and α > 0 is arbitrarily small. Addi-
tionally, assume that Xk = Bk + αRk, where Bk is any
D×Nk matrix with columns in Sk, and Rk has iid column-
s, each of which is drawn from any continuous distribution

in Sk such that Rk is full rank with probability one. We
say that any data X = [X1, . . . ,XK ]P produced by this
process follows the generic subspace model.

While admittedly cumbersome to present, this model es-
sentially encapsulates all practical situations and data X of
interest, and the small random components are only includ-
ed as a technical necessity to avoid inconsequential adver-
sarial co-linearities.

Lemma 2. Suppose that X follows the generic subspace
model and that Nk > Dk for all k. Moreover, assume
that ρ(W ) = β∥W ∥2F , with β > 0. Then in the limit
ν → 0, there exists a β sufficiently large such that any
global optimum {Λ∗,W ∗} of L(Λ,W ) will be such that
the corresponding z∗

j (computed via (13)) is an ideal block
sparse solution for all j with probability one. Additionally,
all points xj which belong to the same subspace will be
connected in the corresponding affinity matrix computed
via (3).

This result is interesting in that, provided β is large enough,
MTSC naturally achieves what (8) ideally promotes, a
globally minimizing solution which guarantees the correct
final segmentation of the data. Moreover, unlike (8) MTSC
manages this even without knowledge of K. The caveat of
course is that we must avoid getting stuck in a suboptimal
local minima. But there are certain indications that mini-
mization of L(Λ,W ) is particularly well-suited for avoid-
ing such adversarial extrema.

One such line of reasoning proceeds by considering the
special case where ρ(W ) = 0. Here it can be shown
that the MTSC model collapses to the SBL objective from
(Tipping, 2001) with decoupled tasks. In the context of
solving (7), SBL has been shown to be equivalent to adapt-
ing a particular dictionary-dependent penalty function for
g(zj) that compensates for dictionary coherence and yet
unlike CASS, is still invariant to transformations of the
data via QX (Wipf, 2011). In our own experiments we
found that SBL was adept at finding considerably sparser
solutions than the ℓ1 norm used by SSC; however, in some
sense these solutions were actually too sparse and occa-
sionally led to relatively poor final spectral clustering re-
sults even though the block-sparsity profile was nearly per-
fect (note that SBL provably does not satisfy Lemma 2). In
this respect, MTSC can be interpreted as coupling desirable
local sparsity properties of SBL in an integrated framework
with an eye towards the final clustering fidelity.

Affine Subspace Segmentation: The generalization to
clustering affine subspaces also motivates the utility of
SBL-related estimators over standard convex alternatives.
Let T , [T 1, . . . ,TK ]P ∈ RD×N , where T k = tk1

⊤
Nk

,
tk ∈ RD is arbitrary, and 1Nk

denotes a length Nk vector
of ones. Here each tk can be interpreted as a translation
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(a) ℓ2 error as n varies
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(b) ℓ2 error as d varies
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(c) ℓ2 error as K varies
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(d) Segmentation error as n varies
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(e) Segmentation error as d varies
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(f) Segmentation error as K varies

Figure 1. ℓ2 and segmentation error comparisons for different algorithms.

vector which will be applied to every element of the k-th
subspace, with rank[T ] ≤ K. Additionally, let Φ denote a
non-negative, N × N diagonal matrix. Now consider any
collection of N points X that follow the linear subspace
model (1) with unit norm columns (i.e., ∥xj∥2 = 1), and
then form the modified data

Y = XΦ+ T . (17)

The new data Y represent an arrangement of points in K
affine subspaces, with points within each subspace having
arbitrary scalings. The standard SSC adaptation to this case
requires solving

min
zj

∥zj∥1 s.t. yj = Y zj , zij = 0,
∑
i

zij = 1, (18)

for all j, where the additional constraint leads to a form
of translation invariance accounting for the affine subspace
(Elhamifar & Vidal, 2013).5 However, it is well-known
that if the columns of the associated dictionary (in this case
columns of Y ) are not normalized, then the minimal ℓ1 nor-
m solution will be heavily biased. Simply put, the result-
ing nonzero coefficients will tend to align with the large
dictionary columns even at the expense of finding max-
imally sparse solutions confined to the desired subspace.
For present purposes this implies that coefficients from the

5MTSC can be trivially modified to account for this additional
constraint as well.

wrong subspace may be selected at the expense of cluster-
ing accuracy.

One potential solution would be to explicitly normalize the
columns of Y . But this comes with a substantial cost be-
cause the normalization may be dominated by the low-rank
translation component T rather than the magnitude scaling
matrix M . For example, if some translation tk is large, the
corresponding norms of all data points yj in this subspace
will be rescaled with roughly the same normalization fac-
tor even if these points have wildly different distances from
tk. Fortunately SBL is naturally robust against such trans-
formations (Wipf, 2011), and MTSC inherits many related
attributes.

5. Experiments
In this section we present empirical results designed to
highlight the utility of MTSC. For this purpose we compare
with a suite of recent competing algorithms implementing
SSC (Elhamifar & Vidal, 2013), LRR (Liu et al., 2013), L-
SR (Lu et al., 2012), and CASS (Lu et al., 2013), in each
case using the authors’ original code.

Simulated Data: We first describe simulation experiments
that allow us to bypass the effects of noise and outliers to
focus on intrinsic differences in the baseline algorithms. In
this restricted setting, LSR and LRR are equivalent for rea-
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sons stated previously. We generate K disjoint subspaces,
each with Dk = d dimensions embedded with uniformaly
random angles in RD. Within each subspace, we draw
Nk = n points from an iid Gaussian distribution, which
are then projected to the ambient space. Results are com-
bined to form X , and each algorithm is applied to learn an
affinity matrix A followed by the standard spectral cluster-
ing step to obtain the final segmentation.

Performance is evaluated via two metrics. First, to isolate
each algorithm’s ability to obtain the correct block-wise
structure, we evaluate the estimated Ẑ provided by each
algorithm before spectral clustering via

ℓ2 error , 1/N
N∑
j=1

(
1− ∥ẑ′

j∥2/∥ẑj∥2
)
, (19)

where ẑ′
j denotes the elements of ẑj associated with points

in the same cluster as xj . This metric provides an esti-
mate of the proportion of signal energy that is not along
the correct block diagonal of Ẑ. Secondly, we compute
the final segmentation error (SE) after spectral clustering,
which represents the proportion of points that have been as-
signed to the wrong subspace. For all simulations, D = 26.
In Figure 1, the left column displays results as n is varied
with d = 13 and K = 4 fixed. The middle column then
shows results as d is varied while n = 16 and K = 4 are
fixed. Finally, the right column varies K while d = 11 and
n = 16 are fixed. In all cases, results were averaged over
100 independent trials for each curve, and MTSC shows a
significant advantage.

Motion Segmentation Data: We next present e-
valuations using the Hopkins 155 Motion Database
(Elhamifar & Vidal, 2013). We chose this data because
it is a standard benchmark and mostly free of outlier-
s, and therefore avoids the influence of outlier removal
layers which must be specially tuned for each algorithm.
The Hopkins data consists of 155 video sequences. Ev-
ery sequence produces a data matrix X , each column of
which represents a two-dimensional feature point tracked
throughout the video. These feature points correspond with
objects moving in the scene which we would like to seg-
ment. Of the 155 videos, 120 contain two motions while
the remaining contain three. We evaluate the performance
of the chosen algorithms, using the noise models provided
in the original code and tuning parameters adjusted from
default settings.

Table 1 shows the results using the ℓ2 error metric averaged
across sequences, while Tables 2 and 3 display the cor-
responding segmentation errors, where again MTSC pro-
vides a distinct advantage. Note that existing methods all
include some form of post-processing step, either direct-
ly in published work or embedded in the code itself. This
is typically designed to remove artifacts from the affinity
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Figure 2. Ẑ estimated from motion segmentation data using
MTSC and SSC.

Table 1. ℓ2 error (× 100) for 2 and 3 motion data
Algo. SSC CASS LRR LSR MTSC

2 Motion 1.60 18.06 24.88 23.27 1.38
3 Motion 3.04 26.23 31.8 30.07 1.60

Table 2. Segmentation error (× 100) for 2 motion data
Algo. SSC CASS LRR LSR MTSC
Mean 1.92 3.30 3.63 3.14 1.60
Med. 0 0 0.21 0.2 0
Stdv. 7.1 7.7 8.77 8.06 5.48

Table 3. Segmentation error (× 100) for 3 motion data
Algo. SSC CASS LRR LSR MTSC
Mean 7.15 9.22 7.56 6.53 3.80
Med. 0.69 3.58 3.99 2.56 0.67
Stdv. 13.67 11.27 11.92 8.54 8.66

matrix and likely explains some of the wide variance in
reported results coming from ostensibly equivalent algo-
rithms. Because our purpose here is to explore subspace
segmentation algorithms, not solve a particular application
per se with domain-specific augmentations, in all cases we
disabled postprocessing to place each method on an equal
footing and avoid reliance on unknown quantities such as d
(e.g., this value is frequently used for thresholding A as a
postprocessing step).

Finally, Figure 2 illustrates the ability of MTSC to both
find a representation devoid of energy outside of the de-
sired block structure, and yet with high connectivity within
each block by virtue of the observed row-sparsity structure.
Note that ordinary SBL often displays a similar degree of
overall sparsity as MTSC (not shown), but lacks the req-
uisite intra-block connections that lead to an accurate final
segmentation.

6. Conclusions
Our work is the first to connect MTL to the important prob-
lem of subspace segmentation. This observation then lead-
s to a principled retrofitting of an existing MTL pipeline
that is both theoretically accessible and empirically useful.
In particular, our approach compensates for intrinsic limi-
tations of traditional convex penalty functions, navigating
highly coherent data sets X towards robust affinity-matrix
formation, even without postprocessing steps.
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