SURFICIAL GEOLOGY of MATTHIESSEN STATE PARK, LASALLE COUNTY, ILLINOIS, USA

Steven D.J. Baumann and Liz Michaels

2009

The companion publication to this map is "Geology of the Matthiessen State Park Area". Publication # G-112009-1A

Midwest Institute of Geosciences and Engineering Steven D.J. Baumann, Executive Director

200	F ST	SPA SOL	y UNIT
Н	olocene	м	Human alt
		Qc	Cahokia Fo
ene	Calabrian	Qp	Peoria Silt
Pleistoc		Qe	Equality Fo
		Qly	Lemont Fo
	Kasimovian	Pb	Bond Form
	Moscovian	Рр	Patoka Fo
		Ps	Shelburn F
an		Pcv	Carbondal
	Bashkiran	Рс	Carbondal
		Pt	Tradewate
		Pf	Fill (Undiv
ate	Caradocian	Ор	Platteville
		Ogl	Glenwood
Middle	Llaneilian	Osp	Saint Pete
n the 199	9 Geologic Time Sca	ale	

DESCRIPTION

uman altered land: Mostly quarries, road fill, and earthen dams.

ahokia Formation: Modern stream deposits. Black and gray, organic clays, silts, gavels, and sands in a laminated to braided structure.

eoria Silt: Wind blown and beach deposits. Pale yellow brown, fine sands and silts.

quality Formation: Lake deposits. Gray to dark gray, laminated, clays silts, and fine sands.

emont Formation, Yorkville Member: Diamicton (Till). Gray to pale brown, massive, sandy to silty loam with exotic erratics.

ond Formation: Delta and shallow marine deposits. Greenish gray to gray, clays, minor limestones, siltstones, and minor coals.

atoka Formation: Delta and shallow marine deposits. Greenish gray to gray, clays, siltstones, some sandstones, and minor coals.

helburn Formation: Delta and stream deposits. Greenish gray to gray, clays, limestones, siltstones, some sandstones, and some coals.

arbondale Formation, Vermillion Sandstone Member: Beach and stream deposits. Gray to light brown, cross bedded, micaceous, fine to medium sandstone.

arbondale Formation: Delta, shallow marine, and stream deposits. Greenish gray to gray, clays, siltstones, limestones, sandstones, minor conglomerates, and abundant coals. radewater Formation: Delta, shallow marine, beach, and stream deposits. Greenish gray to gray, clays, limestones, siltstones, sandstones, and coals.

(Undivided): Stream and valley deposits. Gray to dark gray, calcareous, argillaceous, conglomeratic, sandstone, with mica.

latteville Group: Marine carbonate deposits. Gray mottled pink and yellow orange, micritic to coarse crystalline, fossiliferous, limestones and dolostones.

lenwood Formation: Stream and valley deposits. Gray mottled orange and red, sandy dolostone, slightly conglomeratic.

aint Peter Formation: Near shore, barrier island, and beach deposits. White to yellow brown, well sorted, sometimes cross bedded medium to coarse grained sandstone. Basal red and green, sandy, cherty, conglomerate (Readstown Member).

Formation Thicknesses

SITE LOCATION MAP

nit	<u>Range</u>	<u>Average</u>	<u>Unit</u>	<u>Range</u>	<u>Average</u>	<u>Unit</u>	<u>Range</u>	<u>Average</u>
M =	0 to 150 feet	15 feet	Pb =	0 to 180 feet	120 feet	Op =	0 to 80 feet	24 feet
2c =	0 to 25 feet	7 feet	Pp =	0 to 120 feet	95 feet	Ogl =	0 to 9 feet	4 feet
)p =	0 to 10 feet	6 feet	Ps =	0 to 210 feet	121 feet	Osp =	150 to 200 feet	180 feet
2e =	0 to 15 feet	11 feet	Pvc =	0 to 30 feet	21 feet			
2ly =	0 to 85 feet	67 feet	Pc =	0 to 290 feet	189 feet			
			Pt =	0 to 190 feet	79 feet			
			Pf =	0 to 10 feet	5 feet			

Geologic Map Symbols

= Geologic Contact

= Water Well Location and API Number (Last 5 digits) o⁵⁶²⁰⁰ = Normal Fault (D indicates downthrown side) = Strike and Dip (Number indicates degrees and direction of true dip) = Front of Monocline (Arrows are in direction of dip) **Topographic Map Symbols 178** = State Route = Paved Road ======= = Unpaved Road $- \cdot - \cdot - \cdot - =$ Park Border = Topographic Contour ΜN GN = Water 1/2° 1°22′ 9 MILS 24 MILS UTM Grid and 1993 Magnetic North Declination at Center of Sheet

SCALE = 1:12 000

1/8 1/4	1/2		1 Mile	<u>.</u>		1 MILE	
	0	1000	2000	3000	4000	5000 FEET	

Contour Interval = 10 feet

Topographic map produced by the United States Geological Survey (USGS). Control by USGS and NOS/NOAA. Topography by photogrammetric methods from aerial photographs taken in 1965 and field checked in 1966. Revised from aerial photographs taken in 1988 and field checked in 1992. Map edited in 1993. 1927 North American Datum (NAD 1927).