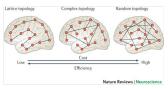
On the Trade-off Between Controllability and Robustness in Networks of Diffusively Coupled Agents

W. Abbas¹, M. Shabbir¹, A. Y. Yazıcıoğlu², and A. Akber¹

¹Information Technology University, Lahore, Pakistan ²University of Minnesota, Minneapolis, MN, USA

Networked Systems are Everywhere



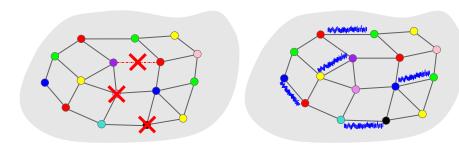
Natural systems

Engineered systems

Controllability

Robustness

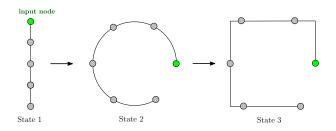
Network Robustness – Informal View



Robustness:

- Structural ability to retain 'structural attributes' in case of node/ link removals.
- Functional ability to perform 'normally' even in the presence of noise.

Network Controllability - Informal View



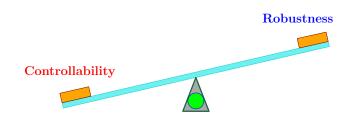
Controllability: Ability to drive the network from a given sate to a desired state by directly manipulating few nodes (external inputs).

Controllability vs Robustness Problem

What are the trade-offs between controllability and robustness in networked dynamical systems?

For a given 'network parameters', we are interested in

- maximally controllable networks and their robustness? as well as
- maximally robust networks and their controllability?

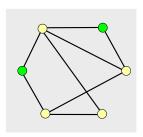


Controllability vs Robustness Problem

What are the trade-offs between <u>controllability</u> and <u>robustness</u> in networked dynamical systems?

Lets set up the problem formally.

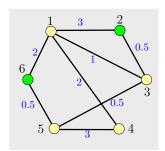
- What dynamical networks do we consider?
- How do we measure controllability?
- How do we measure robustness?



Network Dynamics

We consider networks of diffusively coupled agents.

$$\dot{x}_i = \sum_{j \in \mathcal{N}_i} w_{ij} (x_j - x_i)$$
 (Normal)
$$\dot{x}_\ell = \sum_{j \in \mathcal{N}_i} w_{ij} (x_j - x_i) + \underline{u}_\ell$$
 (Leaders)

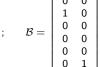


$$\dot{x} = -\mathcal{L}_{w}x + \mathcal{B}u$$

 \mathcal{L}_{w} : weighted graph Laplacian.

 \mathcal{B} : Input matrix.

$$\mathcal{L}_{w} = \begin{bmatrix} 8 & -3 & -1 & -2 & 0 & -2 \\ -3 & 3.5 & -0.5 & 0 & 0 & 0 \\ -1 & -0.5 & 2 & 0 & -0.5 & 0 \\ -2 & 0 & 0 & 5 & -3 & 0 \\ 0 & 0 & -0.5 & -3 & 4 & -0.5 \\ -2 & 0 & 0 & 0 & -0.5 & 2.5 \end{bmatrix}; \quad \mathcal{B} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 &$$

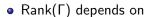


Measuring Control Performance – Strong Structural Controllability

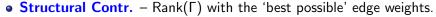
A system is **completely controllable** if there exists an input to drive the system from arbitrary x_{ini} to arbitrary x_{fin} .

 For complete controllability, Γ needs to be full rank

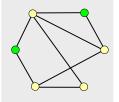
$$\Gamma = \left[\begin{array}{cccc} \mathcal{B} & -\mathcal{L}_w \mathcal{B} & (-\mathcal{L}_w)^2 \mathcal{B} & \cdots & (-\mathcal{L}_w)^{n-1} \mathcal{B} \end{array}\right]$$



- \mathcal{L}_w (edge set and edge weights)
- B (choice of leaders)



• Strong Structural Contr. – Rank(Γ) with the 'worst' edge weights.



Measuring Control Performance – Strong Structural Controllability

- Strong structural controllability is a stronger and a more general notion of controllability.
- Our measure of controllability is

Minimum number of leaders needed to make the network strong structurally controllable, that is, Γ is full rank with any edge weights.

Measuring Robustness – Kirchhoff Index of Graph

Kirchhoff Index: $K_f = N \sum_i \frac{1}{\lambda_i}$ where, λ_i 's are the non-zero eigen values of the (weighted) graph Laplacian.

K_f measures **functional** robust. (expected steady-state dispersion under white noise)

 K_f measures **structural** robust. (number and quality of paths between nodes)

Controllability vs Robustness Trade-offs

Lets summarize our setup so far.

Dynamical system:

$$\dot{x} = -\mathcal{L}_{w}x + \mathcal{B}u$$

Controllability measure:

Minimum leasers for strong structural controllability

Robustness measure

$$K_f = N \sum_i \frac{1}{\lambda_i}$$

Objective:

Find extremal networks for these properties for some fixed 'network parameters'.

We consider,

- N − number of nodes
- D diameter of network

Contributions

Extremal Networks

For any N and D,

- Which graphs are maximally robust? What is their controllability performance?
- Which graphs are maximally controllable? What is their robustness?

Strong Structural Controllability Analysis

A graph-theoretic characterization of strong structural controllability in networked systems.

Strong Structural Controllability – A Graph Theoretic View

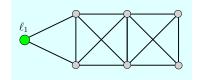
A tight lower bound on the rank of strong structural controllability based on distances between leaders and followers.

Single Leader Case

If ℓ is the leader node, then

$$\left[\max_{\mathbf{v}}\left(\mathsf{dist.}(\ell,\mathbf{v})\right)+1
ight] \ \leq \ \mathsf{Rank}(\Gamma)$$

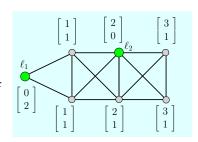
- The above bound is sharp.
- With a single leader, Rank(Γ)
 can always be at least the
 (diameter + 1) of the network.



Strong Structural Controllability – A Graph Theoretic View

Multiple Leader Case -

- First, we define distance-to-leader vector for each node.
- Next, we define a particular sequence of distance-to-leader vectors.



$$\mathcal{S}_{A} = \left[\begin{array}{c} \left[\begin{array}{c} \textcircled{0} \\ 2 \end{array} \right], \quad \left[\begin{array}{c} 2 \\ \textcircled{0} \end{array} \right], \quad \left[\begin{array}{c} \textcircled{1} \\ 1 \end{array} \right], \quad \left[\begin{array}{c} 2 \\ 1 \end{array} \right], \quad \left[\begin{array}{c} 3 \\ \textcircled{1} \end{array} \right] \end{array} \right] \quad \underline{\text{valid}}$$

$$\mathcal{S}_B = \left[\begin{array}{c} \left[\begin{array}{c} 0 \\ 2 \end{array} \right], \quad \left[\begin{array}{c} 3 \\ 1 \end{array} \right], \quad \left[\begin{array}{c} 2 \\ 0 \end{array} \right] \end{array} \right] \quad {\color{red} not \ valid}$$

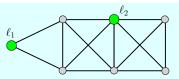
Strong Structural Controllability – A Graph Theoretic View

Multiple Leader Case (TAC 2016)

If γ is the length of the longest valid sequence of distance-to-leader vectors, then

$$\gamma \leq \mathsf{Rank}(\Gamma)$$

- The above bound is sharp.
- The longest valid sequence can be computed in $O(k(N \log k + N^k))$.
- A greedy heuristic which performs quite well can be implemented in $O(kN^2)$ time.



$$\mathcal{S} = \left[\begin{array}{ccc} \textcircled{0} & 2 & \textcircled{1} & 2 \\ 2 & \textcircled{0} & 1 & 1 \end{array}, \begin{array}{ccc} 3 & \end{array} \right]$$

 $\operatorname{Rank}\left(\Gamma\right) \geq 5$

Maximally Robust Graphs

Theorem¹ – For any N and D, let G be a graph (weighted or unweighted) with the maximum robustness (minimum K_f) among all graphs with N nodes and diameter D, then G is a clique-chain $\mathcal{G}_D(1, n_2, \dots, n_D, 1)$.

Clique Chains (*N* nodes and *D* diameter)

$$G_D(n_1, n_2, \dots, n_{D+1})$$
, where $\sum_{i=1}^{D+1} n_i = N$.

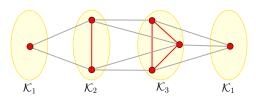


Figure: N = 7, D = 3, $G_3(1, 2, 3, 1)$.

¹W. Ellens, et al. "Effective graph resistance," Linear Algebra and its Applications, ≥2011. □ ✓

Controllability of Maximally Robust Graphs

Theorem – Let $\mathcal{G}_D(n_1, \dots, n_{D+1})$ be a clique chain with diameter D > 2, and k be the number of leaders needed for the complete strong structural controllability of \mathcal{G}_D , then

$$N-(D+1) \leq k \leq N-D. \tag{1}$$

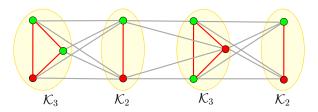


Figure: $\mathcal{G}_3(3,2,3,2)$. Green nodes are leaders (input nodes)

<u>Observation</u> – Maximally robust graphs require a large number of leaders, and hence, perform poorly from controllability perspective.

Maximally Controllable Graphs

- For arbitrary N and D, what do we mean by 'maximally controllable' graphs?
 - Graphs that require 'minimum number of leaders' for complete strong structural controllability.

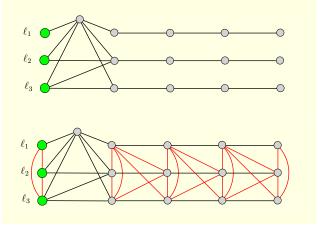
Theorem – For any N and D, there exists graphs that have complete strong structural controllability with k leaders, where

$$k \le \left\lceil \frac{N-1}{D} \right\rceil. \tag{2}$$

- The above bound is sharp, and we cannot do better than that.
- There could be multiple constructions satisfying the above condition.

Maximally Controllable Graphs

- We characterize a couple of such constructions.
- Consider N = 16, D = 5.
- Minimum leaders required k = 3.



Robustness of Maximally Controllable Graphs

Table: K_f of optimal clique chains and maximally controllable graphs \mathcal{M} .

N	D	k	$K_f(\mathcal{G}_D^*)$	$K_f(\mathcal{M})$
	2	13	25.08	35.05
	3	9	28.22	49.36
26	4	7	37.63	66.08
	5	5	51.90	107.18
	2	25	49.04	68.41
	3	17	52.11	95.40
50	4	13	64.03	126.22
	5	10	84.31	174.86
	2	50	99.02	137.77
	3	33	102.05	193.63
100	4	25	117.51	252.58
	5	20	148.11	322.26
	2	61	121.01	168.28
	3	41	124.04	231.81
122	4	31	140.68	300.42
	5	25	175.11	376.06

Observation:

Maximally controllable graphs are much less robust as compared to the maximally robust graphs (clique chains) with the same *N* and *D*.

Conclusions

- Networks that are maximally robust perform poorly from controllability perspective.
- Networks that are maximally controllable exhibit poor robustness.
- A graph-theoretic interpretation of network controllability is crucial in understanding the trade-offs and relationship between network controllability and robustness.

Further Direction: What are the network operations/modifications that improve one property while minimally deteriorating the other one?

Thank You