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Abstract

Distributed multi-task learning provides significant advantages in multi-agent
networks with heterogeneous data sources where agents aim to learn distinct but
correlated models simultaneously. However, distributed algorithms for learning
relatedness among tasks are not resilient in the presence of Byzantine agents. In
this paper, we present an approach for Byzantine resilient distributed multi-task
learning. We propose an efficient online weight assignment rule by measuring
the accumulated loss using an agent’s data and its neighbors’ models. A small
accumulated loss indicates a large similarity between the two tasks. In order to
ensure the Byzantine resilience of the aggregation at a normal agent, we introduce
a step for filtering out larger losses. We analyze the approach for convex models
and show that normal agents converge resiliently towards their true targets. Further,
an agent’s learning performance using the proposed weight assignment rule is
guaranteed to be at least as good as in the non-cooperative case as measured by
the expected regret. Finally, we demonstrate the approach using three case studies,
including regression and classification problems, and show that our method exhibits
good empirical performance for non-convex models, such as convolutional neural
networks.

1 Introduction

Distributed machine learning models are gaining much attention recently as they improve the learning
capabilities of agents distributed within a network with no central entity or server. In a distributed
multi-agent system, agents interact with each other to improve their learning capabilities by leveraging
the shared information via exchanging either data or models. In particular, agents that do not have
enough data to build refined models or agents that have limited computational capabilities, benefit
most from such cooperation. Distributed learning also addresses the single point of failure problem
as well as scalability issues and is naturally suited to mobile phones, autonomous vehicles, drones,
healthcare, smart cities, and many other applications [1, 2, 3, 4].

In networks with heterogeneous data sources, it is natural to consider the multi-task learning (MTL)
framework, where agents aim to learn distinct but correlated models simultaneously [5]. Typically,
prior knowledge of the relationships among models is assumed in MTL. The relationships among
agents can be promoted via several methods, such as mean regularization, clustered regularization,
low-rank and sparse structures regularization [6, 7, 8]. However, in real-world applications, such
relationships are unknown beforehand and need to be estimated online from data. Learning similarities
among tasks to promote effective cooperation is a primary consideration in MTL. There has been
extensive work for learning the relationship matrix centrally by optimizing a global convex regularized
function [9, 10, 11]. In contrast, this paper focuses on computationally efficient distributed learning
of the relationship among agents that does not require optimizing a relationship matrix centrally
[12, 13, 14, 15].
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Although the distributed approach to learning and promoting similarities among neighbors from
online data has many advantages, it is not resilient to Byzantine agents. Fault-tolerance for MTL
is discussed in [5], focusing on dropped nodes that occasionally stop sending information to their
neighbors. In [16], the relationship promoted by measuring the quadratic distance between two
model parameters for distributed MTL is shown to be vulnerable to gradient-based attacks, and a
Byzantine resilient distributed MTL algorithm is proposed for regression problems to cope with such
attacks. The proposed algorithm relies on a user-defined parameter F to filter out information from F
neighbors in the aggregation step and is resilient to F Byzantine neighbors, but requires exponential
time with respect to the number of agents.

In this paper, we propose an online weight adjustment rule for MTL that is guaranteed to achieve
resilient distributed MTL for every normal agent using the rule. Compared to [16], the proposed
method is suited for both regression and classification problems, is resilient to an arbitrary number
of Byzantine agents (without the need to select a pre-defined parameter F bounding the number of
Byzantine agents), and has linear time complexity. To the best of our knowledge, this is the first
solution that aims to address the Byzantine resilient cooperation in distributed MTL networks via a
resilient similarity promoting method. We note that the proposed rule is not limited to the multi-task
setting but can also be used for general distributed machine learning and federated learning systems
to achieve resilient consensus. We list our contributions below.

• We propose an efficient Byzantine resilient online weight adjustment rule for distributed MTL.
We measure similarities among agents based on the accumulated loss of an agent’s data and the
models of its neighbors. In each iteration, a normal agent computes the weights assigned to its
neighbors in time that is linear in the size of its neighborhood and the dimension of the data.

• We show that using the proposed rule, normal agents with convex models converge resiliently
towards their true target with an improved learning performance compared to the non-cooperative
case as measured by the expected regret at convergence. Even when all the neighbors are Byzantine,
a normal agent can still resiliently converge to its true target with the same expected regret as
without any cooperation with other agents, achieving resilience to an arbitrary number of Byzantine
agents.

• We conduct three experiments for both regression and classification problems and demonstrate that
our approach yields good empirical performance for non-convex models, such as convolutional
neural networks.

2 Related Work

Multi-Task Learning. MTL deals with the problem of learning multiple related tasks simultaneously
to improve the generalization performance of the models learned by each task with the help of the
other auxiliary tasks [17, 18]. The extensive literature in MTL can be broadly categorized into
two categories based on how the data is collected. The centralized approach assumes the data is
collected beforehand at a centralized entity. Many successful MTL applications with deep networks,
such as in natural language processing and computer vision, fall into this category [19, 20, 21, 22].
This approach usually learns multiple objectives from a shared representation by sharing layers and
splitting architecture in the deep networks. On the other hand, the distributed approach assumes
data is collected separately by each task in a distributed manner. This approach is naturally suited to
model distributed learning in multi-agent systems such as mobile phones, autonomous vehicles, and
smart cities [2, 3, 4]. We focus on distributed MTL in this paper.

Relationship Learning in MTL. Although it is often assumed that a clustered, sparse, or low-
rank structure among tasks is known a priori [6, 7, 8], such information may not be available in
many real-world applications. Learning the relatedness among tasks online from data to promote
effective cooperation is a principle approach in MTL when the relationships among tasks are not
known a priori. There has been extensive work in online relationship learning that can be broadly
categorized into centralized and distributed methods. The first group assumes that a centralized
server collects the task models and utilizes a convex formulation of the regularized MTL optimization
problem over the relationship matrix, which is learned by solving the convex optimization problem
[9, 10, 11]. The second group relies on a distributed architecture in which agents learn relationships
with their neighbors based on the similarities of their models and accordingly adjust weights assigned
to neighbors [12, 13, 14, 15]. Typical similarity metrics, such as H divergence [23, 24, 25] and
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Wasserstein distance [25, 26], can be used in MTL in the same way they are used in domain adaptation,
transfer learning, and adversarial learning. However, such metrics are mainly designed for measuring
the divergence in data distributions and are not suitable for online relationship learning due to
efficiency and privacy concerns in data sharing.

Resilient Aggregation in Distributed ML. Inspired by the resilient consensus algorithms in multi-
agent networks [27, 28], various resilient aggregation rules have been adapted in distributed ML,
including the coordinate-wise trimmed mean [29], the coordinate-wise median [29, 30, 31], the
geometric median [32, 33], and the Krum algorithm [34]. However, studies have shown that these
rules are not resilient against certain attacks [35, 36, 37]. The centerpoint based aggregation rule
[38] has been proposed recently that guarantees resilient distributed learning to Byzantine attacks.
However, since each agent fits a distinct model in MTL, consensus-based resilient aggregation rules
are not directly applicable to MTL.

3 Distributed Multi-Task Learning

Notation. In this paper, |A| denotes the cardinality of a set A, ‖ · ‖ denotes the `2 norm, Tr(·) denotes
the trace of a matrix, and Eξ[·] denotes the expected value of a random variable ξ. If the context is
clear, E[·] is used.

Background. Consider a network of m agents1 modeled by an undirected graph G = (V, E), where
V represents agents and E represents interactions between agents. A bi-directional edge (l, k) ∈ E
means that agents k and l can exchange information with each other. Since each agent also has its own
information, we have (k, k) ∈ E ,∀k ∈ V . The neighborhood of k is the setNk = {l ∈ V|(l, k) ∈ E}.
Each agent k has data

{
(xik, y

i
k)
}

sampled randomly from the distribution generated by the random
variable ξk, where xik ∈ Rdx , yik ∈ Rdy . We consider a convex prediction function (model)
fk(xik) = θ>k x

i
k, where θk ∈ Rdx is the model parameter. We use `k(·) to denote a convex loss

function associated with the prediction function for agent k. MTL is concerned with fitting separate
models θk to the data for agent k via the expected risk function rk(θk) = E [`k(θk; ξk)]. Since rk(·)
is also convex, we use θ∗k to denote the global minimum (target) of rk(θk). The model parameters θk
can be optimized via the following problem:

min
Θ

{
m∑
k=1

rk(θk) + ηR(Θ,Ω)

}
, (1)

where Θ = [θ1, . . . , θm] ∈ Rd×m,R(·) is a convex regularization function promoting the relation-
ships among the agents, and Ω ∈ Rm×m models the relationships among the agents that can be
assigned a priori or can be estimated from data. An example of the regularizer takes the form of
R(Θ,Ω) = λ1Tr(ΘΩΘ>)+λ2Tr(ΘΘ>),where λ1, λ2 are non-negative parameters. In a centralized
setting, where a centralized server optimizes the relationship matrix by collecting the models of

agents, an optimal solution Ω = (Θ>Θ)
1
2

Tr((Θ>Θ))
1
2

is proposed in [10] for learning the structure of clustered

MTL using the above regularizer. In the distributed case, the task relationships Ω are not learned
centrally and we can use the adapt-then-combine (ATC) diffusion algorithm [39] as a projection-based
distributed solution of (1):

θ̂k,i = θk,i−1 − µk∇`k(θk,i−1; ξi−1
k ), (adaptation) (2)

θk,i =
∑
l∈Nk

alkθ̂l,i, subject to
∑
l∈Nk

alk = 1, alk ≥ 0, alk = 0 if l 6∈ Nk, (combination) (3)

where µk is the step size,Nk is the neighborhood of agent k, alk denotes the weight2 assigned by agent
k to l, which should accurately reflect the similarity relationships among agents. ∇`k(θk,i−1; ξi−1

k )

is the gradient using the instantaneous realization ξi−1
k of the random variable ξk. At each iteration

i, agent k minimizes the individual risk using stochastic gradient descent (SGD) given local data
followed by a combination step that aggregates neighboring models according to the weights assigned
to them. The weights {alk} are free parameters selected by the designer and they serve the same

1Each agent is modeled as a separate task, thus, the terms agent and task are used interchangeably.
2alk can be time-dependent but when context allows, we write alk(i) as alk for simplicity.
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purpose as Ω in a centralized formulation. Thus, there is no need to design Ω in the case of distributed
MTL that utilizes ATC diffusion algorithm for aggregation [40].

Online Weight Adjustment Rules. Without knowing the relationships a priori, one can assume the
existence of similarities among agents and can learn these similarities online from the data. The
approach is based on the distance between the model parameters of agents, where small distance
indicates a large similarity [12, 13, 41, 42]. A common approach to learning similarities between two
agents online is given by

alk(i) =
‖θ̃∗k − θ̂l,i‖−2∑

p∈Nk
‖θ̃∗k − θ̂p,i‖−2

, (4)

where θ̃∗k is an approximation of θ∗k. Since θ∗k is unknown, one can only estimate θ∗k using current
knowledge. Examples include using the current model θ̃∗k = θk,i−1, and one-step ahead approxi-
mation θ̃∗k = θ̂k,i + µk∇`k(θ̂k,i; ξ

i−1
k ). Although the `2 norm is widely used, this formulation of

weights can be generalized to `p norm as well.

4 Problem Formulation

Byzantine agents can send different information to different neighbors usually with a malicious goal
of disrupting the network’s convergence by increasing the expected risk.We assume a synchronous
network in which Byzantine agents send information to their neighbors in each iteration. It has been
shown in [16] that normal agents assigning weights according to (4) are vulnerable to Byzantine
agents. This result can be stated in the context of this paper as follows:

Lemma 1. 3 If a normal agent k adapts weights according to (4), then a single Byzantine agent can
lead k away from θ∗k if θ̃∗k 6= θ∗k.

To address the vulnerabilities of the online weight adjustment rules derived from (4), this paper aims
to design an efficient resilient online weight assignment rule in the presence of Byzantine agents for
MTL. Let the expected regret Rk(i) be the value of the expected difference between the risk of θk,i
and the optimal decision θ∗k, i.e., Rk(i) = E[rk(θk,i)− rk(θ∗k)]. As a baseline, we consider the case
when every normal agent runs the SGD algorithm without cooperation, i.e., θ(ncop)

k,i = θ̂(ncop)
k,i , followed

by (2). We also consider the cooperative case when θ(coop)
k,i =

∑
l∈Nk

alkθ̂
(coop)
l,i as indicated in (3),

followed by (2). The respective expected regrets for the two methods are given as

R(ncop)
k (i) = E[rk(θ(ncop)

k,i )− rk(θ∗k)] and R(coop)
k (i) = E[rk(θ(coop)

k,i )− rk(θ∗k)].

The weight assignment must satisfy the following three conditions:

Resilient Convergence. It must be guaranteed that using the computed weights Ak =
[a1k, . . . , amk] ∈ R1×m, every normal agent k resiliently converges to the true target θ∗k, i.e.,

lim
i→∞

θ(coop)
k,i = θ∗k,∀k ∈ N+, (5)

where N+ denotes the set of normal agents in the network.

Improved Expected Regret w.r.t. Non-Cooperation. Cooperation among agents is meaningful
only when it results in improving the learning performance. Hence, it is important to guarantee that
using the computed weights Ak, a normal agent k obtains an improved expected regret as compared
to using the SGD algorithm without cooperation, even in the presence of Byzantine agents, i.e.,

lim
i→∞

supR(coop)
k (i) ≤ lim

i→∞
supR(ncop)

k (i),∀k ∈ N+. (6)

Computational Efficiency. At each iteration, a normal agent k needs to compute the weights Ak
in time that is linear in the size of the neighborhood of k and the dimension of the data, i.e., in
O(|Nk|(dx + dy)) time.

3All proofs are given in Appendix A; appendices can be found in the supplementary material.

4



5 Loss-based Online Weight Adjustment

Weight Optimization. We follow a typical approach of learning the optimal weight adjustment rule
[12, 13, 41, 42] in which the goal is to minimize the quadratic distance between the aggregated
model θk,i and the true model θ∗k over the weights, i.e., minAk

‖θ(coop)
k,i − θ∗k‖2. Using (3), we get an

equivalent problem:

min
Ak

∥∥∥∥∥∑
l∈Nk

alkθ̂
(coop)
l,i − θ∗k

∥∥∥∥∥
2

, subject to
∑
l∈Nk

alk = 1, alk ≥ 0, alk = 0 if l 6∈ Nk,

where
∥∥∥∑l∈Nk

alkθ̂
(coop)
l,i − θ∗k

∥∥∥2

=
∑
l∈Nk

∑
p∈Nk

alkapk(θ̂(coop)
l,i − θ∗k)>(θ̂(coop)

p,i − θ∗k). As in a
typical approximation approach, we consider∥∥∥∥∥∑

l∈Nk

alkθ̂
(coop)
l,i − θ∗k

∥∥∥∥∥
2

≈
∑
l∈Nk

a2
lk

∥∥∥θ̂(coop)
l,i − θ∗k

∥∥∥2

. (7)

The weight assignment rule (4) is an optimal solution of (7) using the approximation of θ∗k, which as
we show above, can be easily attacked. To avoid the use of the distance between model parameters as
a similarity measure, we introduce a resilient counterpart, which is the accumulated loss (or risk). If
we assume risk functions rk to be m-strongly convex4, then it holds that

rk(θ̂(coop)
l,i )− rk(θ∗k) ≥ 〈∇rk(θ∗k), y − x〉+

m

2
‖θ̂(coop)
l,i − θ∗k‖2,

where rk(θ̂(coop)
l,i ) = E

[
`k(θ̂(coop)

l,i ; ξk)
]
. Since ∇rk(θ∗k) = 0, we obtain

‖θ̂(coop)
l,i − θ∗k‖2 ≤

2

m

(
rk(θ̂(coop)

l,i )− rk(θ∗k)
)
. (8)

Instead of directly minimizing the right side of (7), we consider minimizing its upper bound given
in (8). Later in Section 6, we show that this alternate approach facilitates the resilient distributed
MTL, which cannot be achieved by minimizing the distance between models directly. Hence, by
combining (7) and (8), we consider the following minimization problem:

min
Ak

∑
l∈Nk

a2
lk

(
rk(θ̂(coop)

l,i )− rk(θ∗k)
)

subject to
∑
l∈Nk

alk = 1, alk ≥ 0, alk = 0 if l 6∈ Nk.

This optimization problem indicates that if a neighbor l’s model has a small regret on agent k’s data
distribution, then it should be assigned a large weight. Since θ∗k is unknown, one can use rk(θ(coop)

k,i )

to approximate rk(θ∗k). Alternatively, since rk(θ∗k) is small compared to rk(θ(coop)
l,i ), we could simply

assume rk(θ∗k) = 0 and consider the following minimization problem:

min
Ak

∑
l∈Nk

a2
lkrk(θ̂(coop)

l,i ) subject to
∑
l∈Nk

alk = 1, alk ≥ 0, alk = 0 if l 6∈ Nk. (9)

Using the Lagrangian relaxation,5 we obtain the optimal solution of (9) as

alk(i) =
rk(θ̂(coop)

l,i )
−1∑

p∈Nk
rk(θ̂(coop)

p,i )
−1 . (10)

We can approximate rk(θ̂(coop)
l,i ) using the exponential moving average ϕilk = (1 − νk)ϕi−1

lk +

νk`k(θ̂(coop)
l,i ; ξk), where νk is the forgetting factor. Given E[ϕilk] = (1 − νk)E[ϕi−1

lk ] +

νkE[`k(θ̂(coop)
l,i ; ξk)], we obtain limi→∞ E[ϕilk] = limi→∞ E[`k(θ̂(coop)

l,i ; ξk)] = limi→∞ rk(θ̂(coop)
l,i ),

which means ϕilk converges (in expectation) to limi→∞ rk(θ̂(coop)
l,i ). Hence, we can use ϕilk to approx-

imate rk(θ̂(coop)
l,i ). Note that in addition to the smoothing methods, one can use the average batch loss

4Details of the assumptions are given in Appendix A.1.
5Detailed solution is given in Appendix A.3.
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to approximate rk(θ̂(coop)
l,i ) when using the (mini-) batch gradient descent in the place of SGD for

adaptation.

Filtering for Resilience. LetN+
k denote the set of k’s normal neighbors with |N+

k | ≥ 1. We assume
there are q Byzantine neighbors in the set B = Nk\N+

k . In the following, we examine the resilience
of the cooperation using (10) in the presence of Byzantine agents.
Lemma 2. Using (10), the expected regret satisfies

E
[
rk(θ(coop)

k,i )− r∗k
]
≤ 1

|Nk|
∑
l∈Nk

E
[
rk

(
θ̂(coop)
l,i

)
− r∗k

]
.

Since l can be a Byzantine agent, it is possible that E
[
rk

(
θ̂(coop)
l,i

)
− r∗k

]
is a large value. Conse-

quently, we cannot compute a useful upper bound on the value of E
[
rk(θ(coop)

k,i )− r∗k
]

and cannot
provide further convergence guarantees. To facilitate the resilient cooperation, we consider a modifi-
cation of (10) as follows.

alk(i) =


rk(θ̂(coop)

l,i )
−1∑

p∈N≤
k

rk(θ̂(coop)
p,i )

−1 , if rk(θ̂(coop)
l,i ) ≤ rk(θ̂(coop)

k,i ),

0, otherwise,
(11)

where N≤k denotes the set of neighbors with rk(θ̂(coop)
l,i ) ≤ rk(θ̂(coop)

k,i ). This implies that the coopera-
tion filters out the information coming from the neighbors incurring a larger risk and cooperate only
with the remaining neighbors. In the next section, we show how this modification guarantees the
resilient convergence of MTL with an improved learning performance as measured by the expected
regret w.r.t. the non-cooperative case.

Computational Efficiency. It takes O(dx) time to compute the predicted value fl(xik) using the
model θ̂(coop)

l,i and data xik. Similarly, it takes O(dy) time to compute the loss from fl(x
i
k) and

yik. Hence, it takes O(dx + dy) time to compute `k(θ̂(coop)
l,i ; ξik). Using the exponential moving

average method for approximating rk(θ̂(coop)
l,i ), at each iteration, the total time for computing Ak(i) is

O(|Nk|(dx + dy)).

6 Byzantine Resilient Convergence Analysis

Assumptions. We make the following assumptions to facilitate the analysis.

• Normal agents share the same stepsize µk = µ,∀k ∈ N+.
• For every normal agent k, the loss function `k(·) and the risk function rk(·) are m-strongly convex

and have L-Lipschitz continuous gradient.6

• There are n clusters {C1, . . . , Cn} in the network (n is unrevealed to each agent). All agents in the
same cluster Cj have the same target θ∗j , prediction function fj(·), and loss function `j(·). In other
words, if k, l ∈ Cj , then θ∗k = θ∗l = θ∗j , fk(·) = fl(·) = fj(·), and `k(·) = `l(·) = `j(·).

• For {k, l} ∈ Cj , the stochastic gradients ∇`j(θ; ξk) and ∇`j(θ; ξl) are unbiased estimates of
∇rk(θ) (and ∇rl(θ)), i.e., E[∇`j(θ; ξk)] = ∇rk(θ), and E[∇`j(θ; ξl)] = ∇rk(θ). We also
restrict the variance of ∇`j(θ; ξk) and ∇`j(θ; ξl) to be Var[∇`j(θ; ξk)] = E[‖∇`j(θ; ξk)‖2] −
‖E[∇`j(θ; ξk)]‖2 ≤ σ2

k, and Var[∇`j(θ; ξl)] = E[‖∇`j(θ; ξl)‖2]− ‖E[∇`j(θ; ξl)]‖2 ≤ σ2
l .

Given these assumptions, we provide the following results for the non-cooperative SGD and the
cooperative SGD using rule (11).
Lemma 3. A normal agent k which runs the SGD algorithm without cooperation converges for fixed
stepsize µ ∈ (0, 2

L ], and the expected regret at the convergence point satisfies

lim
i→∞

supR(ncop)
k (i) = lim

i→∞
supE

[
rk

(
θ(ncop)
k,i

)
− r∗k

]
=

µLσ2
k

2m(2− µL)
.

6Details of the assumptions about the loss functions are given in Appendix A.1.
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Theorem 1. A normal agent k which runs the cooperative SGD algorithm using the loss-based
weights (11) converges in the presence of arbitrary number of Byzantine neighbors, for fixed stepsize
µ ∈ (0, 2

L ], and the expected regret at the convergence point satisfies

lim
i→∞

supR(coop)
k (i) = lim

i→∞
supE

[
rk

(
θ(coop)
k,i

)
− r∗k

]
=

µL

2m(2− µL)

1

|N≤k |

∑
l∈N≤k

σ2
l .

Furthermore, in the presence of arbitrary number of Byzantine neighbors, we have

lim
i→∞

supR(coop)
k (i) ≤ lim

i→∞
supR(ncop)

k (i).

Theorem 1 indicates that the cooperative case using weights in (11) is always at least as good as
the non-cooperative case, as measured by the expected regret at convergence, which satisfies the
conditions in (5) and (6). Note that even when all the neighbors of a normal agent are Byzantine, one
can still guarantee that the agent’s learning performance as a result of cooperation with neighbors
using (11) will be same as the non-cooperative case.

Discussion. We assume convex models to carry out the analysis, which is typical in the literature.
However, the intuition behind the approach is — to measure the relatedness of a neighbor to itself,
a normal agent evaluates the loss of the neighbor using the neighbor’s model parameters and its
own data, and cuts down the cooperation if this loss is larger than the agent’s own loss — and the
same idea should also apply to non-convex models. In the next section, we also test our results on
non-convex models, such as CNN, which generates experimental results similar to those produced by
convex models.

7 Evaluation

In this section, we evaluate the resilience of the proposed online weight adjustment rule (11) with
the smoothing method discussed in Section 5, and compare it with the non-cooperative case, the
average weights (alk = 1

|Nk| ), and the quadratic distance-based weights (4) (with θ̃∗k = θk,i−1 and

use the same smoothing method φilk = (1− νk)φi−1
lk + νk‖θ̃∗k − θ̂l,i‖2 in the place of ‖θ̃∗k − θ̂l,i‖2,

with the same forgetting factor νk used for (11)). We use three distributed MTL case studies,
including the regression and classification problems, with and without the presence of Byzantine
agents. Although the convergence analysis in Section 6 is based on convex models and SGD,
we show empirically that the weight assignment rule (11) performs well for non-convex models,
such as convolutional neural networks and mini-batch gradient descent. Our code is available at
https://github.com/JianiLi/resilientDistributedMTL.

7.1 Datasets and Simulation Setups

• Target Localization: Target localization is a widely-studied linear regression problem [43]. The
task is to estimate the location of the target by minimizing the squared error loss of noisy streaming
sensor data. We consider a network of 100 agents with four targets as shown in Figure 1a. Agents in
the same color share the same target, however, they do not know this group information beforehand.

• Human Activity Recognition7: Mobile phone sensor data (accelerometer and gyroscope) is
collected from 30 individuals performing one of six activities: {walking, walking-upstairs, walking-
downstairs, sitting, standing, lying-down}. The goal is to predict the activities performed using
561-length feature vectors for each instance generated by the processed sensor signals [2]. We
model each individual as a separate task and use a complete graph to model the network topology.
We use linear model as the prediction function with cross-entropy-loss.
• Digit Classification: We consider a network of ten agents performing digit classification. Five of

the ten agents have access to the MNIST dataset8 [44] (group 1) and the other five have access
to the synthetic dataset9 (group 2) that is composed by generated images of digits embedded on

7https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+
smartphones

8http://yann.lecun.com/exdb/mnist
9https://www.kaggle.com/prasunroy/synthetic-digits
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random backgrounds [45]. All the images are preprocessed to be 28× 28 grayscale images. We
model each agent as a separate task and use a complete graph to model the network topology. An
agent does not know which of its neighbors are performing the same task as the agent itself. We
use a CNN model of the same architecture for each agent and cross-entropy-loss.

7.2 Results10

We plot the mean and range of the average loss of every normal agent using streaming data for the
target localization problem in Figure 1b–d. Similarly, we plot the mean and range of the average
testing loss and classification accuracy of every normal agent for human action recognition in Figure 2,
and for digit classification in Figure 3 (for group 1) and Figure 4 (for group 2). At each iteration,
Byzantine agents send random values (for each dimension) from the interval [15, 16] for target
localization, and [0, 0.1] for the other two case studies.

In all of the examples, we find that the loss-based weight assignment rule (11) outperforms all the
other rules and the non-cooperative case, with respect to the mean and range of the average loss
and accuracy with and without the presence of Byzantine agents. Hence, our simulations validate
the results indicated by (6) and imply that the loss-based weights (11) have accurately learned the
relationship among agents. Moreover, normal agents having a large regret in their estimation benefit
from cooperating with other agents having a small regret. We also consider the extreme case in which
there is only one normal agent in the network, and all the other agents are Byzantine. In such a case,
the loss-based weight assignment rule (11) has the same performance as the non-cooperative case,
thus, showing that it is resilient to an arbitrary number of Byzantine agents.

(a) Network topology (b) No attack (c) 20 Byzantine agents (d) 99 Byzantine agents

Figure 1: Target Localization: network topology and loss of streaming data for normal agents.

(a) No attack (b) 10 Byzantine agents

Figure 2: Human Action Recognition: average testing loss and accuracy for normal agents.

10Simulation details and supplementary results are given in Appendix B.
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(a) No attack (b) 2 Byzantine agents

Figure 3: Digit Classification: average testing loss and accuracy for normal agents in group 1.

(a) No attack (b) 2 Byzantine agents

Figure 4: Digit Classification: average testing loss and accuracy for normal agents in group 2.

8 Conclusion

In this paper, we propose an efficient online weight adjustment rule for learning the similarities
among agents in distributed multi-task networks with an arbitrary number of Byzantine agents. We
show that a widely used approach of measuring the similarities based on the distance between two
agents’ model parameters is vulnerable to Byzantine attacks. To cope with such vulnerabilities,
we propose to measure similarities based on the (accumulated) loss using an agent’s data and its
neighbors’ models. A small loss indicates a large similarity between the agents. To eliminate the
influence of Byzantine agents, a normal agent filters out the information from neighbors whose losses
are larger than the agent’s own loss. With filtering, the loss-based weight adjustment rule makes each
normal agent converge resiliently towards its target parameter with an improved expected regret than
the non-cooperative case. The experiment results validate the effectiveness of our approach.

Broader Impact

The problem of Byzantine resilient aggregation of distributed machine learning models has been
actively studied in recent years; however, the issue of Byzantine resilient distributed learning in
multi-task networks has received much less attention. It is a general intuition that MTL is robust and
resilient to cyber-attacks since it can identify attackers by measuring similarities between neighbors.
In this paper, we have shown that some commonly used similarity measures are not resilient against
certain attacks. With an increase in data heterogeneity, we hope this work could highlight the security
and privacy concerns in designing distributed MTL frameworks.
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A Assumptions and Theoretical Results

A.1 Assumptions of the loss functions

Definition 1. (L-Lipschitz continuous gradient). A differentiable convex function f is said to have an
L-Lipschitz continuous gradient, if there exists a constant L > 0, such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y.
If f has an L-Lipschitz continuous gradient, then it holds that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2, ∀x, y.

Definition 2. (m-strongly convex). A differentiable convex function f is said to be m-strongly convex if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2, ∀x, y.

If f is m-strongly convex and x∗ = arg minx∈Rd f(x), then it holds that

‖∇f(x)‖2 ≥ 2m(f(x)− f(x∗)), ∀x.
If f is m-strongly convex and has an L-Lipschitz continuous gradient, then it is obvious that m ≤ L.

A.2 Proof of Lemma 1

Proof. By sending ‖θ̂b,i − θ̃∗k‖ � ‖θ̂k,i − θ̃∗k‖ and ‖θ̂b,i − θ∗k‖ > ‖θ̂k,i − θ∗k‖, a Byzantine agent b can gain
a large weight from k by the first condition and make θk,i move away from θ∗k by the second condition. (The
same strategy can be generalized to `p norm.)

A.3 Optimal solution of equation (9)

Let λ be the Lagrange multiplier. We define the Lagrangian of (9) given the constraints on the weights as

L(alk, λ) =
∑
l∈Nk

a2
lkrk(θ̂(coop)

l,i ) + λ(1−
∑
l∈Nk

alk).

Set∇alk,λL(alk, λ) =
(
∂L
∂alk

, ∂L
∂λ

)
= 0, i.e.,{
2alkrk(θ̂(coop)

l,i )− λ = 0, ∀l ∈ Nk,
1−

∑
l∈Nk

alk = 0.

Thus, alk = λ

rk(θ̂
(coop)
l,i

)
,∀l ∈ Nk and

∑
l∈Nk

alk = 1. We have λ
∑
l∈Nk

1

rk(θ̂
(coop)
l,i

)
= 1 and hence λ =

1∑
l∈Nk

rk(θ̂
(coop)
l,i

)
−1 , and alk =

rk(θ̂
(coop)
l,i

)
−1

∑
p∈Nk

rk(θ̂
(coop)
p,i )

−1 is the optimal solution of (9).

A.4 Proof of Lemma 2

Proof. Given (3), rk(θ(coop)
k,i ) = rk

(∑
l∈Nk

alk(i)θ̂(coop)
l,i

)
. Using Jensen’s inequality, we have

rk(θ(coop)
k,i ) ≤

∑
l∈Nk

alk(i)rk
(
θ̂(coop)
l,i

)
. (12)

Subtracting r∗k from both sides of (12) and taking expectations over the joint distribution ξk, we obtain

E
[
rk(θ(coop)

k,i )− r∗k
]
≤
∑
l∈Nk

E[alk(i)]E
[
rk
(
θ̂(coop)
l,i

)
− r∗k

]

≤

∑
l∈Nk

E
[
rk(θ̂(coop)

l,i )
]−1

E
[
rk
(
θ̂(coop)
l,i

)
− r∗k

]
∑
p∈Nk

E
[
rk(θ̂(coop)

p,i )
]−1 .

(13)

For succinctness, we use χl,i to denote E
[
rk
(
θ̂(coop)
l,i

)]−1

, and ∆l,i to denote E
[
rk
(
θ̂(coop)
l,i

)
− r∗k

]
.

We next prove
∑

l∈Nk
χl,i∆l,i∑

p∈Nk
χp,i

≤ 1
|Nk|

∑
l∈Nk

∆l,i, or equivalently, |Nk|
∑
l∈Nk

χl,i∆l,i ≤∑
p∈Nk

χp,i
∑
l∈Nk

∆l,i.
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Assume |Nk| ≥ 2, let l1,i be the one with the smallest rk
(
θ̂(coop)
l1,i,i

)
= minl∈Nk rk

(
θ̂(coop)
l,i

)
and l2,i be the

one with the second smallest rk
(
θ̂(coop)
l2,i,i

)
= minl∈Nk\l1,i rk

(
θ̂(coop)
l,i

)
. Hence, χl1,i,i ≥ χl2,i,i ≥ χl,i, and

∆l1,i,i ≤ ∆l2,i,i ≤ ∆l,i for l ∈ Nk\{l1,i, l2,i}. Thus,

|Nk|
∑
l∈Nk

χl,i∆l,i −
∑
p∈Nk

χp,i
∑
l∈Nk

∆l,i

=
∑
l∈Nk

χl,i

|Nk|∆l,i −
∑
p∈Nk

∆p,i


=χl1,i,i

(|Nk| − 1) ∆l1,i,i −
∑

l∈Nk\l1,i

∆l,i

+
∑

l∈Nk\l1,i,i

χl,i

|Nk|∆l,i −
∑
p∈Nk

∆p,i


≤χl1,i,i

(|Nk| − 1) ∆l1,i,i −
∑

l∈Nk\l1,i

∆l,i

+ χl2,i,i

 ∑
l∈Nk\l1,i

|Nk|∆l,i − (|Nk| − 1)
∑
p∈Nk

∆p,i


=χl1,i,i

(|Nk| − 1) ∆l1,i,i −
∑

l∈Nk\l1,i

∆l,i

+ χl2,i,i

 ∑
l∈Nk\l1,i

∆l,i − (|Nk| − 1) ∆l1,i,i


=
(
χl1,i,i − χl2,i,i

)(|Nk| − 1) ∆l1,i,i −
∑

l∈Nk\l1,i

∆l,i


=
(
χl1,i,i − χl2,i,i

) ∑
l∈Nk\l1,i

(
∆l1,i,i −∆l,i

) ≤ 0.

Therefore,
∑

l∈Nk
χl,i∆l,i∑

p∈Nk
χp,i

≤ 1
|Nk|

∑
l∈Nk

∆l,i. Put it back to (13), we obtain as i→∞,

E
[
rk(θ(coop)

k,i )− r∗k
]
≤ 1

|Nk|
∑
l∈Nk

E
[
rk
(
θ̂(coop)
l,i

)
− r∗k

]
,

which completes the proof.

A.5 Proof of Lemma 3

Proof. Given that the risk function rk(·) has an L-Lipschitz continuous gradient, it holds that

rk
(
θ̂k,i
)
− rk(θk,i−1) ≤ ∇rk(θk,i−1)>(θ̂k,i − θk,i−1) +

1

2
L‖θ̂k,i − θk,i−1‖2.

Given the SGD step (2), we have

rk
(
θ̂k,i
)
− rk(θk,i−1) ≤ −µ∇rk(θk,i−1)>∇`k(θk,i−1; ξi−1

k ) +
1

2
µ2L‖∇`k(θk,i−1; ξi−1

k )‖2. (14)

Take the expected value of the above equation with respect to the random variable ξi−1
k . Since θ̂k,i depends on

ξi−1
k , whereas θk,i−1 does not, we obtain

E
ξi−1
k

[
rk
(
θ̂k,i
)]
− rk(θk,i−1)

≤− µ∇rk(θk,i−1)>E
ξi−1
k

[∇`k(θk,i−1; ξi−1
k )] +

1

2
µ2LE

ξi−1
k

[‖∇`k(θk,i−1; ξi−1
k )‖2].

Given that the stochastic gradient∇`k(θk,i; ξk) is an unbiased estimate of∇rk(θk,i), and ξik is an instantaneous
realization of ξk, it holds that Eξi

k
[∇`k(θk,i; ξ

i
k)] = ∇rk(θk,i),∀i, and the variance of∇`k(θk,i; ξ

i
k) satisfies

Varξi
k
[∇`k(θk,i; ξ

i
k)] = Eξi

k
[‖∇`k(θk,i; ξ

i
k)‖2]− ‖Eξi

k
[∇`k(θk,i; ξ

i
k)]‖2 ≤ σ2

k,∀i.

We have Eξi
k
[‖∇`k(θk,i; ξ

i
k)‖2] ≤ ‖Eξi

k
[∇`k(θk,i; ξ

i
k)]‖2 + σ2

k = ‖∇rk(θk,i)‖2 + σ2
k. Hence,

E
ξi−1
k

[
rk
(
θ̂k,i
)]
− rk(θk,i−1) ≤ −µ‖∇rk(θk,i−1)‖2 +

1

2
µ2LE

ξi−1
k

[‖∇`k(θk,i−1; ξi−1
k )‖2]

≤ −µ‖∇rk(θk,i−1)‖2 +
1

2
µ2L

(
‖∇rk(θk,i−1)‖2 + σ2

k

)
= −µ(1− µL

2
)‖∇rk(θk,i−1)‖2 +

1

2
µ2Lσ2

k.

(15)

14



Given the strong convexity condition of rk, there exists m ≤ L such that

‖∇rk(θ)‖2 ≥ 2m (rk(θ)− r∗k) for all θ.

Assuming (1− µL
2

) > 0 (which is guaranteed by the following claims), (15) turns into

E
ξi−1
k

[
rk
(
θ̂k,i
)]
− rk(θk,i−1) ≤ −2mµ(1− µL

2
) (rk(θk,i−1)− r∗k) +

1

2
µ2Lσ2

k. (16)

Let E[·] denote an expected value taken with respect to the joint distribution of all random variables, i.e.

E
[
rk
(
θ̂k,i
)]

= Eξ1
k
Eξ2

k
. . .E

ξi−1
k

[
rk
(
θ̂k,i
)]
.

Subtracting r∗k from both sides of (16) and taking expectations over the joint distribution, we have

E
[
rk
(
θ̂k,i
)
− r∗k

]
≤
(

1− 2mµ(1− µL

2
)

)
E [(rk(θk,i−1)− r∗k)] +

1

2
µ2Lσ2

k.

Subtracting the constant µLσ2
k

2m(2−µL)
from both sides, we obtain

E
[
rk
(
θ̂k,i
)
− r∗k

]
− µLσ2

k

2m(2− µL)

≤
(

1− 2mµ(1− µL

2
)

)
E [(rk(θk,i−1)− r∗k)] +

1

2
µ2Lσ2

k −
µLσ2

k

2m(2− µL)

=

(
1− 2mµ(1− µL

2
)

)(
E [(rk(θk,i−1)− r∗k)]− µLσ2

k

2m(2− µL)

)
.

(17)

Note that the one-step progress of SGD given in (17) is true for both the cooperative and non-cooperative cases
since they both use the SGD step (2).

In the following, we compute the expected regret for non-cooperative SGD where θk,i = θ̂k,i. Given (17),
repeating through iteration i, we have

E
[
rk
(
θ(ncop)
k,i

)
− r∗k

]
≤ µLσ2

k

2m(2− µL)
+

(
1− 2mµ(1− µL

2
)

)i(
E
[(
rk(θ(ncop)

k,0 )− r∗k
)]
− µLσ2

k

2m(2− µL)

)
.

(18)

Since 1− 2mµ(1− µL
2

) = 1 +mµ(Lµ− 2) ≤ 1 + Lµ(Lµ− 2) = (Lµ− 1)2, by selecting fixed stepsize

µ ∈ (0, 2
L

],
(
1− 2mµ(1− µL

2
)
)
∈ [0, 1), it is guaranteed that rk

(
θ(ncop)
k,i

)
converges towards r∗k. And the

expected regret as i→∞ satisfies

lim
i→∞

supR(ncop)
k (i) = lim

i→∞
supE

[
rk
(
θ(ncop)
k,i

)
− r∗k

]
=

µLσ2
k

2m(2− µL)
,

which completes the proof.

A.6 Proof of Theorem 1

Proof. Let E[·] denote the expected value taken with respect to the joint distribution of all random variables ξk
and ξl for l ∈ N≤k , i.e.

E [·] = EξkE{ξl|l∈N≤k }
[·] .

Similar to the proof for Lemma 2, usingN≤k in the place ofNk, with rule (11), we obtain

E
[
rk(θ(coop)

k,i )− r∗k
]
≤ 1

|N≤k |

∑
l∈Nk

E
[
rk
(
θ̂(coop)
l,i

)
− r∗k

]
. (19)

For every l ∈ N≤k , we have rk(θ̂(coop)
l,i ) ≤ rk(θ̂(coop)

k,i ) and hence E
[(
rk(θ̂(coop)

l,i )− r∗k
)]

≤

E
[(
rk(θ̂(coop)

k,i )− r∗k
)]

. Put it back to (19), we obtain

E
[
rk
(
θ(coop)
k,i

)
− r∗k

]
≤ 1

|N≤k |

∑
l∈N≤

k

E
[
rk
(
θ̂(coop)
l,i

)
− r∗k

]
≤ E

[
rk
(
θ̂(coop)
k,i

)
− r∗k

]
. (20)
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Inequation (20) implies that the cooperation step (3) using rule (11) reduces the expected regret as com-
pared to the non-cooperative case. As a result, if the non-cooperative SGD converges, then the coop-
erative SGD using (11) also converges. Given the results of Lemma 3, when µ ∈ (0, 2

L
], the non-

cooperative SGD converges. Hence, using µ ∈ (0, 2
L

], the cooperative SGD using (11) also converges,

i.e., as i → ∞, limi→∞ E
[
rk
(
θ(coop)
k,i

)
− r∗k

]
= 0, limi→∞∇`k(θ(coop)

k,i ; ξik) = 0, and limi→∞ θ̂
(coop)
k,i =

limi→∞ θ
(coop)
k,i = θ∗k, ∀k ∈ N+. For l ∈ N≤k , since E

[(
rk(θ̂(coop)

l,i )− r∗k
)]
≤ E

[(
rk(θ̂(coop)

k,i )− r∗k
)]

,

it holds that limi→∞ E
[
rk
(
θ̂(coop)
l,i

)
− r∗k

]
= 0. If l ∈ N+, then limi→∞ θ̂

(coop)
l,i = limi→∞ θ

(coop)
l,i , thus

limi→∞ E
[
rk
(
θ(coop)
l,i

)
− r∗k

]
= 0, and limi→∞ θ

(coop)
l,i = θ∗k. This implies that k and l share the same target

θ∗k, and therefore they are from the same cluster.

Note that to disrupt the convergence, a Byzantine neighbor b needs to send a large rk(θ̂(coop)
b,i ) and therefore it

will not be included in the cooperation by rule (11). If the Byzantine agent sends rk(θ̂(coop)
b,i ) ≤ rk(θ̂(coop)

k,i ), then

it reduces the upper bound of E
[
rk(θ(coop)

k,i )− r∗k
]

by (20) and will not do any damage to the system. Therefore,
we can treat it as a normal agent within the same cluster of k in such a case. This shows the resilience of the
weights (11) in the presence of an arbitrary number of Byzantine agents.

Since k and l ∈ N≤k are in the same cluster, assume {k, l} ∈ Cj . Similar to (14), for l ∈ N≤k , we have

rk
(
θ̂l,i
)
− rk(θl,i−1) ≤ ∇rk(θl,i−1)>(θ̂l,i − θl,i−1) +

1

2
L‖θ̂l,i − θl,i−1‖2

= −µ∇rk(θl,i−1)>∇`j(θl,i−1; ξi−1
l ) +

1

2
µ2L‖∇`j(θl,i−1; ξi−1

l )‖2.

Given that the stochastic gradient∇`j(θl,i; ξl) is an unbiased estimate of∇rk(θl,i) and ξil is an instantaneous
realization of ξl, it holds that Eξi

l
[∇`j(θl,i; ξil )] = ∇rk(θl,i), and the variance of∇`j(θl,i; ξil ) satisfies

Varξi
l
[∇`j(θl,i; ξil )] = Eξi

l
[‖∇`j(θl,i; ξil )‖2]− ‖Eξi

l
[∇`j(θl,i; ξil )]‖2 ≤ σ2

l , ∀i.
Following the claims in Appendix A.5, we obtain

Eξl
[
rk
(
θ̂(coop)
l,i

)
− r∗k

]
≤ µLσ2

l

2m(2− µL)
+

(
1− 2mµ(1− µL

2
)

)(
Eξl
[(
rk(θ(coop)

l,i−1)− r∗k
)]
− µLσ2

l

2m(2− µL)

)
.

Given (19), we obtain

E
[
rk(θ(coop)

k,i )− r∗k
]
≤ 1

|N≤k |

∑
l∈N≤

k

E
[
rk
(
θ̂(coop)
l,i

)
− r∗k

]

≤ 1

|N≤k |

∑
l∈N≤

k

(
µLσ2

l

2m(2− µL)
+

(
1− 2mµ(1− µL

2
)

)(
E
[(
rk(θ(coop)

l,i−1)− r∗k
)]
− µLσ2

l

2m(2− µL)

))

=
1

|N≤k |

µL
∑
l∈N≤

k
σ2
l

2m(2− µL)
+

(
1− 2mµ(1− µL

2
)

) 1

|N≤k |

∑
l∈N≤

k

E
[(
rk(θ(coop)

l,i−1)− r∗k
)]
− 1

|N≤k |

µL
∑
l∈N≤

k
σ2
l

2m(2− µL)

 .

(21)
As discussed above, the cooperative SGD using rule (11) converges. Therefore, it holds that as t → ∞ and
i > t, ∇`j(θ(coop)

k,i ; ξik) = 0, and ∇`j(θ(coop)
l,i ; ξil ) = 0. Moreover, from (2), we deduce that θ̂(coop)

k,i = θ(coop)
k,i−1

and θ̂(coop)
l,i = θ(coop)

l,i−1. Since E
[(
rk(θ̂(coop)

l,i )− r∗k
)]
≤ E

[(
rk(θ̂(coop)

k,i )− r∗k
)]

for l ∈ N≤k , it also holds

that E
[(
rk(θ(coop)

l,i−1)− r∗k
)]
≤ E

[(
rk(θ(coop)

k,i−1)− r∗k
)]

. Hence, 1

|N≤
k
|

∑
l∈N≤

k
E
[(
rk(θ(coop)

l,i−1)− r∗k
)]
≤

E
[(
rk(θ(coop)

k,i−1)− r∗k
)]

. Put it back to (21), we obtain

E
[
rk(θ(coop)

k,i )− r∗k
]

≤ 1

|N≤k |

µL
∑
l∈N≤

k
σ2
l

2m(2− µL)
+

(
1− 2mµ(1− µL

2
)

)E
[(
rk(θ(coop)

k,i−1)− r∗k
)]
− 1

|N≤k |

µL
∑
l∈N≤

k
σ2
l

2m(2− µL)


=

1

|N≤k |

µL
∑
l∈N≤

k
σ2
l

2m(2− µL)
+

(
1− 2mµ(1− µL

2
)

)i−tE
[(
rk(θ(coop)

k,t )− r∗k
)]
− 1

|N≤k |

µL
∑
l∈N≤

k
σ2
l

2m(2− µL)

 .
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Given fixed stepsize µ ∈ (0, 2
L

],
(
1− 2mµ(1− µL

2
)
)
∈ [0, 1), it is guaranteed that rk

(
θ(coop)
k,i

)
converges

towards r∗k as (i− t)→∞. And the expected regret satisfies

lim
i→∞

supR(coop)
k (i) = lim

i→∞
supE

[
rk(θ(coop)

k,i )− r∗k
]

=
µL

2m(2− µL)

1

|N≤k |

∑
l∈N≤

k

σ2
l . (22)

Note that equation (20) gives another upper bound of the expected regret: E
[
rk
(
θ(coop)
k,i

)
− r∗k

]
≤

E
[
rk
(
θ̂(coop)
k,i

)
− r∗k

]
. Using this condition, we obtain

lim
i→∞

E
[
rk(θ(coop)

k,i )− r∗k
]
≤ µLσ2

k

2m(2− µL)
= lim
i→∞

supR(ncop)
k (i). (23)

Given (20), it holds that

lim
i→∞

1

|N≤k |

∑
l∈N≤

k

E
[
rk
(
θ̂(coop)
l,i

)
− r∗k

]
≤ lim
i→∞

E
[
rk
(
θ̂(coop)
k,i

)
− r∗k

]
.

Thus, (22) gives a tighter upper bound of the expected regret than (23). And we conclude

lim
i→∞

supR(coop)
k (i) ≤ lim

i→∞
supR(ncop)

k (i),

which implies that σ2
l ≤ σ2

k for l ∈ N≤k .

B Simulation Details and Supplementary Results

B.1 Simulation details of Target Localization

The four target locations in R2 are: (10.84, 10.76), (20.42, 20.26), (20.51, 10.40), (10.78, 20.30). Agents’
locations are indicated in Figure 1a. An edge between two agents means they are neighbors. At each iteration,
every agent k has a noisy observation (streaming data) of the distance dk(i) and the unit direction vector uk,i
pointing from xk to its target based on built-in sensors. Let θk ∈ R2 denote the estimation of the target location
for agent k, then the loss is computed as `k(θk,i; ξ

i
k) = ‖dk(i)− (θk − xk)>uk,i‖2, and the agent estimate θk

using the SGD algorithm as well as the cooperative SGD algorithms with different weight assignment rules. The
distance measurement data has noise variance σ2

d,k ∈ [0.1, 0.2], and the unit direction vector has additive white
Guassian noise with diagnonal covariance matrices Ru,k = σ2

u,kI2, with σ2
u,k ∈ [0.01, 0.1] for different k. We

tune the step-sizes and forgetting factors from the interval (0, 1) and find the best empirical performance by
setting them to be µk = 0.1 and νk = 0.1 for every normal agent k. ϕ−1

lk and φ−1
lk are initialized to be zero for

all l ∈ Nk. Byzantine agents are designed to continuously send random values for each dimension from the
interval [15, 16] at each iteration.

B.2 Simulation details and supplementary results of Human Action Recognition

We randomly split the data into 75% training and 25% testing for each agent. During training, ten of the thirty
agents are randomly selected to have access to much less data (about 1

10

th) than the other agents at each epoch.
This is to model the realistic scenario in which some of the agents may have less data samples and they may
learn slowly than others. We use mini-batch gradient descent with batch size of 10. We tune the step-sizes
and forgetting factors from the interval (0, 1) and find the best empirical performance by setting them to be
µk = 0.01 and νk = 0.05 for every normal agent k. ϕ−1

lk and φ−1
lk are initialized to be zero for all l ∈ Nk.

Byzantine agents are designed to send a model with very small noisy elements for each dimension from the
interval [0, 0.1] at each iteration.

Figure 5 shows the average testing loss and classification accuracy of the normal agent when 29 out of 30 agents
are Byzantine (the only normal agent has access to the entire training data). Figure 6 and Figure 7 show the mean
and range of the average training loss and classification accuracy of the normal agents in the case of no attack,
with 10 random selected Byzantine agents, and with 29 Byzantine agents. In all the examples, for both training
and testing, we observe that the loss-based weight assignment rule (11) outperforms the other rules as well as
the non-cooperative case, with respect to the mean and range of the average loss and accuracy, which validates
the result indicated by (6). Even in the extreme case in which there is only one normal agent in the network and
all of its neighbors are Byzantine, the loss-based weight assignment rule (11) has the same performance as the
non-cooperative case, showing its resilience to an arbitrary number of Byzantine agents.
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Figure 5: Human Action Recognition: average testing loss and accuracy for normal agents with 29
Byzantine agents.

(a) No attack (b) 10 Byzantine agents

Figure 6: Human Action Recognition: average training loss and accuracy for normal agents.

Figure 7: Human Action Recognition: average training loss and accuracy for normal agents with 29
Byzantine agents.

B.3 Simulation details and supplementary results of Digit Classification

The preprocessed examples of the two datasets are given in Figure 8. The details of the CNN architecture is given
in Table 1. For each group, we consider that agents have access to uneven sizes of training data. Specifically, for
each agent, we randomly feed 200− 2000 training data and 400 testing data from the corresponding dataset for
each epoch. We use mini-batch gradient descent with batch size of 64. We tune the step-sizes and forgetting
factors from the interval (0, 1) and find the best empirical performance by setting them to be µk = 0.001 and
νk = 0.05 for every normal agent. ϕ−1

lk and φ−1
lk are initialized to be zero for all l ∈ Nk. Byzantine agents are

designed to send a model with very small noisy elements for each dimension from the interval [0, 0.1] at each
iteration.

Since the performance of agents in the two groups diverges, we plot the results separately for the two groups.
Figure 9 and Figure 10 show the average testing loss and classification accuracy of the normal agents in group 1
and group 2, when 8 out of 10 agents (four for each group) are Byzantine (the only normal agent in each group
has access to 2000 training data).

Figure 11 and Figure 12 show the mean and range of the average training loss and classification accuracy of
the normal agents in group 1, in the case of no attack, with 2 Byzantine agents, and with 8 Byzantine agents,
which are selected randomly. Figure 13 and Figure 14 show the mean and range of the average training loss and
classification accuracy of the normal agents in group 2, in the case of no attack, with 2 Byzantine agents, and
with 8 Byzantine agents (again selected randomly). In all the examples, for both training and testing, we observe
that the loss-based weight assignment rule (11) outperforms the other rules as well as the non-cooperative case,
with respect to the mean and range of the average loss and accuracy, thereby validating the result indicated by
(6). Even in the extreme case in which there is only one normal agent in each group and all of the other agents
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are Byzantine, the loss-based weight assignment rule (11) has the same performance as the non-cooperative case,
showing its resilience to an arbitrary number of Byzantine agents.

Comparing the results between groups 1 and 2 reveals that cooperation is most beneficial when there is a
substantial divergence in agents’ learning performances. Given limited training data, agents in group 1 are able
to build refined models. It it is harder for agents receiving less training data in group 2 to achieve a high learning
performance as the synthetic digit classification is a more challenging task than the MNIST digit classification.
Using the weight assignment rule (11), those agents receiving less data (and therefore, struggling to learn a good
model), are able to benefit from the cooperation with the neighbors having learned a refined model. At the same
time, agents exhibiting high learning performance will not be negatively affected by such cooperation.

(a) MNIST (b) Synthetic digits

Figure 8: Examples of the digit classification dataset

Table 1: CNN architecture of Digit Classification

Layer (type) Output Shape Param #

Conv2d-1 [-1, 32, 28, 28] 320
ReLU-2 [-1, 32, 28, 28] 0

MaxPool2d-3 [-1, 32, 14, 14] 0
Conv2d-4 [-1, 64, 14, 14] 18,496

ReLU-5 [-1, 64, 14, 14] 0
MaxPool2d-6 [-1, 64, 7, 7] 0

Conv2d-7 [-1, 64, 7, 7] 36,928
ReLU-8 [-1, 64, 7, 7] 0

MaxPool2d-9 [-1, 64, 3, 3] 0
Linear-10 [-1, 128] 73,856
ReLU-11 [-1, 128] 0
Linear-12 [-1, 10] 1,290

Figure 9: Digit Classification: average testing loss and accuracy for normal agents in group 1, with 8
Byzantine agents (four for each group).

Figure 10: Digit Classification: average testing loss and accuracy for normal agents in group 2, with
8 Byzantine agents (four for each group).
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(a) No attack (b) 2 Byzantine agents

Figure 11: Digit Classification: average training loss and accuracy for normal agents in group 1.

Figure 12: Digit Classification: average training loss and accuracy for normal agents in group 1, with
8 Byzantine agents (four for each group).

(a) No attack (b) 2 Byzantine agents

Figure 13: Digit Classification: average training loss and accuracy for normal agents in group 2.

Figure 14: Digit Classification: average training loss and accuracy for normal agents in group 2, with
8 Byzantine agents (four for each group).
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