# An Efficient Approach to Fault Identification in Urban Water Networks Using Multi-Level Sensing

Waseem Abbas<sup>1</sup>, Polina Sela<sup>2</sup>, Saurabh Amin<sup>2</sup>, Xenofon Koutsoukos<sup>1</sup>

<sup>1</sup> Vanderbilt University

<sup>2</sup> Massachusetts Institute of Technology

(ACM BuildSys 2015)





 System setup
 Localization as MTC
 Multilevel Sensing
 Heterogeneous Sensing

 Leakages in Water-Distribution Networks

Leakages in urban water networks can cause

- significant economic losses
- extra costs for final consumers
- third-party damage and health risks
- ...

Intro.

"Worldwide cost of physical losses is **over \$8 billion/year**." (World Bank, 2006)

"Every single day in US, nearly **six billion gallons** of treated water is simply lost due to leaky, aging pipes and outdated systems." (Center for Neighborhood Technology, 2013)

 No. of main breaks/yr:
 237,600

 Revenue loss/yr:
 \$2.8 billion

 Small leaks:
 500,000 - 1,500,000

(Distribution System Inventory, Integrity and Water Quality, AWWA 2004)









Conc.

## **Objective:**

Water loss reduction caused by leaks and bursts by improved **localization** of pipe failures in urban water distribution networks.

## Approach:

Design a **sensor placement** that maximizes the detection and identification of link failures through the minimum number of sensors of various types.

## Methods:

- Formulation of localization of link failures as a combinatorial **coverage problem** (such as minimum test cover).
- Efficient algorithm to solve the (localization) coverage problem.
- **Multi-level sensors' placement**, in which the information collected by sensors is analyzed in more detail.
- Heterogeneous sensors' placement, in which different classes of multilevel sensors are placed for a trade-off between the localization performance and the cost entailed.

## **Evaluation:**

Simulations of real/benchmark water distribution networks.





Water distribution network: Graph (nodes, edges)

- Nodes: connections and consumers •
- Edges: pipes •

**Event set** over links:  $\mathcal{L} = \{\ell_1, \ell_2, \cdots, \ell_n\}$ **Sensor set** over nodes:  $S = \{S_1, \dots, S_m\}$ 

**Sensed pressure** by  $S_i$  at time t:  $p_i(t)$ 

#### Single-level sensing model:

A sensor  $S_i$  detects a failure (at some link) whenever sensed pressure (or some function of it) is greater than a certain threshold  $\varepsilon$ 

Sensor output:  $\mathbf{y}_{S_i}(\ell)$ 

$$\mathbf{y}_{S_i}(\ell) = \begin{cases} 1 & \text{ if failure at } \ell \text{ is detected by } S_i \\ 0 & \text{ otherwise.} \end{cases}$$

5 8  $\ell_3$  $\ell_8$  $\ell_6$  $\ell_{10}$  $\ell_7$  $\ell_4$  $\ell_9$  $\ell_2$  $\ell_5$ 3







# Intro. System setup Localization as MTC Multilevel Sensing Heterogeneous Sensing Conc.

For a network with sensor set S and event set L, we can write a boolean **influence matrix**, M, of dimensions  $|L| \times |S|$ .

- $\ell_i$ :  $i^{th}$  row corresponds to the **event** at the  $i^{th}$  link.
- $S_j$ :  $j^{th}$  column corresponds to the  $j^{th}$  sensor.
- $\mathcal{M}_{ij}$ :  $j^{th}$  sensor output in response to the event *i*.

$$\mathcal{M}(\mathcal{L}, \mathcal{S}) = \begin{cases} S_1 & S_2 & S_3 & S_4 & S_5 & S_6 & S_7 & S_8 \\ \ell_1 \\ \ell_2 \\ \ell_3 \\ \ell_4 \\ \ell_4 \\ \ell_5 \\ \ell_6 \\ \ell_7 \\ \ell_8 \\ \ell_9 \\ \ell_{10} \end{cases} \xrightarrow{\mathsf{f}_4} \begin{cases} 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{cases}$$





#### **Localization Problem:**

Find the minimum number of sensors and their locations, i.e.,  $S \subseteq S$ , so that the maximum number of link failures can be uniquely identified and can be distinguished from one another.



#### **Minimum Test Cover:**

Given,

- $\mathcal{L}$  = Finite set of elements
- S = Collection of subsets of L
  - $= \{S_1, S_2, \cdots, S_m\}$

Find a minimum sub collection  $S \subseteq S$  such that if for a pair  $x, y \in \mathcal{L}$ , there exists some  $S_i \in S$ containing exactly one of x and y, then there exists some  $S_j \in S$  also containing exactly one of x and y.





# Localization (Example)

**Multilevel Sensing** 



$$\mathcal{M} = \begin{pmatrix} l_1 \\ l_2 \\ l_3 \\ l_4 \\ l_7 \\ l_6 \\ l_7 \\ l_{10} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ \end{pmatrix}$$

Localization as MTC

 Each link failure can be uniquely identified by the output of sensors 1,2,3, and 5.

**Heterogeneous Sensing** 

Conc.

• Thus, sensors in the set **{1,2,3,5}** are sufficient for the localization of failures.



Intro.

System setup



How can we solve minimum test cover (MTC) for the localization problem?



**Set Cover:** Minimum number of columns that cover the maximum number of rows.

Intro.



Conc.

## Greedy approach:

System setup

- Obtain a transformed matrix (containing pair-wise link failures)
- In each iteration, pick a column (sensor) that covers the maximum number of uncovered pair-wise link failures.

The greedy approach gives the **best approximation ratio**, which is (1 + 2 ln n).

However, the approach **computationally expensive**, and not suitable for large scale networks.





## Greedy approach:

System setup

- Obtain a transformed matrix (containing pair-wise link failures)
- In each iteration, pick a column (sensor) that covers the maximum number of uncovered pair-wise link failures.

The greedy approach gives the **best approximation ratio**, which is (1 + 2 ln n).

However, the approach **computationally expensive**, and not suitable for large scale networks.

Link failures = n  $\longrightarrow$  Pairwise link failures =  $\binom{n}{2}$ No. of comparisons in an iteration  $\longrightarrow \mathcal{O}\left(\binom{n}{2}\right)$ 

## Proposed approach (Main result):

We propose a (greedy) solution that **does not** require a transformation of **all links to pair-wise link failures.** 

The proposed approach gives the **same solution as the greedy** approach, thus the same best approximation ratio.

If k is the maximum no. of link failures detected by any sensor, then

No. of comparisons in an iteration 
$$\longrightarrow \mathcal{O}\left(\frac{k}{n}\binom{n}{2}\right); \quad k << n$$





Two basic observations used in the solution are:

 A sensor that detects k link failures, detects k (n-k) pairwise link failures.



• If a sensor detects link failures  $\ell_i$  and  $\ell_j$ , then it can not detect the pair-wise link failure  $\ell_i \ell_j$ .

e.g., if  $S_1 = \{\ell_2, \ell_3, \ell_5\}$ , then  $S_1$  cannot detect pair-wise failures  $\{\ell_2\ell_3, \ell_2\ell_5, \ell_3\ell_5\}$ .

Thus, if  $S_1$  is selected in the test cover, we need to select sensor(s) in the next iteration(s) that also detect pairwise link failures corresponding to the links in  $S_1$  (covered links of  $S_1$ ).

Both of these factors contribute to the selection of a sensor in each iteration of the solution.





Two basic observations used in the solution are:

 A sensor that detects k link failures, detects k (n-k) pairwise link failures.



• If a sensor detects link failures  $\ell_i$  and  $\ell_j$ , then it can not detect the pair-wise link failure  $\ell_i \ell_j$ .

e.g., if  $S_1 = \{\ell_2, \ell_3, \ell_5\}$ , then  $S_1$  cannot detect pair-wise failures  $\{\ell_2\ell_3, \ell_2\ell_5, \ell_3\ell_5\}$ .

Thus, if  $S_1$  is selected in the test cover, we need to select sensor(s) in the next iteration(s) that also detect pairwise link failures corresponding to the links in  $S_1$  (covered links of  $S_1$ ).

Both of these factors contribute to the selection of a sensor in each iteration of the solution.

In each iteration, select the sensor that has the maximum score,

Score =  $k_i(n_i-k_i)$  + (no. of undetected pairwise link failures corresponding to the covered links by the sensors selected in the cover) No. of uncovered links in the i<sup>th</sup> iteration. No. of uncovered links that are covered by the sensor in the i<sup>th</sup> iteration.





TG - transformed greedy; FG - fast greedy;









In single-level sensing (1-bit), output of the sensor is

- $\begin{bmatrix} 1\\ 0 \end{bmatrix}$
- if failure event is detected, or otherwise.

In **multi-level sensing** ( $\sigma$  - **bit**), a sensor in case of detection, captures some *extra information* about the failure event, such as time taken to detect the event, intensity of the event, etc.

Output of sensor consists of *multiple bits*.

#### **Case: Bi-level sensing**

- 0 0 failure event is not detected,
- 1 0 event is detected early, i.e., in  $\begin{bmatrix} 0 & t_1 \end{bmatrix}$
- event is detected later, i.e., in [t<sub>1</sub> T]

















## **Bi-level Sensing - Example**

**Multilevel Sensing** 

For a single failure event occurring at the center of each pipe, the output of a **2-bit sensor**  $S_i$ , denoted by  $\mathbf{y}_{S_i}(\ell)$  is

**Localization as MTC** 

$$\mathbf{y}_{S_i}(\ell) = \begin{cases} (1 \ 0) & \text{if } d(S_i, \ell) < d_1 \\ (0 \ 1) & \text{if } d_1 \le d(S_i, \ell) \le d_2 \\ (0 \ 0) & \text{otherwise} \end{cases}$$

 $d(S_i,\ell)$  is the length of the shortest path between  $S_i$  and  $\ell$ .  $d_1=0.5[km], \ d_2=1[km]$ (We note that d=vt)



**Heterogeneous Sensing** 

Conc.



Intro.

System setup



## 1-bit vs. $\sigma$ -bit Sensors

- The maximum number of pair-wise link failures that can be detected by  $\sigma$ -bit sensors is greater than in the case of 1-bit sensors.
- For a given number of sensors, more pair-wise link failures can be detected by  $\sigma$ -bit sensors as compared to 1-bit case.

#### 1-bit

- k : No. of *link failures* detected
- $\mathcal{P}_1$ : No. of *pair-wise link failures* detected

$$\mathcal{P}_1 = k(n-k)$$

 $\sigma$ -bit ( $\sigma$ >1)

- $k_i$ : No. of link *failures detected* by the *i*<sup>th</sup> bit such that  $\sum_{i=1}^{\sigma} k_i = k$ .
- $\mathcal{P}_{\sigma}$ : No. of *pair-wise link failures* detected

$$\mathcal{P}_{\sigma} = \mathcal{P}_1 + \left(\sum_{x=1}^{\sigma-1} \sum_{y>x}^{\sigma} k_x k_y\right)$$

e.g, for 2-bit: 
$$\mathcal{P}_2 = \mathcal{P}_1 + k_1 k_2$$

Moreover, we also have a following bound

$$\mathcal{P}_1 + (\sigma - 1) \left( k - \frac{\sigma}{2} \right) \leq \mathcal{P}_\sigma \leq \mathcal{P}_1 + \left( \frac{k^2(\sigma - 1)}{2\sigma} \right)$$











Conc.

- Homogeneous sensors we consider all sensors to have the same information structure, i.e. 1-bit or k-bit
- Heterogeneous sensors we consider mixed information structures and explore the trend (trade-off) of the localization performance as a function of the sensing models.

#### Simulations:

Intro.

We use a mix of 1-bit and 2-bit sensors for the localization of link failures in Networks 1 and 2.



## **Heterogeneous Sensing**

• Where should these heterogeneous sensors be deployed within the network? How can we use the **underlying network structure** to determine potential locations for heterogeneous sensors?

#### Simulations:

Our simulations illustrate that **purely network based metrics serve as a bad choice** for the sensor placement, in which higher level sensors are placed on the central locations in the underlying network graph.





# Intro. System setup Localization as MTC Multilevel Sensing Heterogeneous Sensing Conc. Summary and Conclusions

- The problem of identification of link failures can be posed as the **minimum test cover problem**.
- Minimum test cover for the identification of link failures in water networks can be solved using an **efficient fast greedy** algorithm.
- Multi-level sensors capture some extra information about the failure events, and are better for the identification of link failures as compared to the singlelevel sensors.
- Deploying a **combination of various types of sensors** (e.g., 1-bit and 2-bit) allow a trade-off between the localization performance and the cost entailed.





# **Thank You**







We can introduce more symbols to represent the pressure signal. But this requires better calibrated model and more complex representation.





