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Applications

The study of n~-persch EaEes for which the sccopted sthics of falr
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in which to apply this theorys And poker is the most obvious targete
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Scope and applicability of game theory

 Strategic multiagent interactions occur in all fields

— Economics and business: bidding in auctions, offers in
negotiations

— Political science/law: fair division of resources, e.g., divorce
settlements

— Biology/medicine: robust diabetes management (robustness
against “adversarial” selection of parameters in MDP)

— Computer science: theory, Al, PL, systems; national security
(e.g., deploying officers to protect ports), cybersecurity (e.g.,
determining optimal thresholds against phishing attacks),
Internet phenomena (e.g., ad auctions)



Game theory background

rock paper SCISSOIS
Rock 0,0 -1, 1 1, -1

Paper 1,-1 0,0 -1,1
Scissors -1.1 1,-1 0,0

Players

Actions (aka pure strategies)

Strategy profile: e.g., (R,p)

Utility function: e.g., u,(R,p) =-1, u,(R,p) = 1
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Zero-sum game

rock paper SCISSOIS
Rock 0,0 -1, 1 1, -1

Paper 1,-1 0,0 -1,1
Scissors -1.1 1,-1 0,0

» Sum of payoffs Is zero at each strategy profile:
e.9., Uy(R,p) + U,(R,p) =0
» Models purely adversarial settings



Mixed strategies

 Probability distributions over pure strategies

* E.g., R with prob. 0.6, P with prob. 0.3, S with
prob. 0.1
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Best response (aka nemesis)

 Any strategy that maximizes payoff against
opponent’s strategy

 |f P2 plays (0.6, 0.3, 0.1) for r,p,s, then a best
response for P1 is to play P with probability 1

11



Nash equilibrium

o Strategy profile where all players
simultaneously play a best response
o Standard solution concept in game theory

— Guaranteed to always exist in finite games [Nash
1950]

* In Rock-Paper-Scissors, the unique equilibrium
IS for both players to select each pure strategy
with probability 1/3

12



Minimax Theorem

Minimax theorem: For every two-player zero-sum

game, there exists a value v* and a mixed strategy
profile o* such that:

a. P1 guarantees a payoff of at least v* in the worst case by
playing c*,

b. P2 guarantees a payoff of at least -v* in the worst case by
playing o*,

v* (= v,) Is the value of the game

All equilibrium strategies for player | guarantee at
least v; In the worst case

For RPS, v*=0
13



Exploitability

» Exploitability of a strategy Is difference
between value of the game and performance

against a best response

— Every equilibrium has zero exploitability
 Always playing rock has exploitability 1

— Best response Is to play paper with probability 1

14



Nash equilibria in two-player zero-
sum games

» Zero exploitability — “unbeatable”

» Exchangeable
— If (a,b) and (c,d) are NE, then (a,d) and (c,b) are too

« Can be computed In polynomial time by a linear
programming (LP) formulation

15



Nash equilibria in multiplayer and
NoN-zero-sum games

« None of the two-player zero-sum results hold

« There can exist multiple equilibria, each with different
payoffs to the players

* |f one player follows one equilibrium while other
players follow a different equilibrium, overall profile is
not guaranteed to be an equilibrium

* |f one player plays an equilibrium, he could do worse if
the opponents deviate from that equilibrium

« Computing an equilibrium is PPAD-hard
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Imperfect information

 In many important games, there is information
that Is private to only some agents and not
avallable to other agents

— In auctions, each bidder may know his own
valuation and only know the distribution from which
other agents’ valuations are drawn

— In poker, players may not know private cards held
by other players

17



Extensive-form representation




Extensive-form games

« Two-player zero-sum EFGs can be solved In
polynomial time by linear programming
— Scales to games with up to 108 states

o [terative algorithms (CFR and EGT) have been
developed for computing an e-equilibrium that scale to
games with 101/ states

— CFR also applies to multiplayer and general sum games,
though no significant guarantees in those classes

— (MC)CFR is self-play algorithm that samples actions down
tree and updates regrets and average strategies stored at
every information set

19



Standard paradigm for solving large
Imperfect-information games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibrium-finding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
20



Texas hold ‘em poker

« Huge game of imperfect information

— Most studied imp-info game in Al community since 2006
due to AAAI computer poker competition

— Most attention on 2-player variants (2-player zero-sum)
— Multi-billion dollar industry (not “frivolous”)

« Limit Texas hold ‘em — fixed betting size
— ~10%" nodes in game tree

 No Limit Texas hold ‘em — unlimited bet size
— ~10%% nodes in game tree
— Most active domain in last several years

— Most popular variant for humans
21



No-limit Texas hold ‘em poker

Two players have stack and pay blinds (ante)
Each player dealt two private cards

Round of betting (preflop)
— Players can fold, call, bet (any amount up to stack)

Three public cards dealt (flop) and a second round of
betting

One more public card and round of betting (turn)
Final card and round of betting (river)
Showdown

22



Game abstraction

» Necessary for solving large games

— 2-player no-limit Texas hold ‘em has 106> game states,
while best solvers “only” scale to games with 10/ states

 [nformation abstraction: grouping information sets
together

 Action abstraction: discretizing action space
— E.g., limit bids to be multiples of $10 or $100

23



Information abstraction
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Potential-aware abstraction with EMD

Equity distribution for Equity distribution for
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Potential-aware abstraction with EMD

 Equity distributions on the turn. Each point is EHS for given
turn card assuming uniform random river and opponent hand

« EMD is 4.519 (vs. 0.559 using comparable units to river EMD)
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Algorithm for potential-aware imperfect-
recall abstraction with EMD

« Bottom-up pass of the information tree (assume an abstraction for
final rounds has already been computed using arbitrary approach)

 For each round n
— Let m"™L denote mean of cluster i in A"*!

— For each pair of round n+1 clusters (i,j), compute distance d";;
between m™*, and m™?, using d"**

— For each point x", create histogram over clusters from A1

— Compute abstraction A" using EMD with d";; as ground

distance function
» Developed fast custom heuristic for approximating EMD in our
multidimensional setting
« Best commercially-available algorithm was far too slow to compute

abstractions in poker
27



Standard paradigm for solving large
extensive-form games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibrium-finding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
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Hierarchical abstraction to enable

distributed equilibrium computation

« On distributed architectures and supercomputers with
high inter-blade memory access latency,
straightforward MCCFR parallelization approaches
lead to impractically slow runtimes

— When a core does an update at an information set it needs to
read and write memory with high latency

— Different cores working on same information set may need to
lock memory, walit for each other, possibly over-write each
others' parallel work, and work on out-of-sync inputs

» Our approach solves the former problem and also helps
mitigate the latter issue

29



High-level approach

 To obtain these benefits, our algorithm creates an
Information abstraction that allows us to assign disjoint

components of t
trajectory of eac
sets located on t

ne game tree to different blades so the
n sample only accesses information
ne same blade.

— First cluster public information at some early point in the
game (public flop cards in poker), then cluster private
Information separately for each public cluster.

« Run modified version of external-sampling MCCFR

— Samples one pa

Ir of preflop hands per iteration. For the later

betting rounds, each blade samples public cards from its
public cluster and performs MCCFR within each cluster.

30



Hierarchical abstraction algorithm for

distributed equilibrium computation

e Forr=1tor*-1, cluster states at round r using A,
— A\, Is arbitrary abstraction algorithm
— E.g., for preflop round in poker

 Cluster public states at round r* into C buckets
— E.g., flop round in poker

« Forr=r*to R, c=1to C, cluster states at round r that
have public information states in public bucket ¢ into
B, buckets using abstraction algorithm A,

31



Algorithm for computing public
Information abstraction

e Construct transition table T

— T[p][b] stores how often public state p will lead to bucket b of the base
abstraction A, aggregated over all possible states of private information.

« fori=1toM-1,j=1+1to M (M is # of public states)
- Gp=0
— forb=1toB
* si; += min(T[i][b], T][b])
— dij = (V-5;)IV
« Cluster public states into C clusters using (custom) clustering
algorithm L with distance function d

— d;; corresponds to fraction of private states not mapped to same bucket of
A when paired with public info i and |

32



Comparison to non-distributed approach

200 60/650\\8@0__1@#6/12.00

Running time (hours)

Distributed vs.
Hyperborean.irc

-#-Non-distributed
Hyperborean.irc

Distributed vs.
Slumbot

——Non-distributed
Slumbot




Tartanian/: champion two-player
no-limit Texas Hold ‘em agent

 Beat every opponent with statistical significance
In 2014 AAAI computer poker competition

Table 1: Win rate (in mbb/h) of our agent in the 2014 AAAT Annual Computer Poker Competition against opposing agents.
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Standard paradigm for solving large
Imperfect-information games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibrium-finding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
35



Action translation

e f, (%) = probability we map x to A
— Will also denote as just f(x)

[Ganzfried & Sandholm IJCAI-13]

36



A natural approach

o [fXx< %, then map x to A; otherwise, map x to B

 Called the deterministic arithmetic mapping

37



» Suppose pot Is 1, stacks are 100

« Suppose we are using the {fold, call, pot, all-in} action
abstraction

— “previous expert knowledge [has] dictated that 1f only a
single bet size [in addition to all-in] Is used everywhere, it
should be pot sized” [Hawkin et al., AAAI 2012]

» Suppose opponent bets x in (1,100)
-~ S0A=1,B=100

38



Suppose we call a bet of 1 with probability Y2 with a
medium-strength hand

Suppose the opponent has a very strong hand

His expected payoff of betting 1 will be:
(1-%)+(2-%)=15

If instead he bets 50, his expected payoff will be:
(1-%) + (51 - %) = 26

He gains $24.50 by exploiting our translation mapping!

Tartanianl lost to an agent that didn’t look at 1ts private
cards in 2007 ACPC using this mapping!

39



An Improvement

What If we randomize and map X to A with probability

B—x7

B—-A
Suppose opponent bets 50.5, and we call an all-in bet
with probability F11 with a mediocre hand

Then his expected payoff is $13.875
An improvement, but still way too high
Called the randomized arithmetic mapping

40



Other prior approaches

» Deterministic geometric: If % > %, map X to A;
otherwise, map x to B
— Used by Tartanian2 in 2008

« Randomized geometric 1

_ A(B—X)
= Y= A(B—x) + x(x—A)
— Used by Alberta 2009-present

« Randomized geometric 2

 A(B)(B—x)
- 1) =B a2 T AB)

~ Used by CMU 2010-2011

41



Problem with prior approaches?

» High exploitability in simplified games
 Purely heuristic and not based on any
theoretical justification

« Fail to satisfy natural theoretical properties

42



Our new mapping

* \We propose a new mapping, called the pseudo-
harmonic mapping, which Is the only mapping
consistent with the equilibrium of a simplified poker
game:

- 100 =G

« This mapping has significantly lower exploitability
than the prior ones in several simplified poker games

o Significantly outperforms the randomized-geometric
mappings In no-limit Texas hold’em

43



SCOR D

Action translation desiderata

Boundary constraints: f(A) =1, f(B) =0
Monotonicity
Scale invariance

Action robustness: small change in x doesn’t
lead to large change in f

Boundary robustness: small change in A or B
doesn’t lead to large change in f

44



Theoretical results

« Randomized geometric mappings violate
boundary robustness. If we allow A =0 they are
discontinuous in A. Otherwise, they are
Lipschitz-discontinuous in A.

» Only randomized-arithmetic and randomized-
pseudo-harmonic satisfy all the desiderata

45



Standard paradigm for solving large
Imperfect-information games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibrium-finding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
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Purification and thresholding

 Thresholding: round action probabilities below ¢ down
to O (then renormalize)

 Purification Is extreme case where we play maximal-
probability action with probability 1

47



Benefits of post-processing techniques

» 1) Failure of equilibrium-finding algorithm to
fully converge

— Tartanian4 had exploitability of 800 mbb/hand even
within its abstraction (always folding has
exploitability of 750 mbb/hand!)

48



Benefits of post-processing techniques

« 2) Combat overfitting of equilibrium to the abstraction
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Experiments on no-limit Texas hold ‘em

 Purification outperforms using a threshold of
0.15

— Does better than it against all but one 2010
competitor, beats it head-to-head, and won bankroll
competition

50



Worst-case exploitability

« We also compared worst-case exploitabilities of several variants
submitted to the 2010 two-player limit Texas hold ‘em division

— Using algorithm of Johanson et al. IJCAI-11

Exploitability | Exploitability
Threshold of GS6 of Hyperborean
None 463.591 235.209
0.05 326.119 243.705
0.15 318.465 258.53
0.25 335.048 277.841
Purified 349.873 437.242

Table 4: Results for full-game worst-case exploitabilities of
several strategies in two-player limit Texas Hold’'em. Re-
sults are in milli big blinds per hand. Bolded values indicate
the lowest exploitability achieved for each strategy.




Purification and thresholding

4x4 two-player zero-sum matrix games with payoffs
uniformly at random from [-1,1]

Compute equilibrium F in full game

Compute equilibrium A in abstracted game that omits
last row and column

— essentially “random” abstractions

Compare u,(A,, F,) to u,(pur(A,), F,)
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Purification and thresholding

Purified average payoff -0.050987 +- 0.00042
Unpurified average payoff -0.054905 +- 0.00044

# games where purification led to 261569 (17.44 %)
Improved performance

# games where purification led to 172164 (11.48%)
worse performance

# games where purification led to 1066267 (71.08 %)
no change in performance

e Some conditions when they perform identically:
1. The abstract equilibrium AIs a pure strategy profile
2. The support of A, Is a subset of the support of F,

53



Purification and thresholding

» Results depend crucially on the support of the full equilibrium

 |If we only consider the set of games that have an equilibrium o
with a given support, purification improves performance for
each class except for the following, where the performance is
statistically indistinguishable:

— o Is the pure strategy profile in which each player plays his
fourth pure strategy

— o 1s a mixed strategy profile in which player 1’°s support
contains his fourth pure strategy, and player 2’s support does
not contain his fourth pure strategy

o4



New family of post-processing
techniques

* 2 main ideas:
— Bundle similar actions
— Add preference for conservative actions

* First separate actions into {fold, call, “bet”}

— If probability of folding exceeds a threshold parameter, fold
with prob. 1

— Else, follow purification between fold, call, and “meta-
action” of “bet.”

— If “bet” 1s selected, then follow purification within the
specific bet actions.
» Many variations: threshold parameter, bucketing of
actions, thresholding value among buckets, etc. ¢



Post-processing experiments

Hyperborean.iro Slumbot Average Min
No Thresholding +30 + 32 +10 £ 27 +20 +10
Purification +55 + 27 +19 + 22 +37 +19
Thresholding-0.15 +35+ 30 +19 £ 25 +27 +19
New-0.2 +39 + 26 +103 + 21 +71 +39
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Brains vs. Artificial Intelligence

 April 24-May 8, 2015 at Rivers Casino In
Pittsburgh, PA

— The competition was organized by Carnegie Mellon
University Professor Tuomas Sandholm. Collaborators
were Tuomas Sandholm and Noam Brown.

20,000 hands of two-player no-limit Texas
hold ‘em between “Claudico” and Dong Kim,
Jason Les, Bjorn Li, Doug Polk

— 80,000 hands In total

» Used “duplicate” scoring
57
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Brains

B 02-04-2015, 09:53 AM #1

Donger Kim Donger Kim to Nick Frame (TCfromUB) HU Challenge
enthusiast
s up nlhe regular on PokerStars w ' . There's
gi=ly h'En'L'—I_Jp ra [_. tic mi rame,
I"-,-'Euj qluf ; rer. I respect his game and it

I’r' ahead of me, I'd like to have a chance to play him in a challenge-type format, 1
ce and something that would also be enjoyable for the El:lrrlrrll_lrlltg-.

ar sauce, [
ould be able to

hen you'd like to begin, Ideally, I'd like to get started right av
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Brains

g Donger Kim wins heads-up challenge against
p)
TCfromUB
Poker News G+l p ] fj n khare

ong "Donger Kim" Kim won $103.992 from Nick "TCfromUB" Frame in the 15,000 hand
heads-up challenge, which not only earned him the respect of the high stakes community, but
also an additional $15,000 from the sidebets for the challenge.
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Results

« Humans won by 732,713 chips, which
corresponds to 9.16 big blinds per 100 hands
(BB/100) (SB =50, BB = 100)

— Statistically significant at 90% confidence level, but
not 95% level

* Dong Kim beat Nick Frame by 13.87 BB/100
— $103,992 over 15,000 hands with 25-50 blinds

» Doug Polk beat Ben Sulsky by 24.67 BB/100
— $740,000 over 15,000 hands with 100-200 blinds
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Payoffs

* Prize pool of $100,000 distributed to the
humans depending on their individual profits.

I — T4

$10.000 - %60.000 —4m8 ——M
Tr1+ T2 + T3 — 314

Iro — T4

r1+ Ira + Iy — 311"'.1

S10. 000 + $60. 000
T3 — T4

$10,000 + 860,000 —MM
T+ Tg + Ty — ATy

10,000

o = pa = py = $25, 000
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| Limp!

« “Limping is for Losers. This iIs the most important
fundamental in poker -- for every game, for every
tournament, every stake: If you are the first player to
voluntarily commit chips to the pot, open for a raise.
Limping is inevitably a losing play. If you see a person
at the table limping, you can be fairly sure he Is a bad
player. Bottom line: If your hand is worth playing, it is
worth raising” [Phil Gordon’s Little Gold Book, 2011]

 Claudico limps close to 10% of its hands

— Based on humans’ analysis it profited overall from the limps

 Claudico makes many other unconventional plays (e.g.,
small bets of 10% pot and all-in bets for 40 time% éoot)



Architecture

Original game

Abstracted game

Automated abstraction i j

iZustom
equilibrium-finding
algorithm

Reverse mapping

Nash equilibrium Nash equilibrien
Offline abstraction and equilibrium computation

— EC used Pittsburgh’s Blacklight supercomputer with 961 cores
Action translation

Post-processing

Endgame solving ~



Pseudo-harmonic mapping

Maps opponent’s bet x to one of the nearest sizes in the
abstraction A, B according to:

__(B=x)(1+4)
f(x) = (B—A)(1+x)

f(X) 1s probability that x Is mapped to A

Example: suppose opponent bets 100 into pot of 500,
and closest sizes are “check™ (1.e., bet 0) or to bet 0.25

pot. SOA=0,x=0.2, B=0.25.
Plugging these in gives f(x) = 1/6 = 0.167.
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Endgame solving

Strategies for entire game
computed offline

A

Endgame strategies
computed In real time to
greater degree of accuracy

66



Endgame definition

* E Is an endgame of a game G If:

1.
2.

Set of E’s nodes 1s a subset of set of G’s nodes

If s’ 1s a child of s in G and s 1s a node 1n E, then s’ 1s
also a node In E

If s 1s in the same information set as s’ m G and sis a
node 1n E, then s’ 1s also a node in E

67



Can endgame solving guarantee
equilibrium?

» Suppose that we computed an exact (full-game)
equilibrium in the initial portion of the game
tree prior to the endgame (the trunk), and
computed an exact equilibrium in the endgame.
Is the combined strategy an equilibrium of the
full game?

68



Can endgame solving guarantee
equilibrium?
2N\ (o]

» Several possible reasons this may fail:

— The game may have many equilibria, and we might
choose one for the trunk that does not match up
correctly with the one for the endgame

— We may compute equilibria in different endgames
that do not balance appropriately with each other
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Can endgame solving guarantee
equilibrium?

Proposition: There exist games with a unique
equilibrium and a single endgame for which
endgame solving can produce a non-equilibrium
strategy profile in the full game
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Limitation of endgame solving
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Is there any hope?

Player 1 selects his action a;, then the players play
Imperfect-information game G;.
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Is there any hope?

« Endgame solving produces strategies with low
exploitability in games where the endgame Is a
significant strategic portion of the full game.

— 1.e., In games where any endgame strategy with high full-
game exploitability can be exploited by the opponent by
modifying his strategy just within the endgame.
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Is there any hope?

» Proposition: If every strategy that has exploitability
strictly more than ¢ in the full game has exploitability
of strictly more than 6 within the endgame, then the
strategy output by a solver that computes a o-
equilibrium in the endgame induced by a trunk strategy
t would constitute an e-equilibrium of the full game
when paired with t.

74



Endgame property

» We can classify different games according to
property described by premise of proposition
— If premise Is satisfied, then we can say game
satisfies the (e, 6)-endgame property

* [nteresting quantity would be smallest value £*(6) such
that game satisfies the (g, 6)-endgame property for a
given o.

« Game above has €*(6) = o foreach 6 >=0
« RPShase*(6) =1foreacho>=0
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Benefits of endgame solving

Computation of exact (rather than approximate)
equilibrium strategies In the endgames

Computation of equilibrium refinements (e.g.,
undominated and e-quasi-perfect equilibrium)

Better abstractions in the endgame that is reached
— Finer-grained abstractions

— History-aware abstractions

— Strategy-biased abstractions

Solving the “off-tree problem”
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Efficient algorithm for endgame solving In
large imperfect-information games

 Naive approach requires O(n?) lookups to the strategy
table, where n is the number of possible hands

— Computationally infeasible (> 1 min/hand)

» QOur algorithm uses just O(n) strategy table lookups (8
seconds/hand using Gurobi’s LP solver)

» Our approach improved performance against strongest
2013 ACPC agents

— 87+-50 vs. Hyperborean and 29+-25 vs. Slumbot
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« New game decomposition approach (CFR-d) has
theoretical guarantee but performs worse empirically

— Burch et al. AAAI-14

 Recent approach for safer endgame solving that
maximizes the “endgame margin”
— Moravic et al. AAAI-16

* Doug Polk related to me in personal communication
after the competition that he thought the river strategy
of Claudico using the endgame solver was the strongest

part of the agent.
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Problematic hands

1. We had A4s and folded preflop after putting in over half of our stack
(human had 99).

—  We only need to win 25% of time against opponent’s distribution for
call to be profitable (we win 33% of time against 99).

—  Translation mapped opponent’s raise to smaller size, which caused us to

look up strategy computed thinking that pot size was much smaller than
It was (7,000 vs. 10,000)

2.  We had KT and folded to an all-in bet on turn after putting in % of our stack
despite having top pair and a flush draw

—  Human raised slightly below smallest size in our abstraction and we
Interpreted it as a call

—  Both 1 and 2 due to “off-tree problem™
3. Large all-in bet of 19,000 into small pot of 1700 on river without “blocker”
—  E.g., 3s2c better all-in bluff hand than 3c2c on JsTs4sKcQh

—  Endgame information abstraction algorithm doesn’t fully account for
“card removal” 79



Reflections on the First Man vs. Machine

No-Limit Texas Hold ‘em Competition
[Sigecom Exchanges ‘15, to appear in Al Magazine]

Two most important avenues for improvement

— Solving the “off-tree problem™

— Improved approach for information abstraction that better accounts for
card removal/“blockers”

Improved theoretical understanding of endgame solving
— Works very well in practice despite lack of guarantees
— Newer decomposition approach with guarantees does worse

Bridge abstraction gap
— Approaches with guarantees only scale to small games
— Larger abstractions work well despite theoretical “pathologies”

Diverse applications of equilibrium computation
Theoretical questions for action translation/post-processing



Second Brains vs. Al Competition

 Libratus: +14.7 BB/100 over 120,000 hands ($200Kk in
prizes)
— Claudico -9.16 BB/100 over 80,000 hands ($100Kk in prizes)
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1. Libratus: 20-25 million core hours on supercomputer
— Claudico: 2-3 million core hours on supercomputer
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2.

Improved equilibrium-finding algorithm “Regret-
based pruning” which prunes actions with high regret
early on in CFR so that the computation can eliminate
large portions of the game tree following these “bad”
actions.
— Brown and Sandholm, “Reduced Space and Faster
Convergence in Imperfect-Information Games via

Regret-Based Pruning,” 2017 AAAI Workshop on
Computer Poker and Imperfect Information
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http://www.cs.cmu.edu/~noamb/papers/16-arXiv-Total-RBP.pdf

3.

Improved endgame solver. Used supercomputer
resources In real time. Was able to solve full turn and
river endgames within around 20 seconds. Estimated
that it would take 10+ minutes on normal machine.

— Brown and Sandholm, “Safe and Nested Endgame Solving
In_Imperfect-Information Games,” 2017 AAAI Workshop

on Computer Poker and Imperfect Information
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http://www.cs.cmu.edu/~noamb/papers/17-AAAI-Refinement.pdf

4. Claudico’s mistakes = Libratus’ strengths
— e.g., card removal/“blockers” and off-tree problem
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Standard paradigm

Original game

Abstracted game

Automated abstraction i E

Custom
equilibrium-finding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
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New game-solving paradigms
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Endgame solving

Strategies for entire game
computed offline

A

Endgame strategies
computed In real time to
greater degree of accuracy
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Incorporating qualitative models

Player 1’s Player 2’s
strategy  strategy

BLUFF-FOLD | roLp/LUFF

Weaker A

hand FOLD/CHECK
CHECK-FOLD

BLUFF/CHECK
CALL/CHECK

CHECK-CALL

CALL/BET
BET-FOLD

StrongerV
hand RAISE/BET

BLUFF-FOLD | FOLD/BLUFF

CHECK-FOLD
FOLD/CHECK

CHECK-FOLD

BLUFF/CHECK
CHECK

CALL/CHECK
CHECK-CALL

CALL/BET
BET-FOLD CHECK-CALL

RAISE/BET
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Computing Nash equilibria in games
with more than two players

Developed new algorithms for computing e-equilibrium
strategies in multiplayer imperfect-information stochastic games
— Models multiplayer poker tournament endgames

Most successful algorithm, called PI-FP, used a two-level
Iterative procedure

— OQuter loop is variant of policy iteration

— Inner loop is an extension of fictitious play

Proposition: If the sequence of strategies determined by
Iterations of PI-FP converges, then the final strategy profile is an
equilibrium.

We verified that our algorithms did in fact converge to ¢-
equilibrium strategies for very small ¢
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The need for opponent exploitation

« (Game-solving approach produces unexploitable (i.e.,
“safe”) strategies in two-player zero-sum games

 But it has no guarantees in general-sum and
multiplayer games

 Furthermore, even Iin two-player zero-sum games, a
much higher payoff is achievable against weak
opponents by learning and exploiting their mistakes
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Opponent exploitation challenges

Needs prohibitively many repetitions to learn in large
games (only 3000 hands per match in the poker
competition, so only have observations at a minuscule
fraction of information sets)

Partial observability of opponent’s private information

Often, there Is no historical data on the specific opponent
— Even if there is, it may be unlabelled or semi-labelled

Recently, game-solving approach has significantly
outperformed exploitation approaches in Texas hold ‘em
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Overview of our approach

Start playing based on game theory approach

As we learn opponent(s) deviate from equilibrium, adjust our
strategy to exploit their weaknesses

— E.g., the equilibrium raises 90% of the time when first to act, but the
opponent only raises 40% of the time

— Requires no prior knowledge about the opponent

Find opponent’s strategy that is “closest” to a pre-computed
approximate equilibrium strategy and consistent with our
observations of his actions so far

Compute and play an (approximate) best response to the
opponent model.
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Deviation-Based Best Response algorithm
(generalizes to multi-player games)

Compute an approximate equilibrium
Maintain counters of opponent’s play throughout the match

for n = 1 to |public histories|
— Compute posterior action probabilities at n (using a Dirichlet prior)
— Compute posterior bucket probabilities

— Compute model of opponent’s strategy at n

return best response to the opponent model

Many ways to define opponent’s “best” strategy

that Is consistent with bucket probabilities
« L, orL, distance to equilibrium strategy
» Custom weight-shifting algorithm, ...
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Experiments on opponent exploitation

« Significantly outperforms game-theory-based base strategy in 2-
player limit Texas hold ‘em against
— trivial opponents (e.g., one that always calls and one that plays randomly)
— weak opponents from AAAI computer poker competitions

 Don’t have to turn this on against strong opponents

Opponent: Always fold  Opponent: Always raise ~ Opponent: GUS2

Wi n [a1=t]
ra te 058

1,000 3,000
#hands 95



Exploitation-exploitability tradeoff

Exploitation

Exploitability



Safe opponent exploitation

 Definition. Safe strategy achieves at least the
value of the (repeated) game in expectation

» |s safe exploitation possible (beyond selecting
among equilibrium strategies in the one-shot
game)?
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Rock-Paper-Scissors

Suppose the opponent has played Rock in each of the
first 10 iterations, while we have played the
equilibrium c*

Can we exploit him by playing pure strategy Paper In
the 11t iteration?

— Yes, but this would not be safe!

By similar reasoning, any deviation from ¢* will be
unsafe

So safe exploitation Is not possible in Rock-Paper-
Scissors
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Rock-Paper-Scissors-Toaster

rock  paper scissors toaster
Rock 0,0 -1, 1 1, -1 4, -4

Paper 1,-1 0,0 -1,1 3, -3
Scissors -1,1 1,-1 0,0 3, -3

t is strictly dominated

— s does strictly better than t regardless of P1°’s strategy
Suppose we play NE in the first round, and he plays t

— Expected payoff of 10/3

Then we can play R in the second round and guarantee at
least 7/3 between the two rounds

Safe exploitation is possible in RPST!
— Because of presence of ‘gift’ strategy t 99



When can opponent be exploited safely?

tnd ctratnm /)

Nnnnnont nlavind an (itaratad \ainal/IvN Aamina g
VrJrJ\JI Ivi L Plu]bu Al 1 \lL\Jl (VUG BR'A'AVIVY AN | , UVilillrivmatvu vl ULLbuy .
_ _ L | M
R is a gift Ul3l>
but not iteratively weakly dominated
D|2]|3

Nininanant nlaxad a ctvratanss that 1cn’+ 11 tha criinnnart AFf anyr AN
VIJPULJ.VLLL tjlu.y WOl AL DLl ul.vs)' Ltiiail 1011 U 111 uUllwv outjtJULL UL ull] \1\1;

R 1sn’t in the support of any equilibrium L
but is also not a gift U|o
D|-2

Definition. We received a gift if opponent played a strategy such that we have
an equilibrium strategy for which the opponent’s strategy 1sn’t a best response

Theorem. Safe exploitation is possible iff the game has gifts
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Exploitation algorithms

1#Risk what you’ve won so far

2 PRisk what you’ve won so far in expectation (over nature’s & own
randomization), i.e., risk the gifts received

— Assuming the opponent plays a nemesis in states we don’t observe

« Theorem. A strategy for a two-player zero-sum game Is safe Iff it
never risks more than the gifts received according to #2

» Can be used to make any opponent model / exploitation algorithm
safe

* No prior (non-eq) opponent exploitation algorithms are safe
» \We developed several new algorithms that are safe

— Present analogous results and algorithms for extensive-form
games of perfect and imperfect-information
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Risk What You’ve Won in Expectation
(RWYWE)

« Setk!=0

e fort=1to T do
— Set «t'; to be k'-safe best response to M
— Play action a% according to =,

— Update M with opponent’s action a';
_Setktl=Kt+ u(nt, a.) — v*
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Experiments on Kuhn poker

 All the exploitative safe algorithms outperform Best Nash
against the static opponents

« RWYWE did best against static opponents
— Outperformed several more conservative safe exploitation algs

» Against dynamic opponents, best response does much worse
than value of the game

— Safe algorithms obtain payoff higher than the game value
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Recap

Background

Approaches for game solving within the
standard paradigm

New game-solving paradigms
Opponent exploitation
Challenges and directions
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Game solving challenges

Nash equilibrium lacks theoretical justification In
certain game classes
— E.g., games with more than two players

— Even in two-player zero-sum games, certain refinements are
preferable

Computing Nash equilibrium is PPAD-complete in
certain classes

Even approximating NE In 2p zero-sum games very
challenging in practice for many interesting games

— Huge state spaces
Robust exploitation Is preferable
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Frameworks and directions

Standard paradigm
— Abstraction, equilibrium-finding, reverse mapping (action translation and
post-processing)
New paradigms

— Incorporating qualitative models (can be used to generate human-
understandable knowledge)

— Real-time endgame solving
Domain-independent approaches

Approaches are applicable to games with more than two players

— Direct: abstraction, translation, post-processing, endgame solving,
qualitative models, exploitation algorithm

— Equilibrium algorithms also, but lose guarantees
— Safe exploitation, but guarantees maximin instead of value
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« www.ganzfriedresearch.com
* https://www.youtube.com/watch?v=phRAyF1rq0l
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