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Abstract
Prior to the early 2000s, patients with advanced gastrointestinal stromal tumors (GIST) had very poor prognoses owing to 
a lack of effective therapies. The development of tyrosine kinase inhibitors at the turn of the century significantly improved 
the overall survival for patients with GIST. The resounding success of imatinib in the first clinical trial of a tyrosine kinase 
inhibitor to treat GIST led to its approval for first-line therapy for advanced GIST; this study was open to all comers and 
not restricted to any GIST subtype(s). The trials that led to the approvals of second-, third-, and fourth-line therapy for 
advanced GIST were also open to all patients with advanced/metastatic GIST. Only in retrospect do we realize the role that 
the molecular subtypes played in the results observed in these studies. In this review, we discuss the studies that led to the US 
Food and Drug Administration approval of imatinib (first line), sunitinib (second line), regorafenib (third line), and ripretinib 
(fourth line) for advanced KIT-mutant GIST. In addition, we review how information about GIST molecular subtypes has 
been used to accelerate the approval of other targeted therapies for non-KIT mutant GIST, leading to the approval of five 
additional drugs indicated for the treatment of specific GIST molecular subtypes. We also discuss how our understanding of 
the molecular subtypes will play a role in the next generation of therapeutic approaches for treating advanced GIST.

1 Introduction

Gastrointestinal stromal tumors (GIST), the most common 
soft-tissue sarcoma, are driven by a variety of oncogenic driv-
ers. The understanding of GIST molecular drivers has resulted 
in the clinical testing and eventual approval of multiple tar-
geted therapies, specifically tyrosine kinase inhibitors (TKIs), 
which have revolutionized the treatment of the majority of 
patients with GIST [1]. Since the implementation of effective 
targeted therapies, the overall survival (OS) of patients with 
advanced GIST has improved to the current estimated range 
of 6–8 years, compared with historical results of approxi-
mately 1.5 years when treated with chemotherapy or radiation 
(neither of which is effective in GIST), or < 15 months with 
surgery alone [1–5]. This improvement in survival is mostly 

confined to the population of patients with GIST with driver 
mutations in the receptor tyrosine kinase (RTK) KIT, which 
can be effectively targeted with KIT TKIs. The KIT TKIs 
imatinib (first line), sunitinib (second line), regorafenib (third 
line), and ripretinib (fourth line) were approved by health 
authorities, such as the US Food and Drug Administration, 
based on studies in which eligibility required only a diagno-
sis of advanced GIST and no requirements of any particular 
molecular driver [4, 6–8]. For the purposes of classification, 
we have labeled these registrational studies as examples of 
a mutation-agnostic/histology-specific study design. This 
approach was successful for the clinical development of KIT 
TKIs because the vast majority (70%) of patients with GIST 
have KIT mutations (Fig. 1A) that can be effectively targeted 
by these agents [9]. However, we believe that this approach 
is not viable for the development of future therapies. It has 
become apparent that mutation-agnostic clinical studies using 
KIT TKIs to treat patients of other molecular subtypes out-
side of KIT-mutant GIST do not provide the same degree of 
clinical benefit, therefore leaving these patients with advanced 
GIST with few to no options for effective therapy [10–15].

Recently, rational drug design and biological approaches 
focused on these less common GIST molecular subtypes 
(remaining 30% of cases) have resulted in successful clinical 
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Key Points 

The discovery and use of tyrosine kinase inhibitors 
significantly improved the overall survival of patients 
with advanced/metastatic gastrointestinal stromal tumors 
(GIST), as surgery alone and traditional chemotherapy/
radiation therapies provide little clinical benefit.

The studies that led to the approval of first-, second-, 
third-, and fourth-line therapies included all patients 
with advanced/metastatic GIST, regardless of mutational 
driver status, and only provided clinical benefit to a 
subset of patients.

Our understanding of the molecular mechanisms of 
various GIST subtypes has informed precision medicine-
focused studies, and led to the development and approval 
of more successful targeted therapies for those patients 
with rarer GIST subtypes.

We propose that future drug development should focus 
on mutation-specific subsets of GIST, rather than simply 
selecting patients based only on the number of specific 
types of prior therapy.

studies testing novel therapeutics. These drugs include: 
avapritinib (a novel type I platelet-derived growth factor 
receptor alpha [PDGFRA]/KIT TKI), larotrectinib and 
entrectinib (potent NTRK TKIs for targeting NTRK fusions 
in GIST) [16–19], and the combination of a BRAF inhibitor 
(dabrafenib) and a MEK inhibitor (trametinib) for BRAF 
V600E-mutant GIST [20–22]. The recent approvals of these 
five treatments, each for a specific molecular subtype, were 
enabled by clinical studies with fundamentally different 
approaches for selecting eligible patients for participation 
than those used for the early KIT TKI trials. The inclusion 
criteria of avapritinib, larotrectinib or entrectinib, and the 
combination of dabrafenib and trametinib, phase I–II stud-
ies required the presence of a PDGFRA D842V mutation 
[23, 24], a NTRK family fusion, or a BRAF V600E muta-
tion [16–19, 22], respectively. In this review, we refer to 
these studies as having a precision medicine study design 
(i.e., mutation-specific patient eligibility). This type of study 
design can be histology specific (e.g., GIST avapritinib 
approval) or histology agnostic (e.g., BRAF V600E-mutant 
solid tumors and approval of dabrafenib and trametinib com-
bination [22]). We posit that precision medicine approaches, 
facilitated by diagnostic molecular testing and pre-clinical 
research, will be the most successful strategy for developing 

new GIST treatment strategies, especially for those less com-
mon, non-KIT mutant GIST subtypes.

2  GIST Drivers and Molecular Subtypes

Over the past 20 years, analysis of tens of thousands of cases 
of primary GIST have led to the identification of molecular 
drivers in almost all cases. Mutations in homologous RTKs, 
KIT and PDGFRA, account for 70 and 15% of cases, respec-
tively (Fig. 1A) [1, 11, 25–28]. As is well known, most 
(RTKs), including mutant forms of KIT or PDGFRA, sig-
nal through the canonical JAK/STAT, PI3K/AKT/mTORC, 
and RAS/RAF/MEK/ERK pathways (Fig. 1B) [29–34]. 
Along this line, a minority of GIST cases have other RTKs 
in addition to KIT/PDGFRA as molecular drivers, includ-
ing more recent descriptions of activating translocations of 
FGFR1, FGFR2, NTRK1, NTRK3, and ALK (Fig. 1A, B) 
[28, 35–38]. In addition, there are cases of GIST that arise 
because of activating mutations of PIK3CA, BRAF, or RAS 
family members (Fig. 1A, B) [39–42]. More recently, BRAF 
translocations have been reported as a molecular driver in 
GIST [43]. In addition, homozygous/hemizygous loss of 
neurofibromatosis (type 1) [NF1] is a well-established cause 
of some cases of GIST, likely due to dysregulation of the 
RAS/RAF/MEK/ERK pathway. Neurofibromatosis (type 
1) loss giving rise to GIST can occur sporadically owing 
to a somatic mutation or in the setting of NF1 with a het-
erozygous germline NF1 mutation [44–48]. In total, cases of 
RTK translocation-mutant GIST or those with mutations of 
downstream signaling pathways account for approximately 
5% of all cases of GIST (Fig. 1A) [9].

In addition to mutations that activate RTK downstream 
signaling pathways, a biologically and clinically distinct sub-
type of GIST is driven by succinate dehydrogenase (SDH) 
deficiency [49–51]. Gastrointestinal stromal tumors of this 
subtype result from inactivating hemizygous or compound 
heterozygous mutations of one the four SDH subunits 
(SDHA, SDHB, SDHC, or SDHD) or epimutation of the 
SDHC promoter (Fig. 1C) [49, 52–56]. In total, 9% of GIST 
are SDH deficient, comprising the third largest molecular 
subtype after KIT- and PDGFRA-mutant GIST. In contrast 
to GIST driven by activating mutations in RTKs or within 
the classical RTK-signaling pathways, these cases arise as 
a consequence of SDH loss of function. Succinate dehy-
drogenase loss of function results in increased intracellular 
succinate that inhibits a certain class of enzymes leading to 
activation of the VHL pathway (pseudohypoxia), as well 
as inhibition of ten-eleven translocation and KDM family 
enzymes with resultant genome-wide epigenetic reprogram-
ming (Fig. 1C) [51, 53, 57, 58].
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3  Traditional TKI Treatment Paradigm 
for Advanced GIST

Slightly more than two decades ago, the first clinical trial of 
a targeted therapy in GIST began [8, 59]. There are now nine 
targeted therapies approved for GIST, and while we now 
know that each drug is most effective for specific subtypes 
of GIST, four of these agents are still approved for the treat-
ment of all forms of GIST because their registrational stud-
ies included all patients with advanced GIST (Table 1). The 
current treatment sequencing for KIT-mutant GIST remains 

in the order of original drug development and US Food 
and Drug Administration (FDA) approval: imatinib (first 
line), sunitinib (second line), regorafenib (third line), and 
ripretinib (fourth line). The trials that led to the approvals 
of imatinib, sunitinib, regorafenib, and ripretinib were open 
to all patients with advanced/metastatic GIST and only later 
was it fully appreciated the role molecular subtypes played 
in the results reported from those studies [4, 7, 8, 10–13, 
60–65]. Figure 2 highlights the results from these studies 
and showcases that the traditional treatment paradigm was 
mostly successful for patients with KIT-mutant and certain 

Fig. 1  Molecular drivers of gastrointestinal stromal tumors (GIST) 
and their corresponding oncogenic signaling mechanisms. A Propor-
tion of GIST cases based on oncogenic driver subtype. B The major-
ity of genetic aberrations that drive GIST development result in the 
activation of downstream signaling pathways. The downstream path-
ways (JAK/STAT, PI3K/AKT/mTORC1, and RAS/RAF/MEK/ERK) 
activated are similar for GIST driven by KIT, platelet-derived growth 
factor receptor alpha (PDGFRA), or receptor tyrosine kinase (RTK) 
gene fusions (e.g., FGFR1, FGFR2, NTRK1, NTRK3, and ALK). 
Gastrointestinal stromal tumors driven by neurofibromatosis (type 1) 
(NF1) loss, RAS, BRAF, or PI3K activation also utilize similar path-
ways for oncogenesis. The colors for these genetic aberrations corre-
spond to the pie chart in panel A. C A subset of GIST is driven by 

succinate dehydrogenase (SDH) complex deficiency. This deficiency 
results from an inactivating mutation of any one of the four SDH sub-
unit genes (SDHA, SDHB, SDHC, or SDHD) or epimutation of the 
SDHC promoter leading to gene silencing. The SDH complex con-
verts succinate to fumarate, but in SDH-deficient GIST the inactive 
complex results in the accumulation of succinate. This accumulated 
succinate leads to the inhibition of prolyl hydroxylase (PHD), which 
is involved in the proteasomal degradation of hypoxia-inducible 
factor (HIF). Elevated succinate levels also have an effect on epige-
netic reprogramming, by inhibiting ten-eleven translocation methyl-
cytosine dioxygenase (TET) and lysine-specific histone demethylase 
(KDM) family proteins. Image created using BioRender.com
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non-exon 18 PDGFRA-mutant GIST and minimally effec-
tive for patients with other subtypes. In the following sec-
tions, we focus on the preclinical and clinical studies that 
led to the approval of imatinib, sunitinib, regorafenib, and 
ripretinib.

3.1  Imatinib

Imatinib, a novel agent originally designed to inhibit the 
aberrant enzymatic function of the oncogenic driver in 
chronic myelogenous leukemia, BCR::ABL1, was found 
to be similarly effective in inhibiting the enzymatic func-
tion of KIT, the main driver in the majority of GIST cases 
(Fig. 1) [66–68]. Despite being designed for targeted can-
cer therapy, the phase I, II, and III studies of imatinib that 
led to its approval for advanced GIST included patients of 
all GIST subtypes, the only criteria being “metastatic or 
advanced CD117+ GIST” (Table 1) [8, 59, 69, 70]. The 
response rate to imatinib in the initial studies was 50–80% 
[8, 11, 14, 70–73]. At that time, molecular analysis of GIST 
was in its infancy, thus the vast majority of patients were 
enrolled without any molecular testing results, but it was 
subsequently determined that almost all of the responders in 
this trial had driver mutations that were sensitive to imatinib 
(e.g., KIT exons 9, 11, or 13; PDGFRA exon 12) [Fig. 2] 
[13, 14, 70, 73]. Those with the third most common sub-
type, SDH-deficient GIST, had a < 5% objective response 
rate (ORR) to imatinib [51, 74]. With the appreciation of 
the molecular underpinnings of the success of imatinib as a 
targeted therapy in GIST, the search for additional targetable 
drivers accelerated. For example, analysis of a patient with 
a partial response to imatinib whose tumor lacked a KIT 
mutation led to investigations that identified an imatinib-sen-
sitive PDGFRA mutation [11, 14]. Likewise, investigation of 
patients with “wild-type” KIT (meaning no KIT mutation) 
GIST who had rapid progression during imatinib therapy 
led to the identification of the imatinib-resistant primary 
PDGFRA D842V mutation [25, 75]. It is known that TKIs 
that target wild-type KIT also inhibit wild-type PDGFRA 
and the converse is true as well [66, 76–78]. Therefore, at 
the time, the treatment of PDGFRA mutant-GIST followed 
the same clinical development paradigm as the treatment 
of KIT-mutant GIST with the exception of patients with 
imatinib-resistant PDGFRA D842V, which we discuss in 
a later section.

After several years, the first reports about patients with 
GIST with delayed resistance to imatinib began to appear 
because of acquired secondary intra-allelic KIT mutations 
that disrupted drug binding [79–83]. We now appreciate that 
intra-allelic secondary kinase mutations are the most com-
mon mechanism of acquired resistance to imatinib in GIST 
[1, 9, 84–87]. This mechanism of resistance demonstrated 
the continued dependence of GIST on the enzymatic activity 

of the initial driver, and led to the development of additional 
targeted TKIs to overcome specific secondary KIT mutations 
in imatinib-resistant patients.

3.2  Sunitinib

The “next-generation” GIST TKIs arose from the rapid 
development of various small-molecule kinase inhibitors in 
the early 2000s. In most cases, KIT was not the primary tar-
get of the drug development program, but drugs designed to 
inhibit vascular endothelial growth factors and/or PDGFRs 
commonly had similar, or even greater, potency against KIT. 
Sunitinib, a type II multi-kinase inhibitor, entered phase I–II 
studies and then proceeded to be tested in a phase III clini-
cal study in patients with imatinib-refractory GIST in 2003 
[7, 88]. Again, these trials were conducted with a muta-
tion-agnostic approach. “Imatinib-refractory” patients that 
enrolled in the registrational sunitinib phase study included 
both those with primary resistance (progression in < 6 
months, e.g., PDGFRA D842V) and those with secondary 
resistance, meaning they initially responded to imatinib, 
but then their tumors progressed after months or even years 
of clinical response. No molecular testing was required 
for study eligibility (Table 1). Pre-clinically, sunitinib was 
shown to inhibit some imatinib-resistant KIT secondary 
mutations, including the most common imatinib-resistance 
mutation, V654A, and other secondary KIT mutations in 
exons 13 and 14, which encode the ATP binding pocket 
(ABP) [Fig. 3] [10, 12]. However, as sunitinib is a type II 
TKI like imatinib, it does not inhibit activation loop muta-
tions that confer primary resistance (PDGFRA D842V and 
cases lacking a KIT/PDGFRA driver mutation [historically 
classified as “wild-type” cases]) nor those with secondary 
KIT activation loop (exons 17–18) mutations of the kinase 
domain [12, 89–94]. Notably, these studies were predictive 
of the results of the sunitinib clinical studies, specifically 
the greatly reduced response rate compared with the ini-
tial imatinib trials (6.8 vs ~ 51.4%, respectively), largely 
owing to the presence of heterogeneous tumor clones, some 
with sunitinib-sensitive mutations and others with resist-
ant mutations [10, 12, 86, 87, 95]. It was also thought that 
a minority of SDH-deficient GIST cases may respond to 
sunitinib or regorafenib (discussed below), likely due to vas-
cular endothelial growth factor receptor inhibitory activity 
against these agents [51, 62, 96, 97]. However, at that time, 
after progression on imatinib, patients had no other options, 
therefore the criteria for approval were low. Sunitinib was 
approved for second-line treatment of patients with GIST 
after progression on imatinib, although it is now clear that 
it mainly benefits only a select subset patients with the KIT 
mutation (those with secondary ABP or primary KIT exon 
9 mutations) [98, 99]. Potentially, the results of these tri-
als could have had a higher response rate if the eligibility 
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criteria were limited to those with ABP mutations; however, 
there would still remain the issue of how to treat patients 
with heterogeneous tumor clones after progression on 
imatinib.

3.3  Regorafenib

Regorafenib, a more promiscuous type II TKI, entered clini-
cal testing for all patients with GIST who had not responded 
to both imatinib and sunitinib (first- and second-line ther-
apy) [100]. Pre-clinical testing indicated improved potency 
against activation loop mutations in exons 17 or 18 [100]. 
Unfortunately, potency against these mutations came at the 
expense of potency against secondary resistance mutations 
in KIT exons 13 and 14 (Fig. 3) [86]. Promising results 
were seen in a phase II study, with a partial response rate 
of 18% and a median progression-free survival (PFS) of 13 
months (Table 1) [6, 61, 101]. This study led to a rand-
omized, double-blind, placebo-controlled phase III study 
(NCT01271712) of regorafenib in patients with progression 
or intolerance to prior imatinib and sunitinib. This study was 
open to all mutational subgroups and in fact did not require 
any testing in order to be eligible for enrollment (mutation 
agnostic). In this study, the ORR was slightly lower than that 
seen in the phase III, second-line sunitinib study (4.5%) [61]. 
Despite this low response rate, regorafenib offered a statisti-
cally significant benefit in PFS compared with placebo and 
was FDA approved as a third-line GIST therapy in 2012 [6, 
61, 101].

3.4  Ripretinib

A program to rationally design a TKI that could over-
come secondary resistance mutations specifically led to 
the development of ripretinib (originally known as DCC-
2618), a TKI that binds KIT in the “switch pocket” rather 
than the classical ABP, thereby preventing conformational 
change of the kinase to the active form [76]. Pre-clinical 
studies showed improved potency against many of the 
KIT secondary mutations when compared with approved 
KIT TKIs (Fig. 3) [76]. In the first in-human phase I trial 
(NCT02571036), promising results were seen in terms of 
ORR and PFS from patients treated with different num-
bers of prior lines of therapy (Table 1). Notably, the PFS 
for patients treated in the second, third, or fourth line or 
later was 10.7, 8.3, and 5.5 months, respectively [102]. 
Based on these results, a randomized, placebo-controlled, 
double-blind phase III trial (INVICTUS, NCT03353753) 
was conducted to study the efficacy of ripretinib in patients 
who had progressed on prior treatment with imatinib, 
sunitinib, and regorafenib or those who have documented 
intolerance to any of these treatments [102, 103]. The eli-
gibility criteria specified prior lines of therapy but did 
not require molecular testing or exclude any molecular 
subtypes (similar to a mutation-agnostic study design). In 
this registrational study, treatment with ripretinib signifi-
cantly improved PFS compared with placebo (6 months vs 
1 month, hazard ratio = 0.15, p < 0.0001). These results 
led to FDA approval of ripretinib for treatment of patients 

Fig. 2  Traditional treatment paradigm for advanced gastrointestinal 
stromal tumors. The gray box shows the list of US Food and Drug 
Administration-approved drugs in the traditional treatment para-
digm, and 1L, 2L, 3L, and 4L correspond to first-, second-, third-, 
and fourth-line therapy, respectively. The advanced gastrointestinal 
stromal tumor subtypes are listed in the colored boxes, and those 
colors correspond to patient treatment response to 1L, 2L, 3L, and 

4L therapy. It was later discovered after clinical trials that based on 
the advanced gastrointestinal stromal tumor subtype, response rates 
vary amongst patients depending on the mutational status. NF1 neu-
rofibromatosis (type 1), NTRK neurotrophic tyrosine receptor kinase, 
PDGFRA platelet-derived growth factor receptor alpha, SDH succi-
nate dehydrogenase. Image created using BioRender.com
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with GIST who had not responded to at least imatinib, 
sunitinib, and regorafenib [4, 102]. Even though this study 
incorporated a cross-over from placebo to ripretinib at the 
time of progression, OS was improved for patients ini-
tially assigned to ripretinib treatment (15.1 months vs 6.6 
months, hazard ratio = 0.36, no statistical testing because 
of the hierarchical study design). In addition, the ORR 
for ripretinib was numerically superior to that seen in the 
second-line sunitinib, or third/fourth-line regorafenib stud-
ies. These results suggest an improved ability of ripretinib 
to control complex heterogeneous TKI-resistant disease 
compared with sunitinib or regorafenib [104]. However, 
given that the PFS with ripretinib was only 6 months, the 
results also indicate that either ripretinib cannot durably 
control all secondary KIT resistance mutations and/or 
KIT-independent resistance mutations that arise in heav-
ily pre-treated KIT-mutant GIST [105, 106]. In addition to 
the issue of KIT secondary resistance mutations, the study 

also enrolled patients lacking KIT or PDGFRA mutations 
(approximately 8%) or with tumors that had not been geno-
typed (approximately 15%), likely diluting some of the 
benefit from this therapy [4, 104].

These clinical results suggested that ripretinib might 
be able to control disease if used earlier in the treatment 
sequence, rather than as fourth-line or later therapy. A phase 
III clinical trial (INTRIGUE, NCT03673501) was conducted 
to compare the activity of ripretinib versus sunitinib for the 
treatment of patients with failure of prior imatinib therapy 
(progression or documented intolerance but no other TKI 
therapy). In a departure from previous studies, in order to 
be eligible for this study, a molecular pathology report was 
required, although no specific patients with subtypes of 
GIST were excluded. However, patients were stratified based 
on mutational status as well as a history of imatinib intoler-
ance. The primary endpoint of the study was PFS, per the 
statistical design plan, this endpoint was analyzed first in the 

Fig. 3  Representation of tyrosine kinase inhibitor (TKI) therapy and 
the emergence of secondary resistance in patient with hypothetical 
KIT-exon 11-mutant gastrointestinal stromal tumors. Initially KIT-
exon 11-mutant gastrointestinal stromal tumor cells typically respond 
to first-line (1L) imatinib therapy, and correspond to a decrease in 
relative tumor bulk and lead to sustained stable disease. However, 
over time, residual tumor cells acquire imatinib-resistant mutations 
and lead to tumor progression. The table shows the various areas in 
which resistance mutations occur, either in the ATP binding pocket or 
activation loop of KIT. As tumor cells no longer respond to imatinib 
therapy, relative tumor bulk increases and a new therapy is required. 

Sunitinib, used as second-line (2L) therapy, can target only some 
of the most common imatinib-resistant mutations. As a patient pro-
gresses through various therapies, tumor cell heterogeneity increases 
over time as additional mutations arise to ongoing therapy. Third- and 
fourth-line (3L and 4L, respectively) therapies can target previously 
acquired mutations, but not all of these are sensitive to a given drug. 
This is indicated in the graph as an overall increase in tumor bulk 
with intermittent stable disease. After ripretinib (4L), there are no 
other US Food and Drug Administration-approved therapies to target 
ripretinib-resistant tumor cells. mo months, mPFS median progres-
sion-free survival. Image created using BioRender.com
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KIT exon 11 intention-to-treat patient population and then in 
the all-patient intention-to-treat population. Therefore, the 
overall study design was mutation agnostic, but the initial 
endpoint analyzed was for a mutation-specific patient popu-
lation [103]. Despite the expectation that ripretinib would 
yield superior PFS results compared with sunitinib, the study 
failed to meet the endpoint of superior PFS with ripretinib 
compared with sunitinib. Specifically, the median PFS in 
the KIT exon 11 intention-to-treat population for ripretinib 
versus sunitinib was 8.3 and 7.0 months, respectively (hazard 
ratio 0.88, p = 0.36) [107, 108].

3.5  Disease Heterogeneity and Tumor Burden 
Increases with Successive Lines of Therapy 
in KIT‑Mutant GIST

Figure 3 summarizes the overall tumor burden in a hypo-
thetical KIT-exon 11-mutant patient with metastatic disease 
from initial imatinib therapy through the end of ripretinib 
treatment. With each line of therapy, there is a progressive 
increase in tumor burden, suggesting that it will not be pos-
sible to indefinitely add on sequential salvage therapies 
(e.g., fifth-, sixth-,…-, and nth-line) unless new therapies 
cause significant tumor regression. Eventually the increas-
ing tumor burden will not be compatible with survival to the 
next line of therapy. This was suggested in the INVICTUS 
study, where the OS of patients initially randomized to pla-
cebo was inferior to patients initially assigned to ripretinib, 
despite the presence of a cross-over in the study design [4]. 
This is likely due to these placebo-assigned patients experi-
encing such clinical deterioration in which they were either 
too ill to cross-over or the tumor burden became so large that 
ripretinib could no longer provide sufficient clinical benefit 
and improve survival. Although the registrational studies for 
sunitinib, regorafenib, and ripretinib all included a blinded 
placebo arm, the results from INVICTUS suggest that fur-
ther placebo-controlled studies in advanced GIST might 
violate the concept of equipoise [4, 7, 61, 109]. Notably, 
the PFS of placebo patients was very similar in all of these 
studies, averaging 4–6 weeks, suggesting that perhaps this 
duration could be used to conduct future single-arm studies 
of new agents in the fifth line or later.

As predicted by in vitro profiling, each of the approved 
KIT inhibitors has different liabilities against secondary 
resistance mutations, likely explaining the limited overall 
duration of PFS for agents used after imatinib (Fig. 3) [4, 
7, 61, 62, 110, 111]. For example, sunitinib has minimal 
activity against secondary KIT activation loop mutations 
(e.g., D816H), but potently inhibits the common secondary 
ABP mutations such as V654A and T670I (Fig. 3) [10, 86]. 
Regorafenib has better activity than sunitinib against some 
but not all activation loop mutations, with inferior activity 
against V654A. Of the approved agents, ripretinib has the 

best activity across the entire spectrum of activation loop 
mutations, but may lack sufficient clinical activity against 
the ABP mutations [105, 106]. However, the mechanisms 
leading to ripretinib resistance are just beginning to be eluci-
dated and may include both KIT-dependent (secondary muta-
tions) and KIT-independent mechanisms that activate down-
stream signaling pathways (e.g., RAS mutations or NF1 loss 
[Fig. 1]) [85, 112]. Despite the data suggesting differential 
activity of sunitinib, regorafenib, and ripretinib against dif-
ferent secondary mutations, currently, treatment is prescribed 
based on the line of therapy, rather than any individualized 
biomarkers such as sequencing of tumor biopsy and/or cir-
culating tumor DNA (ctDNA) samples. As we continue to 
understand resistance mechanisms and the molecular driv-
ers of GIST, and with the development of new technologies 
and approaches, we posit that the use of precision medicine 
study designs may be more useful in creating new targeted 
therapies, especially for specific GIST subtypes.

4  Precision Medicine Approaches 
Accelerated FDA Approvals for Non‑KIT 
Mutant GIST Therapies

While the mutation-agnostic approach to clinical drug devel-
opment in GIST has undeniably benefited the majority of 
patients with GIST, increasing the median OS for patients 
with KIT-mutant/imatinib-sensitive GIST to the range of 6–8 
years, there remained unmet clinical needs [1]. Outside of 
KIT-mutant GIST and certain patients with PDGFRA muta-
tions outside of exon 18, the traditional mutation-agnostic 
approach and treatment paradigm provides limited benefit 
to other patients with GIST, leaving these patients subject 
to physical and financial toxicity (Fig. 2). Most notably was 
the challenge of primary TKI resistance associated with 
PDGFRA D842V-mutant GIST and the many historically 
designated patients with KIT/PDGFRA “wild-type” GIST. 
The traditional treatment paradigm highlighted above was 
unsuitable for addressing these rare, but not insignificant 
populations and therefore called for a different approach to 
clinical study designs. A shift to a mutation-focused treat-
ment approach was facilitated by an increased understanding 
of the molecular subtypes of GIST and improved availability 
of molecular testing. This precision medicine study approach 
has demonstrated great success for patients with rare GIST 
subtypes that were not addressed in the original KIT TKI 
mutation-agnostic trials.

4.1  Avapritinib for PDGFRA‑Exon 18‑Mutant GIST

The most common PDGFRA driver mutation seen in GIST, 
exon 18 D842V (in the kinase activation loop), displays pri-
mary resistance to imatinib and other type II TKIs (e.g., 
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sunitinib) [10, 25, 26, 73, 113]. It is now appreciated that 
certain PDGFRA activation loop mutations, such as PDG-
FRA D842V, lock the kinase in the active confirmation, 
which interferes with type II TKI binding [114]. Therefore, 
rational drug design was used to specifically develop a type I 
TKI to target activation loop mutation PDGFRA D842V, and 
the homologous mutation KIT D816V (seen in mastocyto-
sis). Preclinical in vitro studies demonstrated that avapritinib 
(formally BLU-285) had potent biochemical activity against 
these KIT and PDGFRA activation loop mutations, which 
was further explored in clinical trials [115].

In 2015, the phase I NAVIGATOR (NCT02508532) 
study, a two-part, open-label, non-randomized trial, was 
initiated [23, 24]. NAVIGATOR represents a prototypi-
cal example of a precision medicine approach, which 
describes a mutation-specific, histology-specific study 
design. Patients with PDGFRA-D842V mutant GIST were 
a pre-specified subgroup within the overall safety popula-
tion (20/46 in the dose-escalation phase and 36/204 for the 
dose-expansion phase). The other patients enrolled were 
those without PDGFRA D842V mutations treated with 
imatinib and one or more other TKIs (Table 1). At the 
time of data cut-off, the ORR for patients with PDGFRA 
D842V was 88%, with seven complete responses and 44 
partial responses [24]. In contrast, the ORR for all other 
patients was 22% [23]. This highlights the importance 
of molecular testing and tailoring treatments based on 
mutational status, as avapritinib was initially developed 
to target PDGFRA activation loop mutations, and those 
patients without these mutations did not respond as well 
[116]. The success of avapritinib specifically in PDGFRA-
D842V patients fast tracked its FDA approval in February 
2020 for the treatment of all exon 18 PDGFRA-mutant 
GIST (Fig. 4) [117].

Despite a much lower response rate in non-PDGFRA 
D842V patients, clinical trials (specifically VOYAGER, 
NCT03465722) continued with avapritinib, primarily to 
compare its efficacy to regorafenib for third-line treatment 
in patients with GIST previously treated with imatinib and 
one or two other TKIs. This phase III study failed to show a 
significant improvement in median PFS (4.2 and 5.6 months 
for avapritinib and regorafenib, respectively) [116]. Based 
on this disappointing result, avapritinib is no longer being 
developed for the treatment of KIT-mutant GIST, although it 
is now FDA approved for the treatment of advanced systemic 
mastocytosis, another neoplasm driven by activating KIT 
mutations (most typically KIT D816V) [118]. These results 
highlight the contrast in success rates between mutation-
specific (PDGFRA D842V) and mutation-agnostic (GIST 
treated with one to two other TKIs) studies for the same 
drug. In the case of avapritinib, this rationally designed 
drug did not fare well in a mutation-agnostic study with 
previously treated GIST, as mutational load increases in 

complexity as disease progresses and avapritinib could not 
overcome tumor heterogeneity any better than regorafenib.

4.2  Larotrectinib and Entrectinib for NTRK‑Fused 
GIST

Gastrointestinal stromal tumors with unidentified drivers 
have been a continued area of ongoing research. Origi-
nally referred to as “wild type” because sequencing of the 
tumors failed to detect any of the known driver mutations, 
the proportion of these GIST cases has consistently shrunk 
as drivers have been identified [119–121]. The most recently 
identified and exceptionally rare drivers in GIST are RTK 
gene fusions (1% of GIST cases, Fig. 1A), including those 
involving NTRK family members [122, 123]. NTRK fusions 
as oncogenes had previously been discovered in other can-
cers, and as a result, NRTK TKIs were developed and clini-
cally tested in these select populations [17, 19, 124]. The first 
NTRK-fusion genes were identified in GIST over 5 years ago, 
just when NTRK TKIs were entering clinical study. Shi et al. 
identified a fusion between NTRK3 and ETV6 in a patient 
with GIST who then was able to enter the phase I trial of laro-
trectinib (LOXO-101, NCT02122913) and responded well 
despite rapid progressive disease when previously treated 
with the KIT/PDGFRA TKIs imatinib (3 months), sunitinib 
(2 months), and sorafenib (2 months) [17, 19]. Since then, 
a handful of patients with GIST with NTRK fusions have 
been identified and successfully treated with larotrectinib. 
In a pooled analysis of three phase I/II trials, three patients 
with GIST were treated and all achieved complete responses 
(Table 1) [17, 19]. Because these studies defined eligibility 
using a molecular rather than a histological diagnosis, FDA 
approval was granted for this mutation-selected/histology-
agnostic population, both for larotrectinib and subsequently 
for another NTRK TKI, entrectinib (Fig. 4) [16]. Because 
of the rarity of this type of GIST, four patients in total were 
included in the larotrectinib (n = 3, response rate 100%) and 
entrectinib (n = 1, response not reported) registrational stud-
ies (Table 1) [17–19, 124–126]. Therefore, it remains impor-
tant that additional cases of response/non-response to these 
agents in patients with GIST be reported, thereby strengthen-
ing the rationale for physicians to identify and treat patients 
with NTRK-translocated GIST with these drugs.

4.3  Dabrafenib and Trametinib for BRAF‑V600E 
Mutant GIST

BRAF V600E-mutant GIST accounts for approximately 
0.8% of all cases of GIST (Fig. 1A). Because of the rar-
ity, there are few reports describing this subtype, but one 
case report demonstrates the successful use of dabrafenib 
monotherapy in BRAF V600E-mutant GIST [127]. In 
June 2022, the FDA granted accelerated approval to the 



66 H. M. Khosroyani et al.

combination of dabrafenib and trametinib for the treatment 
of adult and pediatric BRAF V600E-mutant solid tumors 
after progression on prior treatment and for whom no sat-
isfactory treatment options were available [21]. Previously, 
this combination had been approved for the treatment of 
BRAF-mutant melanoma (adjuvant and advanced disease), 
metastatic non-small cell lung cancer, and anaplastic thy-
roid cancer based on mutation-specific/histology-agnostic 
clinical studies, MFR1117019 (NCT02034110) and NCI-
MATCH (NCT02465060) [20]. Between these two stud-
ies, only a single patient with GIST was treated, and this 
patient did not have an objective response endpoint reported. 
Despite this, the combination of dabrafenib and trametinib 
was still approved for BRAF V600E-mutant solid tumors, 
which would then include BRAF V600E-mutant GIST 
(Fig. 4). As noted above for the case of larotrectinib and 
entrectinib, post-marketing reporting of additional cases of 
treated patients with GIST will be helpful to understand the 
efficacy of this combination.

5  Future Directions in GIST Drug 
Development

5.1  Next Generation of KIT (and PDGFRA) Inhibitors

Currently, a number of new KIT inhibitors are entering 
phase I studies, including NB003 (formerly AZD3229, 
NCT04936178) and THE-630 (NCT05160168) [105, 106, 

128]. Both of these agents have potency against a broader 
range of KIT TKI-resistant mutations, including both ABP 
and activation loop mutations, offering the possibility of 
controlling a broader range of TKI-resistant residual tumor 
cells and providing clinical activity even in late-line therapy. 
An alternative approach is being tested in the case of CGT-
9486 (previously PLX-9486), where combination therapy 
using CGT-9486 (active against activation loop mutations) 
plus sunitinib (active against ABP mutations) is being tested 
in sunitinib-naïve patient to see if the combination is supe-
rior to standard single-agent sunitinib (NCT02401815) [129, 
130].

Although registrational studies of these new agents could 
continue the historical practice of enrolling all patients with 
advanced GIST, we suggest that limiting enrollment to 
patients with KIT-mutant GIST as well a subset of PDG-
FRA-mutant GIST would result in superior ORRs and 
improved PFS compared with testing these agents against 
all patients with advanced GIST selected only based on the 
number and type of previous lines of therapy (Fig. 4). This 
type of design would be crucial to any attempt at regulatory 
approval based on a single-arm study in last-line therapy, 
where a sufficiently high ORR and duration of response 
would be required [131]. Eliminating GIST cases lack-
ing KIT mutations from the denominator would improve 
the odds of success of such a study. Following approval as 
an “nth-line therapy”, future studies could test these new 
therapies against approved agents in a phase III study for 
earlier lines of therapy, but again the use of eligibility 

Fig. 4  Using precision oncology approaches to treat advanced gastro-
intestinal stromal tumors (GIST) significantly improves patient out-
comes and treatment options by improving the likelihood of clinical 
response and minimizing the treatment of patients who are unlikely 
to respond to a given therapy. Colors correspond to patient outcomes; 

white boxes indicate therapies that are in development. FDA Food 
and Drug Administration, NF1 neurofibromatosis (type 1), NTRK 
neurotrophic tyrosine receptor kinase, PDGFRA platelet-derived 
growth factor receptor alpha, SDH succinate dehydrogenase. Image 
created using BioRender.com
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requirements that include a molecular definition for patient 
eligibility would be predicted to improve the odds of suc-
cess. A limitation to this approach would be determining 
how patients with advanced heterogeneous disease (e.g., two 
or more resistance mutations) should be enrolled in these 
types of clinical studies. In order to change the current drug 
sequencing for KIT-mutant GIST, future studies could use 
ctDNA to select or exclude patients for studies that compare 
two approved agents [104, 132]. For example, despite the 
failure of ripretinib to be proven superior to sunitinib in a 
second-line phase III study [108], it remains possible that 
biomarker selection of patients might have yielded a differ-
ent outcome. The ctDNA selection of patients could either 
enrich for patients expected to have a superior response to 
ripretinib versus sunitinib or exclude patients who would 
be predicted to have a better response to sunitinib versus 
ripretinib [133]. Currently, there are no published data that 
would allow an estimation of the likelihood of success of 
such a study design, but hopefully such data will be available 
in the future. One practical issue for the use of ctDNA for 
study eligibility is the observation that patients with GIST 
on average shed less tumor DNA than other types of solid 
tumors (e.g., lung cancer or melanoma), with 20–25% of 
patients with advanced GIST having undetectable levels of 
ctDNA [134–136]. In addition, the use of ctDNA as an eli-
gibility criterion would require the development, validation, 
and regulatory approval of a companion diagnostic [137].

5.2  Targeting SDH‑Deficient GIST

As mentioned previously, SDH-deficient GIST cases have 
a dismal ORR to imatinib (< 5%) and, at most, 20–30% of 
cases have a partial response to sunitinib or regorafenib [49, 
51, 96, 101]. During the conduct of the mutation-agnostic 
registrational studies for these agents, these studies were 
open to patients who met eligibility criteria based on the 
number of lines of prior therapy and the drugs used for 
prior therapy. However, current treatment strategies are now 
focused on targeting unique characteristics in SDH-deficient 
GIST. Notably, compared with KIT and PDGFRA-mutant 
GIST, SDH-deficient GIST show global hyper-methylation 
[53, 138]. Succinate dehydrogenase deficiency in GIST leads 
to succinate accumulation and inhibition of histone lysine 
demethylases (KDM) and ten-eleven translocation enzymes, 
which leads to DNA and histone hyper-methylation (Fig. 1C) 
[139, 140]. A study by Ricci et al. reported that the epige-
netic inactivation (i.e., methylation) of  O6-methylguanine 
DNA methyl-transferase is higher in SDH-deficient GIST 
than compared with SDH-proficient GIST [141]. It has been 
reported that the inactivation of  O6-methylguanine DNA 
methyl-transferase leads to an increased effectiveness of 
alkylating agents in several other cancers, such as gliomas, 
colorectal cancer, and large B-cell lymphoma [141, 142]. 

These results led to the hypothesis that DNA methylation 
could affect  O6-methylguanine DNA methyl-transferase in 
SDH-deficient GIST, therefore inducing a favorable response 
to alkylating agents. This hypothesis was experimentally 
supported using patient-derived tumor models that were very 
sensitive to temozolomide (TMZ) treatment [143]. Nota-
bly, TMZ is an alkylating agent that is currently approved 
by the FDA for the treatment of glioblastoma multiforme 
and refractory anaplastic astrocytomas [144]. A 2014 study 
showed that in 15 patients with SDHB-mutant paragan-
glioma/pheochromocytoma, 50% had a partial response 
to TMZ [145]. These studies suggest that SDH deficiency 
could be a biomarker for TMZ sensitivity [74]. Another case 
study conducted by De Silva et al. shows the efficacy of 
using TMZ in one patient with SDH-deficient GIST, indi-
cated by a durable partial response, ongoing through 18 
cycles [146]. Based on these preliminary data, a two-arm 
phase II study of TMZ in patients with SDH-deficient GIST 
(NCT03556384) began in 2018 to determine the overall 
response rate of 6 months of TMZ therapy (Fig. 4). In an 
initial report, 2/5 patients had a partial response [143]. The 
primary results from this study are expected to be updated 
in the fall of 2022.

5.3  Other Potential Targetable Mutations

Other GIST subtypes that could be potentially treated with 
approved or emerging agents include ALK-translocated and 
FGFR-translocated GIST. To date, there have been very lim-
ited reports of where patients with GIST were treated with 
specific inhibitors of these molecular drivers, but presum-
ably these GIST subtypes would respond to kinase inhibitors 
specifically targeting the underlying molecular driver [127]. 
In addition, NF1 mutant GIST remains without a known 
FDA-approved optimal therapy, and future studies should 
focus on new treatment strategies for these patients.

6  Conclusions

Although the historical pathway to GIST treatment approval 
has used a mutation-agnostic design, a precision medicine 
approach informed by the molecular underpinnings of GIST 
subtypes has shown incredible success for rare GIST sub-
types. Advances in technology have facilitated the utility of 
this approach, both in GIST-specific studies (e.g., avapri-
tinib) as well as in histology-agnostic (but mutation-specific) 
studies (e.g., larotrectinib and entrectinib). Using up-front 
molecular testing and precision oncology treatment of 
GIST results in superior clinical outcomes and minimizes 
the number of patients treated with biologically inactive 
therapies (Fig. 4). The use of a precision medicine approach 
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necessitates the widespread use of comprehensive molecular 
profiling of all cases of advanced GIST requiring medical 
therapy. However, in certain countries including the USA, 
such molecular profiling occurs in less than 50% of patients, 
at least in certain countries including the USA [147, 148]. 
The push for molecular testing and profiling will definitely 
be needed for the less common forms of GIST for which 
there is no effective FDA-approved therapy (e.g., NF1-
deficient or SDH-deficient GIST). We believe that future 
registration studies of KIT/PDGFRA inhibitors should also 
utilize a precision oncology approach and enroll only those 
patients with KIT/PDGFRA mutations that would be pre-
dicted to respond to these novel agents (Fig. 4).

A limitation to these precision medicine-driven clinical 
studies includes determining the criteria for those patients 
previously treated with other TKIs and who have highly het-
erogeneous disease. These patients differ from TKI-naïve 
patients, as their disease may not be effectively targeted 
by a single drug, as previously shown in Fig. 3. With the 
emergence of new technologies and models, we should focus 
on how to combat heterogeneous disease, and the optimal 
selection of patients for testing new targeted therapies. In 
recent years, mutation-agnostic studies that included all 
patients with advanced disease were successful for patients 
with a specific subtype of GIST. While precision medicine 
approaches narrow the inclusion criteria for a study, subject-
ing patients to new therapies in which they may not receive 
a clinical benefit unnecessarily exposes them to potential 
toxicities. To address this issue, correlative studies that com-
pare tumor biopsy with ctDNA mutation profiling should 
be integrated into future studies, not only to identify those 
patients most likely to benefit from a new therapy, but also to 
identify mechanisms of acquired resistance to novel agents. 
Continuing to understand the mechanisms of acquired resist-
ance and the molecular underpinnings of each subtype of 
GIST will aid in the development of the next generation of 
targeted therapies.
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