An introduction to the *p*-adic absolute value

Ellen Eischen 1

http://eischen.web.unc.edu

March 13, 2015

¹Partially supported by NSF Grant DMS-1249384.

E. Eischen (UNC)

p-adic absolute value

March 13, 2015 1 / 46

Can you dissect a square into an odd number of triangles of equal area?

Figure : Equidissection (https://simpletonsymposium.files.wordpress. com/2013/03/monsky-even-squares.jpg)

→ < ∃ >

Can you dissect a square into an odd number of triangles of equal area?

Figure : Equidissection (https://simpletonsymposium.files.wordpress. com/2013/03/monsky-even-squares.jpg)

(This was answered by Paul Monsky in an issue of the MAA's *American Mathematical Monthly* in 1970.)

Let $n \ge 3$ be an integer. Can you find nonzero integers a, b, and c such that

$$a^n + b^n = c^n?$$

3

< 回 ト < 三 ト < 三 ト

Let $n \ge 3$ be an integer. Can you find nonzero integers a, b, and c such that

$$a^n + b^n = c^n?$$

(This was answered by Andrew Wiles, who proved Fermat's Last Theorem in the mid-1990s.)

Figure : Andrew Wiles (http://www.simonsingh.net)

E. Eischen (UNC)

What do these two questions have in common?

3

イロト イヨト イヨト イヨト

What do these two questions have in common?

Answer

Their answers are both "no," and the proofs both use the p-adic absolute value.

→ Ξ →

Outline

1 Introduction to the *p*-adic absolute value

The usual absolute value

$$|x| = \begin{cases} x & x \ge 0\\ -1 \times x & \text{else} \end{cases}$$

for each real number x.

-

→

Let a and b be real numbers. Then:

1 |*a*| ≥ 0

A⊒ ▶ ∢ ∃

Let a and b be real numbers. Then:

 $|a| \ge 0$ and |a| = 0 if and only if a = 0.

▶ ∢ ∃

Let a and b be real numbers. Then:

- $|a| \ge 0$ and |a| = 0 if and only if a = 0.
- 2 $|a \times b| = |a| \times |b|$ for all real numbers *a* and *b*, i.e. the absolute value is *multiplicative*

Let a and b be real numbers. Then:

- $|a| \ge 0$ and |a| = 0 if and only if a = 0.
- 2 $|a \times b| = |a| \times |b|$ for all real numbers *a* and *b*, i.e. the absolute value is *multiplicative*
- $|a+b| \le |a|+|b| (triangle inequality)$

p-adic absolute value

Let p be a prime number. Let a be a rational number. Write

$$a = p^k \frac{c}{d}$$

with k an integer and c and d integers such that p does not divide cd.

p-adic absolute value

Let p be a prime number. Let a be a rational number. Write

$$a = p^k \frac{c}{d}$$

with k an integer and c and d integers such that p does not divide cd.

Definition

The p-adic absolute value of a is p^{-k} , i.e. $|a|_p = p^{-k}$. (If a = 0, $|a|_p := 0$.)

p-adic absolute value

Let p be a prime number. Let a be a rational number. Write

$$a = p^k \frac{c}{d}$$

with k an integer and c and d integers such that p does not divide cd.

Definition

The p-adic absolute value of a is p^{-k} , i.e. $|a|_p = p^{-k}$. (If a = 0, $|a|_p := 0$.)

Example

p = 2

$$2 = 2^{1} \cdot \frac{1}{1}$$
$$3 = 2^{0} \cdot \frac{3}{1}$$
$$/14 = 2^{-1} \cdot \frac{3}{7}$$

3

Find the 2-adic absolute value of each of the first four integers.

Find the 2-adic absolute value of each of the first four integers. (Recall: $|2^k \frac{c}{d}|_2 = 2^{-k}$, if 2 does not divide *cd*.)

/□ ▶ 《 ⋽ ▶ 《 ⋽

Find the 2-adic absolute value of each of the first four integers. (Recall: $|2^k \frac{c}{d}|_2 = 2^{-k}$, if 2 does not divide *cd*.)

$$|1|_2 = |2^0 \cdot 1/1|_2 = 1$$

(日) (周) (三) (三)

Find the 2-adic absolute value of each of the first four integers. (Recall: $|2^k \frac{c}{d}|_2 = 2^{-k}$, if 2 does not divide *cd*.)

$$|1|_2 = |2^0 \cdot 1/1|_2 = 1$$

$$|2|_2 = |2^1 \cdot 1/1|_2 = \frac{1}{2}$$

イロト 不得下 イヨト イヨト 二日

Find the 2-adic absolute value of each of the first four integers. (Recall: $|2^k \frac{c}{d}|_2 = 2^{-k}$, if 2 does not divide *cd*.)

$$|1|_2 = |2^0 \cdot 1/1|_2 = 1$$

$$|2|_2 = |2^1 \cdot 1/1|_2 = \frac{1}{2}$$

$$|3|_2 = |2^0 \cdot 3/1|_2 = 1$$

イロト 不得下 イヨト イヨト 二日

Find the 2-adic absolute value of each of the first four integers. (Recall: $|2^k \frac{c}{d}|_2 = 2^{-k}$, if 2 does not divide *cd*.)

$$|1|_2 = |2^0 \cdot 1/1|_2 = 1$$

$$|2|_2 = |2^1 \cdot 1/1|_2 = \frac{1}{2}$$

$$|3|_2 = |2^0 \cdot 3/1|_2 = 1$$

$$|4|_2 = |2^2 \cdot 1/1|_2 = \frac{1}{4}$$

イロト 不得下 イヨト イヨト 二日

Find the 2-adic absolute value of each of the first four integers. (Recall: $|2^k \frac{c}{d}|_2 = 2^{-k}$, if 2 does not divide *cd*.)

$$|1|_2 = |2^0 \cdot 1/1|_2 = 1$$

$$|2|_2 = |2^1 \cdot 1/1|_2 = \frac{1}{2}$$

$$|3|_2 = |2^0 \cdot 3/1|_2 = 1$$

$$|4|_2 = |2^2 \cdot 1/1|_2 = \frac{1}{4}$$

Find the 2-adic absolute value of 3/14.

A D A D A D A

Find the 2-adic absolute value of each of the first four integers. (Recall: $|2^k \frac{c}{d}|_2 = 2^{-k}$, if 2 does not divide *cd*.)

$$|1|_2 = |2^0 \cdot 1/1|_2 = 1$$

$$|2|_2 = |2^1 \cdot 1/1|_2 = \frac{1}{2}$$

$$|3|_2 = |2^0 \cdot 3/1|_2 = 1$$

$$|4|_2 = |2^2 \cdot 1/1|_2 = \frac{1}{4}$$

Find the 2-adic absolute value of 3/14.

$$|3/14|_2 = |2^{-1} \cdot 3/7|_2 = 2$$

E. Eischen (UNC)

(日) (同) (三) (三)

Find the 3-adic absolute value of 1, 2, 3, and 6.

47 ▶

Find the 3-adic absolute value of 1, 2, 3, and 6. (Recall: $|3^k \frac{c}{d}|_3 = 3^{-k}$, if 3 does not divide *cd*.)

3

< 回 ト < 三 ト < 三 ト

Find the 3-adic absolute value of 1, 2, 3, and 6. (Recall: $|3^k \frac{c}{d}|_3 = 3^{-k}$, if 3 does not divide *cd*.)

$$|1|_3 = |3^0 \cdot 1/1|_3 = 1$$

3

< 回 ト < 三 ト < 三 ト

Find the 3-adic absolute value of 1, 2, 3, and 6. (Recall: $|3^k \frac{c}{d}|_3 = 3^{-k}$, if 3 does not divide *cd*.)

$$|1|_3 = |3^0 \cdot 1/1|_3 = 1$$

$$|2|_3 = |3^0 \cdot 2/1|_3 = 1$$

3

Find the 3-adic absolute value of 1, 2, 3, and 6. (Recall: $|3^k \frac{c}{d}|_3 = 3^{-k}$, if 3 does not divide *cd*.)

$$|1|_3 = |3^0 \cdot 1/1|_3 = 1$$

$$|2|_3 = |3^0 \cdot 2/1|_3 = 1$$

$$|3|_3 = |3^1 \cdot 1/1|_3 = \frac{1}{3}$$

イロト イポト イヨト イヨト

Find the 3-adic absolute value of 1, 2, 3, and 6. (Recall: $|3^k \frac{c}{d}|_3 = 3^{-k}$, if 3 does not divide *cd*.)

$$|1|_3 = |3^0 \cdot 1/1|_3 = 1$$

$$|2|_3 = |3^0 \cdot 2/1|_3 = 1$$

$$|3|_3 = |3^1 \cdot 1/1|_3 = \frac{1}{3}$$

$$|6|_3 = |3^1 \cdot 2/1|_3 = \frac{1}{3}$$

E. Eischen (UNC)

Find the 3-adic absolute value of 5/12, 3/13, and 3/14.

3

< 4 → <

Find the 3-adic absolute value of 5/12, 3/13, and 3/14. (Recall: $|3^k \frac{c}{d}|_3 = 3^{-k}$, if 3 does not divide cd.)

Find the 3-adic absolute value of 5/12, 3/13, and 3/14. (Recall: $|3^k \frac{c}{d}|_3 = 3^{-k}$, if 3 does not divide cd.)

$$\left|\frac{5}{12}\right|_3 = |3^{-1} \cdot 5/4|_3 = 3$$

Find the 3-adic absolute value of 5/12, 3/13, and 3/14. (Recall: $|3^k \frac{c}{d}|_3 = 3^{-k}$, if 3 does not divide cd.)

$$\left|\frac{5}{12}\right|_3 = |3^{-1} \cdot 5/4|_3 = 3$$

$$|3/13|_3 = |3^1 \cdot 1/13|_3 = \frac{1}{3}$$

(日) (周) (三) (三)

Find the 3-adic absolute value of 5/12, 3/13, and 3/14. (Recall: $|3^k \frac{c}{d}|_3 = 3^{-k}$, if 3 does not divide cd.)

$$\left|\frac{5}{12}\right|_3 = |3^{-1} \cdot 5/4|_3 = 3$$

$$|3/13|_3 = |3^1 \cdot 1/13|_3 = \frac{1}{3}$$

$$|3/14|_3 = |3^1 \cdot 1/14|_3 = \frac{1}{3}$$

Absolute values

Remark

For each rational number a,

$$\prod_{p \text{ prime}} |a|_p = |a|^{-1}.$$

p

E. Eischen (UNC)

3

(日) (同) (三) (三)
p-adic numbers

Completing the rational numbers \mathbb{Q} with respect to the *p*-adic absolute value gives the ring of *p*-adic numbers \mathbb{Q}_p .

< 🗗 🕨 🔸

3

Completing the rational numbers \mathbb{Q} with respect to the *p*-adic absolute value gives the ring of *p*-adic numbers \mathbb{Q}_p . This is the analogue of completing \mathbb{Q} with respect to the usual absolute

value to get the ring of real numbers \mathbb{R} .

History

Kurt Hensel

Figure : Kurt Hensel (wikipedia)

p-adic numbers were first introduced by Kurt Hensel in 1897 in an effort to integrate some methods from analysis into number theory.

- - E - N

A (1) > A (2) > A

History

Kurt Hensel

Figure : Kurt Hensel (wikipedia)

p-adic numbers were first introduced by Kurt Hensel in 1897 in an effort to integrate some methods from analysis into number theory. Some trivia:

• Hensel's great uncle was the famous composer Felix Mendelssohn.

History

Kurt Hensel

Figure : Kurt Hensel (wikipedia)

p-adic numbers were first introduced by Kurt Hensel in 1897 in an effort to integrate some methods from analysis into number theory. Some trivia:

- Hensel's great uncle was the famous composer Felix Mendelssohn.
- Hensel was an editor of Crelle's Journal.

Let *a* and *b* be rational (or *p*-adic) numbers. Then: (a) $|a|_p \ge 0$

3

→

(二)、

Key properties

Let a and b be rational (or p-adic) numbers. Then:

 $|a|_p \ge 0$ and $|a|_p = 0$ if and only if a = 0.

3

→

▲ 同 ▶ → 三 ▶

Key properties

Let a and b be rational (or p-adic) numbers. Then:

- $|a|_p \ge 0$ and $|a|_p = 0$ if and only if a = 0.
- 2 $|a \times b|_p = |a|_p \times |b|_p$ for all real numbers *a* and *b*, i.e. the absolute value is *multiplicative*

Key properties

Let a and b be rational (or p-adic) numbers. Then:

- $|a|_p \ge 0$ and $|a|_p = 0$ if and only if a = 0.
- 2 $|a \times b|_p = |a|_p \times |b|_p$ for all real numbers *a* and *b*, i.e. the absolute value is *multiplicative*

$$|a+b|_{p} \leq |a|_{p} + |b|_{p} (triangle inequality)$$

Triangle inequality

The *p*-adic absolute value satisfies the *strong triangle inequality* or *ultrametric inequality*:

3

- ∢ ≣ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Triangle inequality

The *p*-adic absolute value satisfies the *strong triangle inequality* or *ultrametric inequality*:

For any *p*-adic numbers *a* and *b*

$$|a+b|_p \le \max\left(|a|_p, |b|_p\right)$$

with equality if $|a|_p \neq |b|_p$.

< 🗇 🕨 < 🖃 🕨

Triangle inequality

The *p*-adic absolute value satisfies the *strong triangle inequality* or *ultrametric inequality*:

For any *p*-adic numbers *a* and *b*

$$|a+b|_p \le \max\left(|a|_p, |b|_p\right)$$

with equality if $|a|_p \neq |b|_p$.

Remark

Completely different from the usual absolute value, e.g. |5 + 5| = 10, while |5| = 5.

Delightful consequence for convergence of series

As a consequence of the strong triangle inequality, a series

 $\sum_{i=0}^{\infty} a_i$

converges *p*-adically if and only if $|a_i|_p \to 0$ as $i \to \infty$.

Delightful consequence for convergence of series

As a consequence of the strong triangle inequality, a series

$$\sum_{i=0}^{\infty} a_i$$

converges *p*-adically if and only if $|a_i|_p \to 0$ as $i \to \infty$.

In other words, you don't need any complicated tests (root test, ratio test, etc) to check convergence of series in the *p*-adic world!

Congruences

Definition

Let n be a nonzero integer, and let a and b be integers. Then a is congruent to b modulo n (i.e. $a \equiv b \mod n$) if n divides a - b.

3

(日) (周) (三) (三)

Congruences

Definition

Let n be a nonzero integer, and let a and b be integers. Then a is congruent to b modulo n (i.e. $a \equiv b \mod n$) if n divides a - b.

Example

 $3\equiv -1 \mod 4$

3

(日) (周) (三) (三)

Congruences

Definition

Let n be a nonzero integer, and let a and b be integers. Then a is congruent to b modulo n (i.e. $a \equiv b \mod n$) if n divides a - b.

F	Fischen	(UNC)
- · ·	Lischen	(0110)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Congruences and the *p*-adic absolute value

Two integers m and n are p-adically close if and only if they are congruent modulo a high power of the prime p.

Congruences and the *p*-adic absolute value

Two integers m and n are p-adically close if and only if they are congruent modulo a high power of the prime p.

Observation

 $|m - n|_p$ is small if and only if $m \equiv n \mod p^k$ for a large integer k

Congruences and the *p*-adic absolute value

Two integers m and n are p-adically close if and only if they are congruent modulo a high power of the prime p.

Observation

 $|m - n|_p$ is small if and only if $m \equiv n \mod p^k$ for a large integer k

So the *p*-adic absolute value measures congruences.

A sequence a_1, a_2, \ldots converges to a *p*-adically if $|a_i - a|_p \to 0$ as $i \to \infty$, i.e. if $a_i \equiv a$ modulo higher and higher powers of *p* as $i \to \infty$.

3

Image: A match a ma

Convergent sequences

A sequence a_1, a_2, \ldots converges to a *p*-adically if $|a_i - a|_p \to 0$ as $i \to \infty$, i.e. if $a_i \equiv a$ modulo higher and higher powers of *p* as $i \to \infty$.

Example

 $1, 1 + 2, 1 + 2 + 2^2, 1 + 2 + 2^2 + 2^3, \ldots$ converges 2-adically.

Convergent sequences

A sequence a_1, a_2, \ldots converges to a *p*-adically if $|a_i - a|_p \to 0$ as $i \to \infty$, i.e. if $a_i \equiv a$ modulo higher and higher powers of *p* as $i \to \infty$.

Example

1, 1 + 2, 1 + 2 + 2², 1 + 2 + 2² + 2³, . . . converges 2-adically. It converges to $1 + 2 + 2^2 + 2^3 + 2^4 + \dots = \sum_{j=0}^{n} 2^j = \frac{1}{1-2} = -1.$

More convergent sequences

Chose rational numbers b and c. Find a sequence a_1, a_2, \ldots of rational numbers that converges to b with respect to the usual absolute value and converges to c with respect to the p-adic absolute value.

More convergent sequences

Chose rational numbers b and c. Find a sequence a_1, a_2, \ldots of rational numbers that converges to b with respect to the usual absolute value and converges to c with respect to the p-adic absolute value.

E E1		/1 I N	(C)
E. EI	scnen	(0)	VC I

More convergent sequences

Chose rational numbers b and c. Find a sequence a_1, a_2, \ldots of rational numbers that converges to b with respect to the usual absolute value and converges to c with respect to the p-adic absolute value.

Observation

For n = 1, 2, ..., let

$$a_n = b \frac{p^n}{p^n - 1} + c \frac{p^n + 1}{p^{2n} + 1}.$$

Then a_1, a_2, \ldots converges to b with respect to the usual absolute value and converges to c with respect to the p-adic absolute value.

(4) ほう くほう くほう しほ

Expression of *p*-adic numbers

• Any nonzero p-adic number a can be expressed uniquely in the form

$$a = a_N p^N + a_{N+1} p^{N+1} + \cdots$$

with N an integer, $a_N \neq 0$, and $0 \leq a_i < p$ for all *i*.

Expression of *p*-adic numbers

• Any nonzero *p*-adic number *a* can be expressed uniquely in the form

$$a = a_N p^N + a_{N+1} p^{N+1} + \cdots$$

with N an integer, $a_N \neq 0$, and $0 \leq a_i < p$ for all *i*.

• If a is an integer, then this is the base p representation of a.

Expression of *p*-adic numbers

• Any nonzero *p*-adic number *a* can be expressed uniquely in the form

$$a = a_N p^N + a_{N+1} p^{N+1} + \cdots$$

with N an integer, $a_N \neq 0$, and $0 \leq a_i < p$ for all *i*.

If a is an integer, then this is the base p representation of a.
Observe that |a|_p = p^{-N}.

The trival absolute value

Definition

The trivial absolute value is defined by

$$|x| = \begin{cases} 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$$

for each number x.

3

-

3 ×

Ostrowski's Theorem

Question

What are all the absolute values on \mathbb{Q} ?

3

∃ → < ∃</p>

Ostrowski's Theorem

Question

What are all the absolute values on \mathbb{Q} ?

Answer (Ostrowski's Theorem, 1916)

Every nontrivial absolute value is equivalent to either the usual absolute value or to a p-adic absolute value. (The absolute values equivalent to an absolute value $|\cdot|_*$ are the absolute values of the form $|\cdot|_*^c$ with c > 0.)

Generalizations

Can extend the p-adic absolute value to other fields, and can build an analogue of $\mathbb C$ denoted $\mathbb C_p$

47 ▶

Extensions

Remark

 $|\cdot|_p$ can be extended from \mathbb{Q} to \mathbb{R} .

We'll need this fact later in the talk.

3

(日) (同) (三) (三)

Hensel's Lemma

If a polynomial has a simple root modulo p, then it has a root in \mathbb{Q}_p .

-

3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Hensel's Lemma

If a polynomial has a simple root modulo p, then it has a root in \mathbb{Q}_p .

Example

 $x^2 + 1$ has two roots modulo 5 (namely, 2 and 3). So \mathbb{Q}_5 contains a square root of -1.
Hensel's Lemma

If a polynomial has a simple root modulo p, then it has a root in \mathbb{Q}_p .

Example

 $x^2 + 1$ has two roots modulo 5 (namely, 2 and 3). So \mathbb{Q}_5 contains a square root of -1.

Observation

Note the difference from the situation in \mathbb{Q} . After completing \mathbb{Q} with respect to the usual absolute value, we obtain \mathbb{R} , which does not contain a square root of -1.

Square roots of -1

We're sorry. The number you have dialed is purely imaginary. Please rotate your phone 90 degrees, and dial again.

p-adic numbers play a major role in modern research in number theory.

p-adic numbers play a major role in modern research in number theory. For example:

Andrew Wiles's proof of Fermat's Last Theorem

p-adic numbers play a major role in modern research in number theory. For example:

Andrew Wiles's proof of Fermat's Last Theorem(Let n ≥ 3 be an integer. There do not exist nonzero integers a, b, and c such that aⁿ + bⁿ = cⁿ.)

p-adic numbers play a major role in modern research in number theory. For example:

- Andrew Wiles's proof of Fermat's Last Theorem(Let n ≥ 3 be an integer. There do not exist nonzero integers a, b, and c such that aⁿ + bⁿ = cⁿ.)
- Work toward a proof of the Birch and Swinnerton-Dyer Conjecture (win a million dollars if you prove it!) and analogues

p-adic numbers play a major role in modern research in number theory. For example:

- Andrew Wiles's proof of Fermat's Last Theorem(Let n ≥ 3 be an integer. There do not exist nonzero integers a, b, and c such that aⁿ + bⁿ = cⁿ.)
- Work toward a proof of the Birch and Swinnerton-Dyer Conjecture (win a million dollars if you prove it!) and analogues
- Understanding the failure of unique factorization in certain rings (uses a *p*-adic analogue of the Riemann zeta function)

p-adic numbers play a major role in modern research in number theory. For example:

- Andrew Wiles's proof of Fermat's Last Theorem(Let n ≥ 3 be an integer. There do not exist nonzero integers a, b, and c such that aⁿ + bⁿ = cⁿ.)
- Work toward a proof of the Birch and Swinnerton-Dyer Conjecture (win a million dollars if you prove it!) and analogues
- Understanding the failure of unique factorization in certain rings (uses a *p*-adic analogue of the Riemann zeta function)
- p-adic geometry and p-adic analysis

Recall the strong triangle inequality: For any p-adic numbers a and b

```
|a+b|_p \le \max\left(|a|_p, |b|_p\right)
```

with equality if $|a|_p \neq |b|_p$.

Recall the strong triangle inequality: For any p-adic numbers a and b

```
|a+b|_p \le \max\left(|a|_p, |b|_p\right)
```

with equality if $|a|_p \neq |b|_p$. Here are some consequences:

Recall the strong triangle inequality: For any p-adic numbers a and b

```
|a+b|_p \le \max\left(|a|_p, |b|_p\right)
```

with equality if $|a|_p \neq |b|_p$.

Here are some consequences:

• If two intervals intersect, then one contains the other. (Can extend this result to discs, etc.)

Recall the strong triangle inequality: For any p-adic numbers a and b

```
|a+b|_p \le \max\left(|a|_p, |b|_p\right)
```

with equality if $|a|_p \neq |b|_p$.

Here are some consequences:

- If two intervals intersect, then one contains the other. (Can extend this result to discs, etc.)
- All triangles are isosceles.

Recall the strong triangle inequality: For any p-adic numbers a and b

```
|a+b|_p \le \max\left(|a|_p, |b|_p\right)
```

with equality if $|a|_p \neq |b|_p$.

Here are some consequences:

- If two intervals intersect, then one contains the other. (Can extend this result to discs, etc.)
- All triangles are isosceles.
- The only *connected* subsets are the one point sets, i.e. \mathbb{Q}_p is *totally disconnected*.

A question

Question

Can a square be dissected into an odd number of triangles of equal area?

3

- ∢ ≣ →

A question

Question

Can a square be dissected into an odd number of triangles of equal area?

Figure : Equidissection (https://simpletonsymposium.files.wordpress. com/2013/03/monsky-even-squares.jpg)

□ ▶ ▲ □ ▶ ▲ □

Dissecting a square into triangles of equal area

Figure : Equidissection (wikipedia)

F	E 1	/111	VIC)
Е.	Eischen	(0)	VC1

• This question about dissecting a square into *n* triangles of equal area was posed by Fred Richman and John Thomas in 1967 in the MAA's American Mathematical Monthly, Advanced Problem 5479.

- This question about dissecting a square into *n* triangles of equal area was posed by Fred Richman and John Thomas in 1967 in the MAA's American Mathematical Monthly, Advanced Problem 5479.
- Richman, who had initially wanted to put the problem on an exam, had shown impossible for n = 3 and for n = 5.

- This question about dissecting a square into *n* triangles of equal area was posed by Fred Richman and John Thomas in 1967 in the MAA's American Mathematical Monthly, Advanced Problem 5479.
- Richman, who had initially wanted to put the problem on an exam, had shown impossible for n = 3 and for n = 5.
- Richman also proved that if a square can be dissected into n triangles of equal area, then the same is true for n + 2.

- This question about dissecting a square into *n* triangles of equal area was posed by Fred Richman and John Thomas in 1967 in the MAA's American Mathematical Monthly, Advanced Problem 5479.
- Richman, who had initially wanted to put the problem on an exam, had shown impossible for n = 3 and for n = 5.
- Richman also proved that if a square can be dissected into n triangles of equal area, then the same is true for n + 2.
- Monsky answered it (building on John Thomas's work) in 1970, in the MAA's American Mathematical Monthly.

Monsky's Theorem

Theorem (Monsky, 1970)

It is impossible to dissect a square into an odd number of triangles of equal area.

Figure : Paul Monsky (wikipedia)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Goal

Show that it is impossible to dissect a square into an odd number of triangles of equal area.

Goal

Show that it is impossible to dissect a square into an odd number of triangles of equal area.

Goal

Show that it is impossible to dissect a square into an odd number of triangles of equal area.

Step 1: Relate to the 2-adic absolute value:

• We'll prove the theorem for a unit square.

Goal

Show that it is impossible to dissect a square into an odd number of triangles of equal area.

- We'll prove the theorem for a unit square.
- If unit square can be dissected into n triangles of equal area, then each triangle has area ¹/_n.

Goal

Show that it is impossible to dissect a square into an odd number of triangles of equal area.

- We'll prove the theorem for a unit square.
- If unit square can be dissected into n triangles of equal area, then each triangle has area ¹/_n.
- Note that if n is odd, then $\left|\frac{1}{n}\right|_2 = 1$, and if n is even $\left|\frac{1}{n}\right|_2 > 1$.

Goal

Show that it is impossible to dissect a square into an odd number of triangles of equal area.

- We'll prove the theorem for a unit square.
- If unit square can be dissected into n triangles of equal area, then each triangle has area ¹/_n.
- Note that if *n* is odd, then $\left|\frac{1}{n}\right|_2 = 1$, and if *n* is even $\left|\frac{1}{n}\right|_2 > 1$.
- We'll show that if unit square can be dissected into *n* triangles of equal area, then $\left|\frac{1}{n}\right|_2 > 1$, i.e. *n* is even.

Step 2: Consider the square in the plane with vertices (0,0), (0,1), (1,0), and (1,1).

Step 2: Consider the square in the plane with vertices (0,0), (0,1), (1,0), and (1,1).

Figure : unit square (wikipedia)

3

∃ ⇒

A 🖓 h

Step 2: Consider the square in the plane with vertices (0,0), (0,1), (1,0), and (1,1).

Figure : unit square (wikipedia)

Color each point P = (x, y) as follows.

• *P* is **blue** if $|x|_2 \ge |y|_2$ and $|x|_2 \ge 1$

3

→

Step 2: Consider the square in the plane with vertices (0,0), (0,1), (1,0), and (1,1).

Figure : unit square (wikipedia)

Color each point P = (x, y) as follows.

- *P* is **blue** if $|x|_2 \ge |y|_2$ and $|x|_2 \ge 1$
- *P* is green if $|x|_2 < |y|_2$ and $|y|_2 \ge 1$

過 ト イヨ ト イヨト

3

Step 2: Consider the square in the plane with vertices (0,0), (0,1), (1,0), and (1,1).

Figure : unit square (wikipedia)

Color each point P = (x, y) as follows.

- *P* is **blue** if $|x|_2 \ge |y|_2$ and $|x|_2 \ge 1$
- *P* is green if $|x|_2 < |y|_2$ and $|y|_2 \ge 1$
- P is red if $|x|_2 < 1$ and $|y|_2 < 1$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

.1).			 (1,1)
, -)		•••••	 •••••
6/7			
0//			
•			
3/4			
•			
2/3			
•			
4/7			
1/2 •	••••••		 • • • • • • •
2/7			
5//			
•	•••••••		 • • • • • • • •
1/3 🔹	**** * * * *		
•			
1/4 🔹			
•			
•			
1/7			
•			 (1,0)
0	1/7 1/4	1/3 3/7 1/	214 617

Figure : Coloring of the unit square (from *Proofs From the Book*)

E. Eischen (UNC)

March 13, 2015 38 / 46

イロト 不得下 イヨト イヨト 二日

Step 3: Show that any blue point $P_b = (x_b, y_b)$, red point $P_r = (x_r, y_r)$, and green point $P_g = (x_g, y_g)$ form the vertices of a triangle of positive area A, and $|A|_2 > 1$.

イロト イポト イヨト イヨト

Step 3: Show that any blue point $P_b = (x_b, y_b)$, red point $P_r = (x_r, y_r)$, and green point $P_g = (x_g, y_g)$ form the vertices of a triangle of positive area A, and $|A|_2 > 1$. Outline of how to do this:

(日) (周) (三) (三)
Step 3: Show that any blue point $P_b = (x_b, y_b)$, red point $P_r = (x_r, y_r)$, and green point $P_g = (x_g, y_g)$ form the vertices of a triangle of positive area A, and $|A|_2 > 1$. Outline of how to do this:

(日) (周) (三) (三)

Step 3: Show that any blue point $P_b = (x_b, y_b)$, red point $P_r = (x_r, y_r)$, and green point $P_g = (x_g, y_g)$ form the vertices of a triangle of positive area A, and $|A|_2 > 1$. Outline of how to do this:

$$\left. \mathbf{det} \left| \det \begin{pmatrix} x_b & y_b & 1 \\ x_r & y_r & 1 \\ x_g & y_g & 1 \end{pmatrix} \right|_2 \ge 1$$

Step 3: Show that any blue point $P_b = (x_b, y_b)$, red point $P_r = (x_r, y_r)$, and green point $P_g = (x_g, y_g)$ form the vertices of a triangle of positive area A, and $|A|_2 > 1$. Outline of how to do this:

 $\left. \begin{array}{c|c} \left| \det \begin{pmatrix} x_b & y_b & 1 \\ x_r & y_r & 1 \\ x_g & y_g & 1 \end{pmatrix} \right|_2 \ge 1 \text{ (follows from the way we assigned colors} \\ \text{using } |\cdot|_2 \right) \end{array} \right.$

Step 3: Show that any blue point $P_b = (x_b, y_b)$, red point $P_r = (x_r, y_r)$, and green point $P_g = (x_g, y_g)$ form the vertices of a triangle of positive area A, and $|A|_2 > 1$. Outline of how to do this:

 $\left. \begin{array}{c|c} \left| \det \begin{pmatrix} x_b & y_b & 1 \\ x_r & y_r & 1 \\ x_g & y_g & 1 \end{pmatrix} \right|_2 \ge 1 \text{ (follows from the way we assigned colors} \\ \text{using } |\cdot|_2 \right) \end{array} \right.$

The area A of the triangle with vertices P_b , P_r , and P_g is $(x_b, y_b, 1)$

 $\frac{1}{2} \times \left| \det \begin{pmatrix} x_b & y_b & 1 \\ x_r & y_r & 1 \\ x_g & y_g & 1 \end{pmatrix} \right|.$ (This also tells us that on any line, there are at most two colors.)

Step 3: Show that any blue point $P_b = (x_b, y_b)$, red point $P_r = (x_r, y_r)$, and green point $P_g = (x_g, y_g)$ form the vertices of a triangle of positive area A, and $|A|_2 > 1$. Outline of how to do this:

 $\left. \begin{array}{c|c} \left| \det \begin{pmatrix} x_b & y_b & 1 \\ x_r & y_r & 1 \\ x_g & y_g & 1 \end{pmatrix} \right|_2 \ge 1 \text{ (follows from the way we assigned colors} \\ \text{using } |\cdot|_2 \right) \end{array} \right.$

2 The area A of the triangle with vertices P_b , P_r , and P_g is

 $\frac{1}{2} \times \left| \det \begin{pmatrix} x_b & y_b & 1 \\ x_r & y_r & 1 \\ x_g & y_g & 1 \end{pmatrix} \right|.$ (This also tells us that on any line, there are at most two colors.) So $|A|_2 > 1$.

A dissection of the square

Figure : A dissection (from Proofs from the Book)

E. Eischen (UNC)

p-adic absolute value

< 4 → <

3

(日) (周) (三) (三)

(日) (同) (三) (三)

0,1)		••••	•	••••	•		••	•••	(1,	.1)
6/7					1					
3/4					÷			1		
			•	••••	•		••	•••	• • • •	•
2/3					1		::	:::		1
4/7					÷					1
1/2 •		••••	•	••••	•		• •	• • •	• • • ••	•
3/7			:		÷	=		: !!		1
1/3					4		::	:::		:
1/4			:		4		::	:::		1
					1					
<i>"</i>					1					
									(1,	(0)
),0)	1/7	1/4	1/3	3/7	1/2	4/7	2/3	344	67	•

A D A D A D A

(0,0) is red and (1,0) is blue. So the bottom of the square contains an odd number of red-blue segments.

(日) (同) (三) (三)

1										
:	====		:::		:	***	:	::::		
4 ē -			•		•		•			
•		••••	•	••••	•		٠	••••	••••	
3 🔸		••••	•	••••	•		٠	• • • •	••••	
			11	::::	:	222	:	::::		
7 🖡					-					
2 •		••••	•	••••	•		•	••••	••••	
7 1			1.1							
٠.		••••		•••	÷.		٠			
•							•	••••		
. :			11				:			
· •				• ••						
			11					::::		
7 .			•		•		•			

- (0,0) is red and (1,0) is blue. So the bottom of the square contains an odd number of red-blue segments.
- Thus, counting up the number of red-blue segments, summed over all triangles, we obtain an odd number of red-blue segments. (Each segment in the interior of the square is on a border of two triangles, so is counted twice. The segments on the boundary are each counted once.)

1				ł	ł			1			1	1	ł				
•		••	••	٠	٠	•	•••	٠		••	٠	٠	٠	••	•		
•		::	::	:	:	::	:::	:	::	::	•	:	:	::	::		
τ.				-	-			- 2	- 22		-	-					
•		• •	••	٠		••	•••		••	••			٠	••	••		
			•••							•••				••	•••		
2.1		11	22	2	2	11		- 2	- 22	22	2	1	2	22	11		
•			••										÷	••	•		
•	- #1	::	::	:	:				::	::	:	:	:	::	::		
•		• •	••	•	•	•	•••	•	••	••	٠	•	•	•••	••	••	
	===	::	::	:	:	::			::	::	:	:	:	::	::		
•			••											••	••		
•		•••	••	٠	٠	•	•••	•	••	••	٠	•	٠	••	••	••	
•		•••	••	٠	•	•	•••	•	••	•••	٠	•	٠	••	••	••	
•		• •	••	٠	٠	••	•••		••	•••	٠		٠	••	••		
•		••	••	٠	٠	•	• ••	٠		••	٠	٠	٠	••	••		
:		::	::	:	:				::	:::	:	:	:	::	::		
•		• •	••	•	•	•				••			÷	••	••		
1		::	::	:	:	-	:=		:::	::	:	:	:	::	::		
•		•••	••	•	•	•	•••	•	••	•••	•	•	•	•••	•••	•••	

- (0,0) is red and (1,0) is blue. So the bottom of the square contains an odd number of red-blue segments.
- Thus, counting up the number of red-blue segments, summed over all triangles, we obtain an odd number of red-blue segments. (Each segment in the interior of the square is on a border of two triangles, so is counted twice. The segments on the boundary are each counted once.)
- Consequence: At least one triangle has an odd number of red-blue segments, which in turn implies it has vertices of 3 different colors.

p-adic absolute value

Figure : A dissection (from *Proofs from the Book*)

3

- < ∃ →

-

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Figure : A dissection (from *Proofs from the Book*)

• By a clever counting argument, we showed that at least one triangle in the dissection of the unit square has vertices of all three colors.

Figure : A dissection (from *Proofs from the Book*)

- By a clever counting argument, we showed that at least one triangle in the dissection of the unit square has vertices of all three colors.
- Using determinants, we showed that the area of such a triangle has 2-adic absolute value > 1.

Figure : A dissection (from Proofs from the Book)

- By a clever counting argument, we showed that at least one triangle in the dissection of the unit square has vertices of all three colors.
- Using determinants, we showed that the area of such a triangle has 2-adic absolute value > 1.
- In other words, the area of such a triangle cannot be 1/n with n odd.

Conclusion

It is impossible to dissect a square into an odd number of triangles of equal area.

A 🖓

Question

What about dissections of other polygons into triangles of equal area?

• For $n \ge 5$, a regular *n*-gon can be dissected into *m* triangles of equal area if and only if *m* is a multiple of *n*.

Question

- For $n \ge 5$, a regular *n*-gon can be dissected into *m* triangles of equal area if and only if *m* is a multiple of *n*.
 - Proved by Elaine Kasimatis

Question

- For $n \ge 5$, a regular *n*-gon can be dissected into *m* triangles of equal area if and only if *m* is a multiple of *n*.
 - Proved by Elaine Kasimatis
 - Proof uses p-adic numbers for each prime divisor p of n

Question

- For $n \ge 5$, a regular *n*-gon can be dissected into *m* triangles of equal area if and only if *m* is a multiple of *n*.
 - Proved by Elaine Kasimatis
 - Proof uses p-adic numbers for each prime divisor p of n
 - Builds on Monsky's proof

Question

- For $n \ge 5$, a regular *n*-gon can be dissected into *m* triangles of equal area if and only if *m* is a multiple of *n*.
 - Proved by Elaine Kasimatis
 - Proof uses p-adic numbers for each prime divisor p of n
 - Builds on Monsky's proof
- Equidissections of trapezoids and kites have been considered by various mathematicians (e.g. Hoyer, Jepson, Kasimatis, Monsky, Sedberry, Stein)

Question

What about dissections of other polygons into triangles of equal area?

- For $n \ge 5$, a regular *n*-gon can be dissected into *m* triangles of equal area if and only if *m* is a multiple of *n*.
 - Proved by Elaine Kasimatis
 - Proof uses p-adic numbers for each prime divisor p of n
 - Builds on Monsky's proof
- Equidissections of trapezoids and kites have been considered by various mathematicians (e.g. Hoyer, Jepson, Kasimatis, Monsky, Sedberry, Stein)
- Sequidissection of general quadrilaterals studied by Du, Ren, and Su

< 回 > < 三 > < 三 >

Happy π Day Eve!

E. Eischen (UNC)

p-adic absolute value

March 13, 2015 45 / 46

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Some references

- Aigner, Martin; Ziegler, Günter M. Proofs from The Book. Fifth edition. Including illustrations by Karl H. Hofmann. Springer-Verlag, Berlin, 2014. viii+308 pp. ISBN: 978-3-662-44204-3; 978-3-662-44205-0
- Kasimatis, Elaine A. (December 1989), "Dissections of regular polygons into triangles of equal areas", Discrete & Computational Geometry 4 (1): 375381, doi:10.1007/BF02187738, Zbl 0675.52005
- Monsky, Paul. (1970). "On Dividing a Square into Triangles". The American Mathematical Monthly 77 (2): 161164. doi:10.2307/2317329
- Richman, Fred; Thomas, John (March 1967), "Problem 5471", American Mathematical Monthly 74 (3): 329, doi:10.2307/2316055
- Thomas, John (September 1968), "A Dissection Problem", Mathematics Magazine 41 (4): 187190, doi:10.2307/2689143, Zbl 0164.51502