
An introduction to the p-adic
absolute value

Ellen Eischen 1

http://eischen.web.unc.edu

March 13, 2015

1Partially supported by NSF Grant DMS-1249384.
E. Eischen (UNC) p-adic absolute value March 13, 2015 1 / 46

http://eischen.web.unc.edu


Question

Can you dissect a square into an odd number of triangles of equal area?

Figure : Equidissection (https://simpletonsymposium.files.wordpress.
com/2013/03/monsky-even-squares.jpg)

(This was answered by Paul Monsky in an issue of the MAA’s American
Mathematical Monthly in 1970.)
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Question

Let n ≥ 3 be an integer. Can you find nonzero integers a, b, and c such
that

an + bn
= cn?

(This was answered by Andrew Wiles, who proved Fermat’s Last Theorem
in the mid-1990s.)

Figure : Andrew Wiles (http://www.simonsingh.net)
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Question

What do these two questions have in common?

Answer

Their answers are both “no,” and the proofs both use the p-adic absolute
value.
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The usual absolute value

∣x ∣ =

⎧⎪⎪
⎨
⎪⎪⎩

x x ≥ 0

−1 × x else

for each real number x .
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Key properties of absolute value

Let a and b be real numbers. Then:

1 ∣a∣ ≥ 0

and ∣a∣ = 0 if and only if a = 0.

2 ∣a × b∣ = ∣a∣ × ∣b∣ for all real numbers a and b, i.e. the absolute value is
multiplicative

3 ∣a + b∣ ≤ ∣a∣ + ∣b∣ (triangle inequality)
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p-adic absolute value
Let p be a prime number. Let a be a rational number. Write

a = pk c

d

with k an integer and c and d integers such that p does not divide cd .

Definition

The p-adic absolute value of a is p−k , i.e. ∣a∣p = p−k . (If a = 0, ∣a∣p ∶= 0.)

Example

p = 2

2 = 21 ⋅
1

1

3 = 20 ⋅
3

1

3/14 = 2−1 ⋅
3

7
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Examples of 2-adic absolute values
Find the 2-adic absolute value of each of the first four integers.

(Recall: ∣2k c
d
∣
2
= 2−k , if 2 does not divide cd .)

∣1∣2 = ∣2
0
⋅ 1/1∣2 = 1

∣2∣2 = ∣2
1
⋅ 1/1∣2 =

1

2

∣3∣2 = ∣2
0
⋅ 3/1∣2 = 1

∣4∣2 = ∣2
2
⋅ 1/1∣2 =

1

4

Find the 2-adic absolute value of 3/14.

∣3/14∣2 = ∣2
−1
⋅ 3/7∣2 = 2
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Examples of 3-adic absolute values

Find the 3-adic absolute value of 1, 2, 3, and 6.

(Recall: ∣3k c
d
∣
3
= 3−k , if 3 does not divide cd .)
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0
⋅ 1/1∣3 = 1
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⋅ 2/1∣3 = 1
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More examples of 3-adic absolute values

Find the 3-adic absolute value of 5/12, 3/13, and 3/14.

(Recall: ∣3k c
d
∣
3
= 3−k , if 3 does not divide cd .)

∣
5

12
∣
3
= ∣3−1 ⋅ 5/4∣3 = 3

∣3/13∣3 = ∣3
1
⋅ 1/13∣3 =

1

3

∣3/14∣3 = ∣3
1
⋅ 1/14∣3 =

1

3
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Absolute values

Remark

For each rational number a,

∏

p prime
∣a∣p = ∣a∣

−1.
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p-adic numbers

Completing the rational numbers Q with respect to the p-adic absolute
value gives the ring of p-adic numbers Qp.

This is the analogue of completing Q with respect to the usual absolute
value to get the ring of real numbers R.

E. Eischen (UNC) p-adic absolute value March 13, 2015 13 / 46



p-adic numbers

Completing the rational numbers Q with respect to the p-adic absolute
value gives the ring of p-adic numbers Qp.
This is the analogue of completing Q with respect to the usual absolute
value to get the ring of real numbers R.

E. Eischen (UNC) p-adic absolute value March 13, 2015 13 / 46



History

Figure : Kurt Hensel
(wikipedia)

p-adic numbers were first introduced by
Kurt Hensel in 1897 in an effort to in-
tegrate some methods from analysis into
number theory.

Some trivia:

Hensel’s great uncle was the famous
composer Felix Mendelssohn.

Hensel was an editor of Crelle’s
Journal.
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Key properties

Let a and b be rational (or p-adic) numbers. Then:

1 ∣a∣p ≥ 0

and ∣a∣p = 0 if and only if a = 0.

2 ∣a × b∣p = ∣a∣p × ∣b∣p for all real numbers a and b, i.e. the absolute
value is multiplicative

3 ∣a + b∣p ≤ ∣a∣p + ∣b∣p (triangle inequality)
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Triangle inequality

The p-adic absolute value satisfies the strong triangle inequality or
ultrametric inequality:

For any p-adic numbers a and b

∣a + b∣p ≤ max (∣a∣p, ∣b∣p)

with equality if ∣a∣p ≠ ∣b∣p.

Remark

Completely different from the usual absolute value, e.g. ∣5 + 5∣ = 10, while
∣5∣ = 5.
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Delightful consequence for convergence of series

As a consequence of the strong triangle inequality, a series

∞

∑
i=0

ai

converges p-adically if and only if ∣ai ∣p → 0 as i →∞.

In other words, you don’t need any complicated tests (root test, ratio test,
etc) to check convergence of series in the p-adic world!
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Congruences

Definition

Let n be a nonzero integer, and let a and b be integers. Then a is
congruent to b modulo n (i.e. a ≡ b mod n) if n divides a − b.

Example

3 ≡ −1 mod 4

Example

3 ≡ 11 mod 4

E. Eischen (UNC) p-adic absolute value March 13, 2015 18 / 46



Congruences

Definition

Let n be a nonzero integer, and let a and b be integers. Then a is
congruent to b modulo n (i.e. a ≡ b mod n) if n divides a − b.

Example

3 ≡ −1 mod 4

Example

3 ≡ 11 mod 4

E. Eischen (UNC) p-adic absolute value March 13, 2015 18 / 46



Congruences

Definition

Let n be a nonzero integer, and let a and b be integers. Then a is
congruent to b modulo n (i.e. a ≡ b mod n) if n divides a − b.

Example

3 ≡ −1 mod 4

Example

3 ≡ 11 mod 4

E. Eischen (UNC) p-adic absolute value March 13, 2015 18 / 46



Congruences and the p-adic absolute value

Two integers m and n are p-adically close if and only if they are congruent
modulo a high power of the prime p.

Observation

∣m − n∣p is small if and only if m ≡ n mod pk for a large integer k

So the p-adic absolute value measures congruences.
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Convergent sequences

A sequence a1, a2, . . . converges to a p-adically if ∣ai − a∣p → 0 as i →∞,
i.e. if ai ≡ a modulo higher and higher powers of p as i →∞.

Example

1,1 + 2,1 + 2 + 22,1 + 2 + 22 + 23, . . . converges 2-adically. It converges to
1 + 2 + 22 + 23 + 24 +⋯ = ∑

n
j=0 2j = 1

1−2 = −1.
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More convergent sequences

Chose rational numbers b and c . Find a sequence a1, a2, . . . of rational
numbers that converges to b with respect to the usual absolute value and
converges to c with respect to the p-adic absolute value.

Observation

For n = 1,2, . . ., let

an = b
pn

pn − 1
+ c

pn + 1

p2n + 1
.

Then a1, a2, . . . converges to b with respect to the usual absolute value
and converges to c with respect to the p-adic absolute value.
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Expression of p-adic numbers

Any nonzero p-adic number a can be expressed uniquely in the form

a = aNpN
+ aN+1pN+1

+⋯

with N an integer, aN ≠ 0, and 0 ≤ ai < p for all i .

If a is an integer, then this is the base p representation of a.

Observe that ∣a∣p = p−N .
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The trival absolute value

Definition

The trivial absolute value is defined by

∣x ∣ =

⎧⎪⎪
⎨
⎪⎪⎩

1 x ≠ 0

0 x = 0

for each number x.
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Ostrowski’s Theorem

Question

What are all the absolute values on Q?

Answer (Ostrowski’s Theorem, 1916)

Every nontrivial absolute value is equivalent to either the usual absolute
value or to a p-adic absolute value. (The absolute values equivalent to an
absolute value ∣ ⋅ ∣∗ are the absolute values of the form ∣ ⋅ ∣c

∗
with c > 0.)
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Generalizations

Can extend the p-adic absolute value to other fields, and can build an
analogue of C denoted Cp
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Extensions

Remark

∣ ⋅ ∣p can be extended from Q to R.

We’ll need this fact later in the talk.
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Hensel’s Lemma

If a polynomial has a simple root modulo p, then it has a root in Qp.

Example

x2 + 1 has two roots modulo 5 (namely, 2 and 3). So Q5 contains a square
root of −1.

Observation

Note the difference from the situation in Q. After completing Q with
respect to the usual absolute value, we obtain R, which does not contain a
square root of −1.
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Square roots of −1

We’re sorry. The number you have dialed is purely imaginary. Please
rotate your phone 90 degrees, and dial again.
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p-adic numbers in modern mathematics

p-adic numbers play a major role in modern research in number theory.

For example:

1 Andrew Wiles’s proof of Fermat’s Last Theorem(Let n ≥ 3 be an
integer. There do not exist nonzero integers a, b, and c such that
an + bn = cn.)

2 Work toward a proof of the Birch and Swinnerton-Dyer Conjecture
(win a million dollars if you prove it!) and analogues

3 Understanding the failure of unique factorization in certain rings (uses
a p-adic analogue of the Riemann zeta function)

4 p-adic geometry and p-adic analysis
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Some surprising geometric consequences

Recall the strong triangle inequality: For any p-adic numbers a and b

∣a + b∣p ≤ max (∣a∣p, ∣b∣p)

with equality if ∣a∣p ≠ ∣b∣p.

Here are some consequences:

If two intervals intersect, then one contains the other. (Can extend
this result to discs, etc.)

All triangles are isosceles.

The only connected subsets are the one point sets, i.e. Qp is totally
disconnected.
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A question

Question

Can a square be dissected into an odd number of triangles of equal area?

Figure : Equidissection (https://simpletonsymposium.files.wordpress.
com/2013/03/monsky-even-squares.jpg)
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Dissecting a square into triangles of equal area

Figure : Equidissection (wikipedia)
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Problem history

This question about dissecting a square into n triangles of equal area
was posed by Fred Richman and John Thomas in 1967 in the MAA’s
American Mathematical Monthly, Advanced Problem 5479.

Richman, who had initially wanted to put the problem on an exam,
had shown impossible for n = 3 and for n = 5.

Richman also proved that if a square can be dissected into n triangles
of equal area, then the same is true for n + 2.

Monsky answered it (building on John Thomas’s work) in 1970, in the
MAA’s American Mathematical Monthly.
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Monsky’s Theorem

Theorem (Monsky, 1970)

It is impossible to dissect a square into an odd number of triangles of
equal area.

Figure : Paul Monsky (wikipedia)
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Outline of proof of Monsky’s Theorem

Goal

Show that it is impossible to dissect a square into an odd number of
triangles of equal area.

Step 1: Relate to the 2-adic absolute value:

We’ll prove the theorem for a unit square.

If unit square can be dissected into n triangles of equal area, then
each triangle has area 1

n .

Note that if n is odd, then ∣ 1n ∣2 = 1, and if n is even ∣ 1n ∣2 > 1.

We’ll show that if unit square can be dissected into n triangles of
equal area, then ∣ 1n ∣2 > 1, i.e. n is even.
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Outline of proof of Monsky’s Theorem

Step 2: Consider the
square in the plane with
vertices (0,0), (0,1),
(1,0), and (1,1).

Figure : unit square
(wikipedia)

Color each point P = (x , y) as fol-
lows.

P is blue if ∣x ∣2 ≥ ∣y ∣2 and
∣x ∣2 ≥ 1

P is green if ∣x ∣2 < ∣y ∣2 and
∣y ∣2 ≥ 1

P is red if ∣x ∣2 < 1 and
∣y ∣2 < 1
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Outline of proof of Monsky’s Theorem

Figure : Coloring of the unit square (from Proofs From the Book)
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Outline of proof of Monsky’s Theorem

Step 3: Show that any blue point Pb = (xb, yb), red point Pr = (xr , yr),
and green point Pg = (xg , yg) form the vertices of a triangle of positive
area A, and ∣A∣2 > 1.

Outline of how to do this:

1

RRRRRRRRRRRRRR

det
⎛
⎜
⎝

xb yb 1
xr yr 1
xg yg 1

⎞
⎟
⎠

RRRRRRRRRRRRRR2

≥ 1 (follows from the way we assigned colors

using ∣ ⋅ ∣2)

2 The area A of the triangle with vertices Pb, Pr , and Pg is

1
2 ×

RRRRRRRRRRRRRR

det
⎛
⎜
⎝

xb yb 1
xr yr 1
xg yg 1

⎞
⎟
⎠

RRRRRRRRRRRRRR

. (This also tells us that on any line, there are

at most two colors.)
So ∣A∣2 > 1.
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A dissection of the square

Figure : A dissection (from Proofs from the Book)
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Step 4: Show that every dissection of the unit square into a finite set of
triangles contains at least one triangle whose vertices are three different
colors (i.e. a triangle whose area A satisfies ∣A∣2 > 1).

A clever counting argument:

1 (0,0) is red and (1,0) is blue. So the
bottom of the square contains an odd
number of red-blue segments.

2 Thus, counting up the number of red-blue
segments, summed over all triangles, we
obtain an odd number of red-blue
segments. (Each segment in the interior of
the square is on a border of two triangles,
so is counted twice. The segments on the
boundary are each counted once.)

3 Consequence: At least one triangle has an
odd number of red-blue segments, which in
turn implies it has vertices of 3 different
colors.
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Summary

Figure : A dissection (from Proofs from the Book)

By a clever counting argument, we showed that at least one triangle
in the dissection of the unit square has vertices of all three colors.

Using determinants, we showed that the area of such a triangle has
2-adic absolute value > 1.

In other words, the area of such a triangle cannot be 1/n with n odd.
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Conclusion

It is impossible to dissect a square into an odd number of triangles of
equal area.
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Generalizations of Monsky’s Theorem

Question

What about dissections of other polygons into triangles of equal area?

1 For n ≥ 5, a regular n-gon can be dissected into m triangles of equal
area if and only if m is a multiple of n.

▸ Proved by Elaine Kasimatis
▸ Proof uses p-adic numbers for each prime divisor p of n
▸ Builds on Monsky’s proof

2 Equidissections of trapezoids and kites have been considered by
various mathematicians (e.g. Hoyer, Jepson, Kasimatis, Monsky,
Sedberry, Stein)

3 Equidissection of general quadrilaterals studied by Du, Ren, and Su
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Happy π Day Eve!
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