
VarScreen

A program for screening predictor and target
variables that will be employed in model building

Version 1.6, containing:

! Univariate mutual information, with p-values
compensated for selection bias, and probability of the
best in-sample selection underperforming others out-of-
sample

! Bivariate mutual information and uncertainty reduction,
with p-values compensated for selection bias

! Optimal predictor sets defined by Relevance minus
Redundancy, including solo and group p-values

! Hidden Markov models chosen according to their
multivariate correlation with a target, including p-values
compensated for selection bias

! Detecting change in the mean of a time series (such as
deterioration of performance of a market trading system),
compensated for multiple series as well as multiple
comparisons across time

! Ensemble FREL (Feature Weighting as Regularized
Energy-based Learning) for high-dimensionality, small-
sample applications

Table of Contents

About the VarScreen Program. 1

About CUDA Processing. 3

Reading a Dataset.. 4

Univariate Mutual Information. 5

Bivariate Mutual Information / Uncertainty Reduction.. 14

Predictors having Max Relevance, Min Redundancy. 24

Hidden Markov Models with Target Correlation.. 31

Stationarity Test for Break in Mean.. 41

FREL: Feature Weighting as Regularized Energy-Based Learning. 48

Appendix: Version Updates. 59

About the VarScreen Program 1

About the VarScreen Program

VarScreen contains in one easy-to-use program a variety of software tools useful for the

developer of predictive models. These tools screen and evaluate candidates for

predictors and targets. More on this later. But first, we need to issue a vitally important

disclaimer:

This program is an experimental work in progress. It is

provided free of charge to interested users for educational

purposes only. In all likelihood this program contains errors

and omissions. If you use this program for a purpose in which

loss is possible, then you are fully responsible for any and all

losses associated with use of this program. The developer of

this program disclaims all responsibility for losses which the

user may incur.

Okay, enough of that. You’ve been warned. The VarScreen program is being developed

with two major goals in mind:

1) The program should be exceptionally easy to learn and use. Results should be

obtainable with no more than a few intuitive mouse clicks and key presses.

Detailed study of an exhaustive manual should not be required.

2) The software should provide cutting-edge statistical information, employing tests

and algorithms not readily available in any standard analysis software.

I believe that these goals have been and will continue to be obtained.

Finally, understand that VarScreen is a work in progress. New screening algorithms will

likely be added on a regular basis. Stay tuned. Updates will be reported on the author’s

website: TimothyMasters.info.

2 About the VarScreen Program

Features of the program

In keeping with the goals of simplicity plus mathematical sophistication, the following

items are noteworthy:

! Most operations involve just two quick steps: read the data and select the test to be

performed. Program-supplied defaults are often satisfactory, and adjusting them

is easy. The next section will describe reading the data, and subsequent sections

will describe the tests that can be performed.

! The program is fully multi-threaded, enabling it to take maximum advantage of

modern multiple-core processors. As of this writing, many over-the-counter

computers contain a CPU with six cores, each of which is hyperthreaded to

perform two sets of operation streams simultaneously. VarScreen keeps all twelve

of these threads busy as much as possible, which tremendously speeds operation

compared to single-threaded programs.

! The most massively compute-intensive algorithms make use of any CUDA-

enabled nVidia card in the user’s computer. These widely available video cards

(standard hardware on many computers) turn an ordinary desktop computer into

a super-computer, accelerating computations by several orders of magnitude.

Enormously complex algorithms that would require days of compute time on an

ordinary computer with ordinary software can execute in several minutes using

the VarScreen program on a computer with a modern nVidia display card.

! Rather than printing results on the screen, the program writes a log file called

VARSCREEN.LOG. This way a ‘permanent’ copy of all results is available for

optional printing and archiving.

About CUDA Processing 3

About CUDA Processing

CUDA stands for Compute Unified Device Architecture. It is the interface system by

which nVidia makes the massive parallel processing hardware of its video display cards

available to applications. The power of this hardware is breathtaking; the GTX Titan

video card contains nearly 3000 processors that can execute programs simultaneously.

VarScreen makes use of this capability for especially time-consuming tasks.

There is an annoying quirk, however, which users of VarScreen should be aware of.

Microsoft, in its infinite wisdom, forbids any Windows program from executing a CUDA

application for longer than two seconds. Moreover, Windows makes it almost

impossible for most users to increase or disable this limit; doing so involves tampering

with the Registry, a frightening endeavor. Unfortunately, some large problems can

require far more than two seconds of CUDA time.

In order to get around this issue, VarScreen breaks up large tasks into multiple small

tasks. Each such task is called a Launch. An ugly tradeoff is involved in this breakup.

Each launch incurs a significant overhead, so one should minimize the number of

launches. On the other hand, increasing the workload of each launch increases the

probability that the deadly two-second limit will be reached, with the result that

Windows terminates the program, and somewhere, behind some closed door, a Microsoft

programmer snickers. Due to the large variety of CUDA hardware available, it is not

practical to predict in advance how long a launch will tie up the CUDA processing, so

one must be conservative.

The reason I am making such an issue of this is to allow the user of VarScreen to

understand a bit of output written to the screen. Whenever a large test involving CUDA

computations is running, a progress bar is displayed. This bar also includes text similar

to the following:

Max CUDA time = 23 ms in 2 launches

What this means is that each task had to be broken up into two launches, and the

maximum CUDA processing time for those two launches was 23 milliseconds. There is

one reason why this may be important to the user: if the time approaches 2000 (two

seconds) you are near crashing (a brief black screen followed by a message that the video

card has been reset). I would be grateful if you contacted me at my email:

tim@TimothyMasters.info and reported this so I can continue to tweak the program.

4 Reading a Dataset

Reading a Dataset

VarScreen reads data files that are in a common data format: the first record names the

fields, and each subsequent record is a single case. For example, the first few lines of a

dataset might look like this:

X1 X2 X3 Y
3.14 0.21 -5.33 4.01
-1.02 -0.45 2.12 -7.02
...

Variable names may be at most 15 characters long. Spaces, commas, and tabs may be

used as delimiters. One implication of this fact is that variable names must not contain

spaces. In place of a space, the underscore character (_) may be used. Numeric values

must be strictly numeric; scientific notation (i.e. 3.14e-9) is illegal in the current version of

the program. If users scream loudly enough, this feature may be added later.

Files exported from Microsoft Excel as comma-delimited (.CSV) files are generally

readable by VarScreen, although if dates with slashes appear, or other text fields appear,

trouble may be encountered. (Text variables or otherwise non-numeric fields will

typically be assigned the value 0.0.) If exporting from Excel, also beware of column

headers that contain spaces. CSV files strictly use commas as delimiters, so spaces in

column names are legal in Excel, but since VarScreen treats spaces as delimiters, the single

variable name in Excel will be mistakenly treated as two or more variables in VarScreen if

the name contains spaces.

Missing data is not allowed; every data record must have a numeric value present for

every field. Note that if a file exported from Excel contains missing data, this will be

represented in the file as contiguous commas, which will cause problems for VarScreen.

After the file is read, the log file VARSCREEN.LOG will contain a table of the mean and

standard deviation of every variable in the file. Users should get in the habit of

skimming this table as a quick sanity check of the validity of the data; a wild value in the

table may indicate an unexpected flaw in the data file.

Univariate Mutual Information 5

Univariate Mutual Information

The Univariate Mutual Information test computes the mutual information between a

specified target variable and each of a specified set of predictor candidates. The

predictors are then listed in the VARSCREEN.LOG file in descending order of mutual

information. Along with each candidate, a specialized probability described later, as well

as the Solo pval and Unbiased pval, are printed if Monte-Carlo replications are requested.

The Solo pval is the probability that a candidate that has a strictly random (no predictive

power) relationship with the target could have, by sheer good luck, had a mutual

information at least as high as that obtained. If this quantity is not small, the developer

should strongly suspect that the candidate is worthless for predicting the target. Of

course, this logic is, in a sense, accepting a null hypothesis, which is well known to be a

dangerous practice. However, if a reasonable number of cases are present and a

reasonable number of Monte-Carlo replications have been done, this test is powerful

enough that failure to achieve a small p-value can be interpreted as the candidate having

little or no predictive power.

The problem with the Solo pval is that if more than one candidate is tested (the usual

situation!), then there is a large probability that some truly worthless candidate will be

lucky enough to achieve a high level of mutual information, and hence achieve a very

small Solo pval. In fact, if all candidates are worthless, the Solo pvals will follow a uniform

distribution, frequently obtaining small values by random chance. This situation can be

remedied by conducting a more advanced test which accounts for this selection bias. The

Unbiased pval for the best performer in the candidate set is the probability that this best

performer could have attained its exalted level of performance by sheer luck if all

candidates were truly worthless.

The Unbiased pval is printed for all candidates, not just the best. For those other, lesser

candidates, the Unbiased pval is an upper bound (a conservative measure) for the true

unbiased p-value of the candidate. Thus, a very small Unbiased pval for any candidate is a

strong indication that the candidate has true predictive power. Unfortunately, unlike the

Solo pval, large values of the Unbiased pval are not necessarily evidence that the candidate

is worthless. Large values, especially near the bottom of the sorted list, may be due to

over-estimation of the true p-value. The author is not aware of any algorithm for

computing correct unbiased p-values for any candidate other than the best. However,

because this measure is conservative, it does have great utility in selecting promising

predictors.

6 Univariate Mutual Information

The user must be aware of a vital caveat to this procedure: The Solo pval and Unbiased

pval computations fall apart if there is significant serial correlation (or any other

dependency) among both the target variable as well as one or more of the predictor

candidates. In most practical applications, the predictor candidates are hopelessly

dependent, so the key is the target variable. If it has anything beyond tiny dependency

(typically serial correlation), the test will become anti-conservative: the computed

p-values will be smaller than the correct values. This is dangerous. VarScreen contains an

option that somewhat helps in this situation, but it is not a complete cure.

The final column printed is inspired by a research report titled “The Probability of

Backtest Overfitting” by David Bailey, Jonathan Borwein, Marcos Lopez de Prado, and

Jim Zhu. Like the permutation test, it assumes that there is no significant serial

correlation among both the target variable and one or more predictor candidates,

although it tends to be fairly robust in this regard. I heavily modified their clever

algorithm to apply to mutual information.

When one examines a pool of candidates and selects a predictor based on its having the

maximum value of some criterion such as mutual information, one hopes that this

superiority will carry over to data not yet seen (out-of-sample or OOS data). In

particular, consider the (unknown at test time) median OOS performance of all predictor

candidates. At a minimum, one would hope that the OOS performance of the candidate

selected based on its having maximum in-sample performance would exceed the median

OOS performance of all candidates. If not, the selection process is useless; no superiority

is obtained by choosing the best in-sample performer.

The rightmost figure printed for the first row (the best candidate) is the estimated

probability that the OOS mutual information of this selected candidate will be less than

or equal to the median OOS performance of all of the other candidates. Obviously, we

want this probability to be small.

The figures printed for subsequent rows are the equivalent probabilities for lower rank

orders. For example, the figure for the second row is the probability that the second best

in-sample candidate will have OOS performance less than or equal to the median. This is

subtly different from the probability for the particular candidate that was selected; it’s a

more theoretical figure. Nonetheless, equating the two should not be unreasonable.

Ideally, one would see low probabilities near the top (the best in-sample candidates

outperform OOS) and high probabilities near the bottom (the worst underperform). A

large quantity of worthless candidates will make the distribution more random.

Univariate Mutual Information 7

Specifying the Test Parameters

When the user clicks Tests / Univariate Mutual Information, a dialog similar to that shown

below will appear. The various parameters are described on the following page.

The leftmost column is used to specify the set of predictor candidates. Multiple

candidates can be selected by dragging the mouse cursor across a block, or by clicking

the first candidate in a block, holding the Shift key, and clicking the last candidate in the

block. Individual candidates can be toggled on and off by holding the Ctrl key while

clicking on the variable.

The Target column is used to select a single target variable.

8 Univariate Mutual Information

Three methods for computing mutual information are available, and the method to use is

chosen by selecting one of the three buttons in the Predictor bin definition block:

Predictors and target continuous uses the Darbellay-Vajda algorithm (fully described in

“Assessing and Improving Prediction and Classification” by Timothy Masters) to

compute continuous mutual information. This method is appropriate (and almost

always the preferred approach) when all variables are continuous or nearly so.

It’s main disadvantage is that it is much slower to compute than the bin methods.

Also, candidates that have tiny mutual information with the target will have their

computed mutual information reduced to exactly zero by the algorithm. This will

produce a sudden discontinuity in p-values, which may appear unusual but which

in fact is perfectly reasonable.

Use all cases partitions each predictor into bins that are as equal in size as possible. The

user must specify the number of bins to employ, and unless the dataset is huge the

default of three bins is frequently appropriate.

Use tails only computes mutual information based on only the maximum and minimum

collection of values of each predictor. The tail fraction specified by the user is the

fraction of cases in each tail. So, for example, the default tail fraction of 0.1 would

use the cases having the smallest ten percent and the largest ten percent of

predictor values. The 80 percent of cases having intermediate values of the

predictor candidate would be completely ignored in the mutual information

calculation. This method is especially useful in high-noise situations, such as

prediction of financial markets. The probability that superior mutual information

will hold up out-of-sample cannot be computed when this option is selected.

Target bins must be specified if Use all cases or Use tails only is chosen. This is the number

of approximately equal-size bins into which the target variable is distributed. The

default value of 3 is appropriate for a wide variety of applications. This field is

ignored if the Predictors and target continuous option is selected.

Replications defaults to zero, in which case no Monte-Carlo Permutation Test is

performed. However, it is usually best to set this to at least 100, and perhaps as

much as 1000, so that solo and unbiased p-values will be computed. Note that the

minimum possible p-value is the reciprocal of the number of permutations. So, for

example, if the user specifies 100 permutations, the minimum p-value that can

appear is 0.01. Run time of this test is linearly related to the number of

permutations.

Univariate Mutual Information 9

The user must choose either Complete or Cyclic permutations. If the user is confident that

there is no dependency as described earlier, then Complete should be used; it is the

traditional approach which does a complete random shuffle for each permutation.

However, if there is dependency, this type of shuffling will produce underestimation of

p-values, a very dangerous situation. If the dependency is serial (the data is a time series

and the dependency is among samples close in time) then a slight improvement in the

situation can be obtained by using Cyclic permutation. In this type of shuffle, the time

order of the target is kept intact except at the ends by rotating the targets with end-point

wraparound. Shuffling this way preserves most of the serial dependency in the

permutated targets, which makes the algorithm more accurate. The p-values computed

this way will generally be larger than those computed with complete shuffling, and

hence less likely to lead to false rejection of the null hypothesis of no predictive power.

But be warned that the cure is far from complete; computed p-values will still

underestimate the true values, just not as badly.

Note that in most cases it is legitimate to use Cyclic permutation instead of Complete when

there is no dependency. However, if the dataset is small, Cyclic permutation will limit

the number of unique permutations and hence increase the random error inherent in the

process. As long as the dataset is large, some users may prefer to use Cyclic permutation

even if it is assumed that there is no serial dependency; in case there really is hidden

serial dependency, this is a cheap insurance policy. Still, the best practice is to make sure

that the data does not contain dependency and then use Complete permutation. Relying

on Cyclic permutation to take care of dependency problems is living dangerously. And if

the dataset contains fewer than 1000 or so cases, use of Cyclic permutation is not

recommended unless it is necessary to handle dependency.

10 Univariate Mutual Information

Examples of Univariate Mutual Information

This section demonstrates three situations, all using synthetic data to clarify the

presentation. The variables in the dataset are as follows:

RAND0 - RAND9 are independent (within themselves and with each other) random time

series.

DEP_RAND0 - DEP_RAND9 are derived from RAND0 - RAND9 by introducing strong

serial correlation up to a lag of nine observations. They are independent of one another.

SUM12 = RAND1 + RAND2

SUM34 = RAND3 + RAND4

SUM1234 = SUM12 + SUM34

The first test run attempts to predict SUM1234 from RAND0 - RAND9, SUM12, and

SUM34. The output looks like this:

* *
* Computing univariate mutual information (one predictor, one target) *
* 12 predictor candidates *
* 5 predictor bins *
* 5 target bins *
* 10000 replications of complete Monte-Carlo Permutation Test *
* *

The bounds that define bins are now shown

Target bounds are based on the entire dataset...
 -0.97362 -0.27795 0.31417 1.00879

 Variable Bounds...

 RAND0 -0.59427 -0.18805 0.20723 0.60549
 RAND1 -0.58905 -0.18795 0.22570 0.62047
 RAND2 -0.59430 -0.18090 0.21697 0.61045
 RAND3 -0.62008 -0.20843 0.19894 0.59159
 RAND4 -0.59696 -0.18753 0.21087 0.61077
 RAND5 -0.59819 -0.21468 0.18130 0.56676
 RAND6 -0.61150 -0.21273 0.19102 0.59680
 RAND7 -0.61383 -0.22039 0.18521 0.58843
 RAND8 -0.59055 -0.19032 0.20591 0.59859

Univariate Mutual Information 11

 RAND9 -0.60422 -0.19932 0.20315 0.58792
 SUM12 -0.67798 -0.17129 0.22588 0.74242
 SUM34 -0.73810 -0.21209 0.21164 0.74363

The marginal distributions are now shown.
If the data is continuous, the marginals will be nearly equal.
Widely unequal marginals indicate potentially problematic ties.

Target marginals are based on the entire dataset...
 0.19987 0.20003 0.20003 0.20003 0.20003

 Variable Marginal...

 RAND0 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND1 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND2 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND3 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND4 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND5 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND6 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND7 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND8 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND9 0.19987 0.20003 0.20003 0.20003 0.20003
 SUM12 0.19987 0.20003 0.20003 0.20003 0.20003
 SUM34 0.19987 0.20003 0.20003 0.20003 0.20003

------------------> Mutual Information with SUM1234 <------------------

 Variable MI Solo pval Unbiased pval P(<=median)

 SUM34 0.2877 0.0001 0.0001 0.0000
 SUM12 0.2610 0.0001 0.0001 0.0000
 RAND3 0.1307 0.0001 0.0001 0.0000
 RAND4 0.1263 0.0001 0.0001 0.0000
 RAND1 0.1129 0.0001 0.0001 0.0000
 RAND2 0.1085 0.0001 0.0001 0.0000
 RAND8 0.0015 0.2994 0.9828 1.0000
 RAND5 0.0014 0.3673 0.9950 1.0000
 RAND6 0.0012 0.5303 1.0000 1.0000
 RAND7 0.0010 0.7384 1.0000 1.0000
 RAND0 0.0008 0.8332 1.0000 1.0000
 RAND9 0.0006 0.9605 1.0000 1.0000

The bounds that define the target and predictor bins are shown, along with the marginal

probabilities. If any marginal is far from being equal, that variable has significant ties

and the situation should be investigated.

As expected, the best predictors of SUM1234 are SUM12 and SUM34. RAND1 - RAND4

are the next best. All other predictors are obviously worthless. Note how dramatically

the unbiased p-value delineates the break.

12 Univariate Mutual Information

The next example shows what happens when worthless and serially correlated predictors

are tested with a serially correlated target. We use DEP_RAND1 - DEP_RAND9 to

predict DEP_RAND0, a situation which should demonstrate no predictive power

whatsoever. The mutual information table is as follows:

-----------------> Mutual Information with DEP_RAND0 <-----------------

 Variable MI Solo pval Unbiased pval P(<=median)

 DEP_RAND2 0.0044 0.0001 0.0002 0.6944
 DEP_RAND4 0.0030 0.0018 0.0175 0.6190
 DEP_RAND3 0.0025 0.0110 0.0881 0.6270
 DEP_RAND6 0.0023 0.0249 0.2004 0.5516
 DEP_RAND9 0.0023 0.0242 0.2062 0.5397
 DEP_RAND8 0.0023 0.0287 0.2284 0.5079
 DEP_RAND1 0.0022 0.0317 0.2494 0.4960
 DEP_RAND5 0.0019 0.0883 0.5509 0.4325
 DEP_RAND7 0.0008 0.8682 1.0000 0.5317

The mutual information figures are all tiny, yet the p-values show extreme significance.

The careless user would surely be fooled by this, because not only are the solo p-values

mostly small, but even the unbiased p-value has been fooled for one or two of the

candidates.

It should be emphasized that this phenomenon is not an artifact of just the Monte-Carlo

Permutation Test. This is a universal phenomenon, which is why Statistics 101 courses

always emphasize the importance of independent observations. The simple explanation

of why this occurs is that any sort of dependence reduces the effective degrees of

freedom of the test. The testing procedure looks at the number of cases and proceeds

accordingly, but the dependence in the data increases the variance of the test statistic

beyond what would be expected from a sample of the given size. Thus we are more

likely to falsely reject the null hypothesis.

Observe that in this ‘no predictive power’ case, despite the serial correlation, the

probabilities in the final column are distributed around 0.5, which would be expected

when none of the candidates has predictive power. This is because the best in-sample

candidate is random, and hence its associated out-of-sample performance has about a 50-

50 chance of lying above or below the median. This is the pattern usually seen when all

candidates are worthless.

Univariate Mutual Information 13

The final example shows how the cyclic modification of the Monte-Carlo Permutation

Test can at least partially remedy the situation. We repeat the same test as that just

shown, except that instead of using Complete permutation we use Cyclic permutation.

The results are shown below:

-----------------> Mutual Information with DEP_RAND0 <-----------------

 Variable MI Solo pval Unbiased pval P(<=median)

 DEP_RAND2 0.0044 0.0513 0.3529 0.6944
 DEP_RAND4 0.0030 0.2408 0.9316 0.6190
 DEP_RAND3 0.0025 0.3976 0.9918 0.6270
 DEP_RAND6 0.0023 0.5007 0.9976 0.5516
 DEP_RAND9 0.0023 0.5237 0.9982 0.5397
 DEP_RAND8 0.0023 0.4719 0.9988 0.5079
 DEP_RAND1 0.0022 0.5344 0.9990 0.4960
 DEP_RAND5 0.0019 0.6643 1.0000 0.4325
 DEP_RAND7 0.0008 0.9920 1.0000 0.5317

Now observe that even the largest random relationship is not significant at the 0.05 level

on a solo basis, and the unbiased p-value is far from significant.

14 Bivariate Mutual Information / Uncertainty Reduction

Bivariate Mutual Information / Uncertainty Reduction

Sometimes a single variable acting alone has little or no predictive power, but in

conjunction with another it becomes useful. The classic example is the height and weight

of an individual, predicting coronary health. Either predictor alone has relatively little

predictive power, but the two taken together can have great power.

Also, sometimes we have several equally useful candidates for the target variable, and

we are not sure which will be most predictable. One example of this situation is when

the application is predicting future movement of a financial market with the goal of

taking a position and then hopefully closing the position with a profit. Should we

employ a tight stop to discourage severe losses? Or should we use a loose stop to avoid

being closed out by random noise? We might test multiple targets corresponding to

various degrees of stop positioning, and then determine which of the competitors is most

predictable.

The Bivariate Mutual Information test handles both of these situations. It computes the

mutual information or uncertainty reduction between each of one or more specified

target variables and each possible pair of predictors taken from a specified set of

predictor candidates. The predictor pairs and associated targets are then listed in the

VARSCREEN.LOG file in descending order of mutual information. Along with each

such set, the Solo pval and Unbiased pval are printed if Monte-Carlo replications are

requested.

The Solo pval is the probability that a pair of candidates that has a strictly random (no

predictive power) relationship with the target could have, by sheer good luck, had a

relationship at least as high as that obtained. If this quantity is not small, the developer

should strongly suspect that the candidate is worthless for predicting the target. Of

course, this logic is, in a sense, accepting a null hypothesis, which is well known to be a

dangerous practice. However, if a reasonable number of cases are present and a

reasonable number of Monte-Carlo replications have been done, this test is powerful

enough that failure to achieve a small p-value can be interpreted as the candidate having

little or no predictive power.

The problem with the Solo pval is that if more than one candidate set (a set being two

predictors and a target) is tested (the usual situation!), then there is a large probability

that some truly worthless candidate set will be lucky enough to achieve a high level of

the relationship criterion, and hence achieve a very small Solo pval. In fact, if all

candidate sets are worthless, the Solo pvals will follow a uniform distribution, frequently

Bivariate Mutual Information / Uncertainty Reduction 15

obtaining small values by random chance. This situation can be remedied by conducting

a more advanced test which accounts for this selection bias. The Unbiased pval for the best

performing candidate set is the probability that this best performer could have attained

its exalted level of performance by sheer luck if all candidate sets were truly worthless.

The Unbiased pval is printed for all candidate sets, not just the best. For those other, lesser

candidates, the Unbiased pval is an upper bound (a conservative measure) for the true

unbiased p-value of the candidate set. Thus, a very small Unbiased pval for any candidate

set is a strong indication that the pair of predictors has true predictive power for the

target. Unfortunately, unlike the Solo pval, large values of the Unbiased pval are not

necessarily evidence that the candidate set is worthless. Large values, especially near the

bottom of the sorted list, may be due to over-estimation of the true p-value. The author is

not aware of any algorithm for computing correct unbiased p-values for any candidate

set other than the best. However, because this measure is conservative, it does have great

utility in selecting promising predictors.

The user must be aware of a vital caveat to this procedure: The Solo pval and Unbiased

pval computations fall apart if there is significant serial correlation (or any other

dependency) among one or more target variables as well as one or more of the predictor

candidates. In most practical applications, the predictor candidates are hopelessly

dependent, so the key is the target variable. If it has anything beyond tiny dependency

(typically serial correlation), the test will become anti-conservative: the computed

p-values will be smaller than the correct values. This is dangerous. VarScreen contains an

option that somewhat helps in this situation, but it is not a complete cure.

16 Bivariate Mutual Information / Uncertainty Reduction

Specifying the Test Parameters

When the user clicks Tests / Bivariate Mutual Information, a dialog similar to that shown

below will appear. The various parameters are described after the dialog.

The leftmost column is used to specify the set of predictor candidates. Multiple

candidates can be selected by dragging the mouse cursor across a block, or by clicking

the first candidate in a block, holding the Shift key, and clicking the last candidate in the

block. Individual candidates can be toggled on and off by holding the Ctrl key while

clicking on the variable.

The Target column is used to select one or more target variables, with multiple selections

obtained as described for predictors.

Bivariate Mutual Information / Uncertainty Reduction 17

The predictors and the targets are partitioned into bins that are as equal in size as

possible. The user must specify the number of bins to employ for each, and unless the

dataset is huge the default of three bins is frequently appropriate.

There can be an annoying problem when using mutual information as a measure of

relationship when more than one target is in competition. Mutual information is highly

related to the entropy of the predictor and target. If there is only one target in play, the

mutual information between it and each predictor candidate will have the same rank

order as the uncertainty reduction. But if there are several targets in competition and

they have widely disparate entropies, then mutual information is not a good measure of

their relationship because the target entropies can confound the rank ordering.

What you are really interested in is the degree to which uncertainty about a target is

reduced by having knowledge of a predictor. It can be thought of as their mutual

information divided by the entropy of the target. Equivalently, it is the fraction of the

target’s entropy which is mutual information. For example, if they have zero mutual

information, there will be zero uncertainty reduction (about the target) by knowing the

predictor. At the other extreme, if their mutual information equals the target entropy,

then knowing the predictor will provide perfect (1.0) uncertainty reduction regarding the

target.

Thus, a target with high entropy will need high mutual information in order to have a

high relationship score. For this reason, uncertainty reduction is the default for this test.

Much more detail on this important concept can be found in “Assessing and Improving

Prediction and Classification” by Timothy Masters.

Replications defaults to zero, in which case no Monte-Carlo Permutation Test is

performed. However, it is usually best to set this to at least 100, and perhaps as much as

1000, so that solo and unbiased p-values will be computed. Note that the minimum

possible p-value is the reciprocal of the number of permutations. So, for example, if the

user specifies 100 permutations, the minimum p-value that can appear is 0.01. Run time

of this test is linearly related to the number of permutations.

The user must choose either Complete or Cyclic permutations. If the user is confident that

there is no dependency as described earlier, then Complete should be used; it is the

traditional approach which does a complete random shuffle for each permutation.

However, if there is dependency, this type of shuffling will produce underestimation of

p-values, a very dangerous situation. If the dependency is serial (the data is a time series

and the dependency is among samples close in time) then a slight improvement in the

situation can be obtained by using Cyclic permutation. In this type of shuffle, the time

18 Bivariate Mutual Information / Uncertainty Reduction

order of the target is kept intact except at the ends by rotating the targets with end-point

wraparound. Shuffling this way preserves most of the serial dependency in the

permutated targets, which makes the algorithm more accurate. The p-values computed

this way will generally be larger than those computed with complete shuffling, and

hence less likely to lead to false rejection of the null hypothesis of no predictive power.

But be warned that the cure is far from complete; computed p-values will still

underestimate the true values, just not as badly.

Note that in most cases it is legitimate to use Cyclic permutation instead of Complete when

there is no dependency. However, if the dataset is small, Cyclic permutation will limit

the number of unique permutations and hence increase the random error inherent in the

process. As long as the dataset is large, some users may prefer to use Cyclic permutation

even if it is assumed that there is no serial dependency; in case there really is hidden

serial dependency, this is a cheap insurance policy. Still, the best practice is to make sure

that the data does not contain dependency and then use Complete permutation. Relying

on Cyclic permutation to take care of dependency problems is living dangerously. And if

the dataset contains fewer than 1000 or so cases, use of Cyclic permutation is not

recommended unless it is necessary to handle dependency.

Bivariate Mutual Information / Uncertainty Reduction 19

Examples of Bivariate Mutual Information

This section demonstrates three situations, all using synthetic data to clarify the

presentation. The variables in the dataset are as follows:

RAND0 - RAND9 are independent (within themselves and with each other) random time

series.

DEP_RAND0 - DEP_RAND9 are derived from RAND0 - RAND9 by introducing strong

serial correlation up to a lag of nine observations. They are independent of one another.

SUM12 = RAND1 + RAND2

SUM34 = RAND3 + RAND4

SUM1234 = SUM12 + SUM34

The first test run attempts to predict SUM1234 from RAND0 - RAND9, SUM12, and

SUM34. Two predictors at a time will be used. The output is shown below. For bin

boundaries and marginals, the predictor candidates are shown first, followed by a single

blank line, and then the target candidates (just one in this example) appear.

* *
* Computing bivariate mutual information (two predictors, one target) *
* 12 predictor candidates *
* 1 target candidates *
* 66 predictor/target combinations to test *
* 100 best combinations will be printed *
* 5 predictor bins *
* 5 target bins *
* 10000 replications of complete Monte-Carlo Permutation Test *
* *

The bounds that define bins are now shown

 RAND0 -0.59427 -0.18805 0.20723 0.60549
 RAND1 -0.58905 -0.18795 0.22570 0.62047
 RAND2 -0.59430 -0.18090 0.21697 0.61045
 RAND3 -0.62008 -0.20843 0.19894 0.59159
 RAND4 -0.59696 -0.18753 0.21087 0.61077
 RAND5 -0.59819 -0.21468 0.18130 0.56676
 RAND6 -0.61150 -0.21273 0.19102 0.59680

20 Bivariate Mutual Information / Uncertainty Reduction

 RAND7 -0.61383 -0.22039 0.18521 0.58843
 RAND8 -0.59055 -0.19032 0.20591 0.59859
 RAND9 -0.60422 -0.19932 0.20315 0.58792
 SUM12 -0.67798 -0.17129 0.22588 0.74242
 SUM34 -0.73810 -0.21209 0.21164 0.74363

 SUM1234 -0.97362 -0.27795 0.31417 1.00879

The marginal distributions are now shown.
If the data is continuous, the marginals will be nearly equal.
Widely unequal marginals indicate potentially problematic ties.

 RAND0 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND1 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND2 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND3 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND4 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND5 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND6 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND7 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND8 0.19987 0.20003 0.20003 0.20003 0.20003
 RAND9 0.19987 0.20003 0.20003 0.20003 0.20003
 SUM12 0.19987 0.20003 0.20003 0.20003 0.20003
 SUM34 0.19987 0.20003 0.20003 0.20003 0.20003

 SUM1234 0.19987 0.20003 0.20003 0.20003 0.20003

------------------> Mutual Information <-----------------

 Predictor 1 Predictor 2 Target MI Solo pval Unbiased pval

 SUM12 SUM34 SUM1234 1.0781 0.0001 0.0001
 RAND1 SUM34 SUM1234 0.5363 0.0001 0.0001
 RAND3 SUM12 SUM1234 0.5356 0.0001 0.0001
 RAND2 SUM34 SUM1234 0.5333 0.0001 0.0001
 RAND4 SUM12 SUM1234 0.5242 0.0001 0.0001
 RAND3 RAND4 SUM1234 0.3094 0.0001 0.0001
 RAND3 SUM34 SUM1234 0.2994 0.0001 0.0001
 RAND4 SUM34 SUM1234 0.2985 0.0001 0.0001
 RAND6 SUM34 SUM1234 0.2947 0.0001 0.0001
 RAND9 SUM34 SUM1234 0.2946 0.0001 0.0001
 RAND8 SUM34 SUM1234 0.2944 0.0001 0.0001
 RAND5 SUM34 SUM1234 0.2939 0.0001 0.0001
 RAND0 SUM34 SUM1234 0.2937 0.0001 0.0001
 RAND7 SUM34 SUM1234 0.2925 0.0001 0.0001
 RAND2 RAND3 SUM1234 0.2881 0.0001 0.0001
 RAND1 RAND3 SUM1234 0.2879 0.0001 0.0001
 RAND1 RAND4 SUM1234 0.2861 0.0001 0.0001
 RAND2 RAND4 SUM1234 0.2811 0.0001 0.0001
 RAND1 RAND2 SUM1234 0.2755 0.0001 0.0001
 RAND2 SUM12 SUM1234 0.2709 0.0001 0.0001
 RAND1 SUM12 SUM1234 0.2705 0.0001 0.0001

Bivariate Mutual Information / Uncertainty Reduction 21

 RAND5 SUM12 SUM1234 0.2697 0.0001 0.0001
 RAND6 SUM12 SUM1234 0.2692 0.0001 0.0001
 RAND0 SUM12 SUM1234 0.2673 0.0001 0.0001
 RAND8 SUM12 SUM1234 0.2664 0.0001 0.0001
 RAND7 SUM12 SUM1234 0.2661 0.0001 0.0001
 RAND9 SUM12 SUM1234 0.2656 0.0001 0.0001
 RAND3 RAND7 SUM1234 0.1371 0.0001 0.0001
 RAND3 RAND5 SUM1234 0.1369 0.0001 0.0001
 RAND3 RAND9 SUM1234 0.1363 0.0001 0.0001
 RAND0 RAND3 SUM1234 0.1362 0.0001 0.0001
 RAND3 RAND6 SUM1234 0.1361 0.0001 0.0001
 RAND3 RAND8 SUM1234 0.1358 0.0001 0.0001
 RAND4 RAND6 SUM1234 0.1344 0.0001 0.0001
 RAND0 RAND4 SUM1234 0.1341 0.0001 0.0001
 RAND4 RAND5 SUM1234 0.1328 0.0001 0.0001
 RAND4 RAND9 SUM1234 0.1322 0.0001 0.0001
 RAND4 RAND7 SUM1234 0.1321 0.0001 0.0001
 RAND4 RAND8 SUM1234 0.1313 0.0001 0.0001
 RAND1 RAND6 SUM1234 0.1207 0.0001 0.0001
 RAND1 RAND5 SUM1234 0.1205 0.0001 0.0001
 RAND1 RAND7 SUM1234 0.1191 0.0001 0.0001
 RAND1 RAND9 SUM1234 0.1185 0.0001 0.0001
 RAND1 RAND8 SUM1234 0.1183 0.0001 0.0001
 RAND0 RAND1 SUM1234 0.1180 0.0001 0.0001
 RAND2 RAND5 SUM1234 0.1162 0.0001 0.0001
 RAND2 RAND8 SUM1234 0.1154 0.0001 0.0001
 RAND2 RAND6 SUM1234 0.1153 0.0001 0.0001
 RAND2 RAND7 SUM1234 0.1150 0.0001 0.0001
 RAND2 RAND9 SUM1234 0.1144 0.0001 0.0001
 RAND0 RAND2 SUM1234 0.1131 0.0001 0.0001
 RAND6 RAND7 SUM1234 0.0091 0.0952 0.9775
 RAND7 RAND8 SUM1234 0.0090 0.1081 0.9905
 RAND0 RAND8 SUM1234 0.0088 0.1563 0.9982
 RAND5 RAND9 SUM1234 0.0086 0.1904 0.9994
 RAND0 RAND9 SUM1234 0.0084 0.2327 0.9997
 RAND5 RAND6 SUM1234 0.0083 0.2549 0.9998
 RAND0 RAND5 SUM1234 0.0080 0.3693 1.0000
 RAND8 RAND9 SUM1234 0.0079 0.3949 1.0000
 RAND0 RAND6 SUM1234 0.0074 0.5647 1.0000
 RAND5 RAND8 SUM1234 0.0074 0.5734 1.0000
 RAND7 RAND9 SUM1234 0.0074 0.5830 1.0000
 RAND0 RAND7 SUM1234 0.0069 0.7550 1.0000
 RAND6 RAND8 SUM1234 0.0065 0.8598 1.0000
 RAND5 RAND7 SUM1234 0.0064 0.8652 1.0000
 RAND6 RAND9 SUM1234 0.0058 0.9657 1.0000

It should be no surprise that the best pair of predictors for SUM1234 are SUM12 and

SUM34. Mutual information trails off according to how many components of the sum

are present. Note the sharp transition in the unbiased p-value when we reach the point

of having no component present!

22 Bivariate Mutual Information / Uncertainty Reduction

The next example shows what happens when worthless and serially correlated predictors

are tested with a serially correlated target. We use DEP_RAND1 - DEP_RAND9 to

predict DEP_RAND0, a situation which should demonstrate no predictive power

whatsoever. The mutual information table is as follows:

-----------------> Mutual Information with DEP_RAND0 <-----------------

 Predictor 1 Predictor 2 Target MI Solo pval Unbiased pval

 DEP_RAND2 DEP_RAND7 DEP_RAND0 0.0159 0.0001 0.0001
 DEP_RAND2 DEP_RAND3 DEP_RAND0 0.0145 0.0001 0.0001
 DEP_RAND2 DEP_RAND9 DEP_RAND0 0.0138 0.0001 0.0001
 DEP_RAND2 DEP_RAND6 DEP_RAND0 0.0132 0.0001 0.0005
 DEP_RAND4 DEP_RAND8 DEP_RAND0 0.0132 0.0001 0.0005
 DEP_RAND3 DEP_RAND4 DEP_RAND0 0.0132 0.0001 0.0005
 DEP_RAND2 DEP_RAND4 DEP_RAND0 0.0132 0.0001 0.0005
 DEP_RAND5 DEP_RAND7 DEP_RAND0 0.0131 0.0001 0.0005
 DEP_RAND1 DEP_RAND2 DEP_RAND0 0.0131 0.0001 0.0005
 DEP_RAND2 DEP_RAND5 DEP_RAND0 0.0129 0.0001 0.0011
 DEP_RAND2 DEP_RAND8 DEP_RAND0 0.0129 0.0001 0.0011
 DEP_RAND4 DEP_RAND9 DEP_RAND0 0.0127 0.0002 0.0016
 DEP_RAND1 DEP_RAND3 DEP_RAND0 0.0125 0.0001 0.0020
 DEP_RAND3 DEP_RAND6 DEP_RAND0 0.0125 0.0001 0.0022
 DEP_RAND1 DEP_RAND5 DEP_RAND0 0.0123 0.0001 0.0038
 DEP_RAND3 DEP_RAND5 DEP_RAND0 0.0122 0.0002 0.0056
 DEP_RAND6 DEP_RAND8 DEP_RAND0 0.0121 0.0003 0.0074
 DEP_RAND1 DEP_RAND6 DEP_RAND0 0.0117 0.0010 0.0213
 DEP_RAND6 DEP_RAND9 DEP_RAND0 0.0115 0.0006 0.0323
 DEP_RAND4 DEP_RAND6 DEP_RAND0 0.0110 0.0021 0.0893
 DEP_RAND1 DEP_RAND4 DEP_RAND0 0.0110 0.0027 0.0904
 DEP_RAND5 DEP_RAND8 DEP_RAND0 0.0110 0.0032 0.0906
 DEP_RAND5 DEP_RAND9 DEP_RAND0 0.0108 0.0044 0.1298
 DEP_RAND7 DEP_RAND9 DEP_RAND0 0.0108 0.0051 0.1442
 DEP_RAND7 DEP_RAND8 DEP_RAND0 0.0107 0.0060 0.1584
 DEP_RAND4 DEP_RAND5 DEP_RAND0 0.0107 0.0063 0.1610
 DEP_RAND3 DEP_RAND9 DEP_RAND0 0.0107 0.0051 0.1620
 DEP_RAND1 DEP_RAND9 DEP_RAND0 0.0104 0.0096 0.2819
 DEP_RAND6 DEP_RAND7 DEP_RAND0 0.0103 0.0132 0.3179
 DEP_RAND8 DEP_RAND9 DEP_RAND0 0.0102 0.0147 0.3827
 DEP_RAND3 DEP_RAND7 DEP_RAND0 0.0101 0.0181 0.4380
 DEP_RAND5 DEP_RAND6 DEP_RAND0 0.0099 0.0249 0.5409
 DEP_RAND1 DEP_RAND8 DEP_RAND0 0.0098 0.0294 0.5901
 DEP_RAND3 DEP_RAND8 DEP_RAND0 0.0097 0.0347 0.6486
 DEP_RAND4 DEP_RAND7 DEP_RAND0 0.0087 0.1757 0.9908
 DEP_RAND1 DEP_RAND7 DEP_RAND0 0.0084 0.2498 0.9983

Notice how many truly worthless predictive pairs have tiny p-values, even in the

unbiased case. This is a severe problem that affects all common statistical tests, not just

Monte-Carlo Permutation Tests.

Bivariate Mutual Information / Uncertainty Reduction 23

The final example shows how the cyclic modification of the Monte-Carlo Permutation

Test can at least partially remedy the situation. We repeat the same test as that just

shown, except that instead of using Complete permutation we use Cyclic permutation.

The results are shown below:

-----------------> Mutual Information with DEP_RAND0 <-----------------

 Predictor 1 Predictor 2 Target MI Solo pval Unbiased pval

 DEP_RAND2 DEP_RAND7 DEP_RAND0 0.0159 0.0261 0.4007
 DEP_RAND2 DEP_RAND3 DEP_RAND0 0.0145 0.0813 0.8015
 DEP_RAND2 DEP_RAND9 DEP_RAND0 0.0138 0.1404 0.9240
 DEP_RAND2 DEP_RAND6 DEP_RAND0 0.0132 0.1968 0.9761
 DEP_RAND4 DEP_RAND8 DEP_RAND0 0.0132 0.1660 0.9776
 DEP_RAND3 DEP_RAND4 DEP_RAND0 0.0132 0.1859 0.9792
 DEP_RAND2 DEP_RAND4 DEP_RAND0 0.0132 0.1768 0.9804
 DEP_RAND5 DEP_RAND7 DEP_RAND0 0.0131 0.2354 0.9837
 DEP_RAND1 DEP_RAND2 DEP_RAND0 0.0131 0.2077 0.9858
 DEP_RAND2 DEP_RAND5 DEP_RAND0 0.0129 0.2329 0.9915
 DEP_RAND2 DEP_RAND8 DEP_RAND0 0.0129 0.2162 0.9925
 DEP_RAND4 DEP_RAND9 DEP_RAND0 0.0127 0.2594 0.9949
 DEP_RAND1 DEP_RAND3 DEP_RAND0 0.0125 0.3104 0.9972
 DEP_RAND3 DEP_RAND6 DEP_RAND0 0.0125 0.3243 0.9977
 DEP_RAND1 DEP_RAND5 DEP_RAND0 0.0123 0.3545 0.9978
 DEP_RAND3 DEP_RAND5 DEP_RAND0 0.0122 0.3621 0.9982
 DEP_RAND6 DEP_RAND8 DEP_RAND0 0.0121 0.3613 0.9984
 DEP_RAND1 DEP_RAND6 DEP_RAND0 0.0117 0.4874 0.9998
 DEP_RAND6 DEP_RAND9 DEP_RAND0 0.0115 0.5108 0.9998
 DEP_RAND4 DEP_RAND6 DEP_RAND0 0.0110 0.6064 1.0000
 DEP_RAND1 DEP_RAND4 DEP_RAND0 0.0110 0.5907 1.0000
 DEP_RAND5 DEP_RAND8 DEP_RAND0 0.0110 0.5737 1.0000
 DEP_RAND5 DEP_RAND9 DEP_RAND0 0.0108 0.6308 1.0000
 DEP_RAND7 DEP_RAND9 DEP_RAND0 0.0108 0.6902 1.0000
 DEP_RAND7 DEP_RAND8 DEP_RAND0 0.0107 0.6681 1.0000
 DEP_RAND4 DEP_RAND5 DEP_RAND0 0.0107 0.6274 1.0000
 DEP_RAND3 DEP_RAND9 DEP_RAND0 0.0107 0.6552 1.0000
 DEP_RAND1 DEP_RAND9 DEP_RAND0 0.0104 0.7349 1.0000
 DEP_RAND6 DEP_RAND7 DEP_RAND0 0.0103 0.7587 1.0000
 DEP_RAND8 DEP_RAND9 DEP_RAND0 0.0102 0.7330 1.0000
 DEP_RAND3 DEP_RAND7 DEP_RAND0 0.0101 0.7944 1.0000
 DEP_RAND5 DEP_RAND6 DEP_RAND0 0.0099 0.8103 1.0000
 DEP_RAND1 DEP_RAND8 DEP_RAND0 0.0098 0.8036 1.0000
 DEP_RAND3 DEP_RAND8 DEP_RAND0 0.0097 0.8085 1.0000
 DEP_RAND4 DEP_RAND7 DEP_RAND0 0.0087 0.9581 1.0000
 DEP_RAND1 DEP_RAND7 DEP_RAND0 0.0084 0.9731 1.0000

This time, the unbiased p-values are not fooled at all by the serial correlation, and even

the solo p-values behave well.

24 Predictors having Max Relevance, Min Redundancy

Predictors having Max Relevance, Min Redundancy

Selection of predictors by examining individual or even pairwise performance is useful

for quickly identifying the most promising candidates. However, this simplistic

approach suffers from redundancy. If two predictor candidates are nicely related to a

target, chances are good that they are also closely related to each other; they may provide

similar if not identical predictive information. Thus, if one examines a large number of

candidates and chooses a subset of predictors that are all good at predicting the target,

this subset will in most cases be unnecessarily large; many of them will provide nearly or

exactly the same predictive information as other candidates in the subset. A much more

efficient approach to selecting a good subset of predictor candidates would be to consider

not only the relevance of the members at predicting the target, but also their redundancy

with other members of the subset.

Peng, Long and Ding (2005) provide a fabulous algorithm for handling this redundancy

problem in their paper “Feature Selection Based on Mutual Information: Criteria of Max-

Dependency, Max-Relevance, and Min Redundancy”. An intuitive summary of the

algorithm, along with C++ code, appears in my book “Assessing and Improving

Prediction and Classification,” so details will be omitted here. However, it must be

stressed that this algorithm has a powerful optimality property: suppose one were to

consider the mutual information between a set of predictors (taken as a group) and a

target. This is called joint dependency. A reasonable method for choosing an optimal

subset of predictors is to use forward stepwise selection to maximize the joint

dependency of the subset with the target. Unfortunately, this quantity is difficult if not

impossible to compute in practical applications. But the Pen, Long, and Ding algorithm

is an elegant work-around that produces the same subset of predictors as stepwise

selection based on maximizing joint dependency, but it does so in a computationally

feasible way.

At each step, the algorithm considers the relevance of a candidate for predicting the

target, as well as the redundancy of the candidate with predictors already in the chosen

subset. These quantities are subtracted to provide a selection criterion. The candidate

with the maximum relevance-minus-redundancy criterion is chosen.

Predictors having Max Relevance, Min Redundancy 25

Specifying the Test Parameters

When the user clicks Tests / Relevance minus Redundancy, a dialog similar to that shown

will appear. The various parameters are described below.

The leftmost column is used to specify the set of predictor candidates. Multiple

candidates can be selected by dragging the mouse cursor across a block, or by clicking

the first candidate in a block, holding the Shift key, and clicking the last candidate in the

block. Individual candidates can be toggled on and off by holding the Ctrl key while

clicking on the variable.

The Target column is used to select the target variable.

The predictors and the target are partitioned into bins that are as equal in size as possible.

The user must specify the number of bins to employ for each, and unless the dataset is

huge the default of three bins is frequently appropriate.

26 Predictors having Max Relevance, Min Redundancy

Replications defaults to zero, in which case no Monte-Carlo Permutation Test is

performed. However, it is usually best to set this to at least 100, and perhaps as much as

1000, so that solo and group p-values will be computed. Note that the minimum possible

p-value is the reciprocal of the number of permutations. So, for example, if the user

specifies 100 permutations, the minimum p-value that can appear is 0.01. Run time of

this test is linearly related to the number of permutations.

The user must choose either Complete or Cyclic permutations. If the user is confident that

there is no dependency as described earlier in this document, then Complete should be

used; it is the traditional approach which does a complete random shuffle for each

permutation. However, if there is dependency, this type of shuffling will produce

underestimation of p-values, a very dangerous situation. If the dependency is serial (the

data is a time series and the dependency is among samples close in time) then a

considerable improvement in the situation can be obtained by using Cyclic permutation.

In this type of shuffle, the time order of the target is kept intact except at the ends by

rotating the target with end-point wraparound. Shuffling this way preserves most of the

serial dependency in the permutated target, which makes the algorithm more accurate.

The p-values computed this way will generally be larger than those computed with

complete shuffling, and hence less likely to lead to false rejection of the null hypothesis of

no predictive power. But be warned that the cure is far from complete; computed p-

values will still underestimate the true values, just not as badly.

Note that in most cases it is legitimate to use Cyclic permutation instead of Complete when

there is no dependency. However, if the dataset is small, Cyclic permutation will limit

the number of unique permutations and hence increase the random error inherent in the

process. As long as the dataset is large, some users may prefer to use Cyclic permutation

even if it is assumed that there is no serial dependency; in case there really is hidden

serial dependency, this is a cheap insurance policy. Still, the best practice is to make sure

that the data does not contain dependency and then use Complete permutation. Relying

on Cyclic permutation to take care of dependency problems is living dangerously. And if

the dataset contains fewer than 1000 or so cases, use of Cyclic permutation is not

recommended unless it is necessary to handle dependency.

Max kept is the maximum size of the selected subset. Execution time is approximately

linearly related to this quantity, so it should be kept as small as possible if run time is

critical.

Note that this algorithm employs CUDA processing if available. However, unless there

are many hundreds of predictor candidates, its overhead may actually slow execution.

Predictors having Max Relevance, Min Redundancy 27

An Example of Relevance Minus Redundancy

This section demonstrates a revealing example of the algorithm using synthetic data to

clarify the presentation. The variables in the dataset are as follows:

RAND0 - RAND9 are independent (within themselves and with each other) random time

series.

SUM12 = RAND1 + RAND2

SUM34 = RAND3 + RAND4

SUM1234 = SUM12 + SUM34

The test run attempts to predict SUM1234 from RAND0 - RAND9, SUM12, and SUM34.

The output is shown below. Brief explanatory comments are interspersed.

* *
* Computing relevance minus redundancy for optimal predictor subset *
* 12 predictor candidates *
* 12 best predictors will be printed *
* 5 predictor bins *
* 5 target bins *
* 100 replications of complete Monte-Carlo Permutation Test *
* *

Initial candidates, in order of decreasing mutual information with
SUM1234

 Variable MI

 SUM34 0.2877
 SUM12 0.2610
 RAND3 0.1307
 RAND4 0.1263
 RAND1 0.1129
 RAND2 0.1085
 RAND8 0.0015
 RAND5 0.0014
 RAND6 0.0012
 RAND7 0.0010
 RAND0 0.0008
 RAND9 0.0006

28 Predictors having Max Relevance, Min Redundancy

Predictors so far Relevance Redundancy Criterion

 SUM34 0.2877 0.0000 0.2877

We see from the table above that the first candidate chosen is the one which has

maximum mutual information with the target. Naturally this would be either SUM12 or

SUM34, and it happens to be the latter. Then, in the table below we see that SUM12 has

the largest relevance (its mutual information with the target) and essentially no

redundancy with SUM34 (again, no surprise). This gives it the highest selection criterion

and it is chosen.

Additional candidates, in order of decreasing relevance minus redundancy

 Variable Relevance Redundancy Criterion

 SUM12 0.2610 0.0014 0.2596
 RAND1 0.1129 0.0016 0.1112
 RAND2 0.1085 0.0009 0.1076
 RAND6 0.0012 0.0007 0.0005
 RAND0 0.0008 0.0009 -0.0000
 RAND8 0.0015 0.0017 -0.0002
 RAND5 0.0014 0.0016 -0.0002
 RAND9 0.0006 0.0008 -0.0002
 RAND7 0.0010 0.0012 -0.0003
 RAND3 0.1307 0.3154 -0.1847
 RAND4 0.1263 0.3158 -0.1895

Predictors so far Relevance Redundancy Criterion

 SUM34 0.2877 0.0000 0.2877
 SUM12 0.2610 0.0014 0.2596

Now we come to an important observation. One might think that the next candidate

selected would be either RAND1, RAND2, RAND3, or RAND4, the four components of

the SUM1234 target. However, the table on the next page shows that these four

candidates actually fall at the bottom of the list! This is because they have so much

redundancy with SUM12 and SUM34 (taken as a group) that they will not be chosen

next. In fact, RAND6, which has no relationship whatsoever with any of the other

variables, is chosen based only on its tiny random relevance and slightly smaller random

redundancy.

Predictors having Max Relevance, Min Redundancy 29

Additional candidates, in order of decreasing relevance minus redundancy

 Variable Relevance Redundancy Criterion

 RAND6 0.0012 0.0009 0.0003
 RAND0 0.0008 0.0008 0.0000
 RAND8 0.0015 0.0015 0.0000
 RAND9 0.0006 0.0008 -0.0002
 RAND5 0.0014 0.0017 -0.0003
 RAND7 0.0010 0.0013 -0.0004
 RAND3 0.1307 0.1581 -0.0274
 RAND4 0.1263 0.1585 -0.0322
 RAND1 0.1129 0.1527 -0.0398
 RAND2 0.1085 0.1485 -0.0399

Predictors so far Relevance Redundancy Criterion

 SUM34 0.2877 0.0000 0.2877
 SUM12 0.2610 0.0014 0.2596
 RAND6 0.0012 0.0009 0.0003

But now that the selected set’s redundancy with the remaining candidates has been

‘diluted’ by the inclusion of the unrelated RAND6, RAND1-RAND4 jump to the top of

the list due to their relatively large relevance but lessened redundancy.

Additional candidates, in order of decreasing relevance minus redundancy

 Variable Relevance Redundancy Criterion

 RAND3 0.1307 0.1058 0.0249
 RAND4 0.1263 0.1061 0.0202
 RAND1 0.1129 0.1021 0.0107
 RAND2 0.1085 0.0995 0.0090
 RAND0 0.0008 0.0010 -0.0002
 RAND9 0.0006 0.0009 -0.0003
 RAND5 0.0014 0.0017 -0.0003
 RAND8 0.0015 0.0018 -0.0004
 RAND7 0.0010 0.0015 -0.0006

Predictors so far Relevance Redundancy Criterion

 SUM34 0.2877 0.0000 0.2877
 SUM12 0.2610 0.0014 0.2596
 RAND6 0.0012 0.0009 0.0003
 RAND3 0.1307 0.1058 0.0249

30 Predictors having Max Relevance, Min Redundancy

There is little point in continuing to show the inclusion steps. We now jump to the final

table that lists all candidates in the order in which they were selected, along with

associated p-values.

----------> Final results predicting SUM1234 <----------

Final predictors Relevance Redundancy Criterion Solo pval Group pval

 SUM34 0.2877 0.0000 0.2877 0.010 0.010
 SUM12 0.2610 0.0014 0.2596 0.010 0.010
 RAND6 0.0012 0.0009 0.0003 0.570 0.010
 RAND3 0.1307 0.1058 0.0249 0.010 0.010
 RAND4 0.1263 0.0797 0.0465 0.010 0.010
 RAND1 0.1129 0.0617 0.0511 0.010 0.010
 RAND2 0.1085 0.0505 0.0581 0.010 0.010
 RAND8 0.0015 0.0014 0.0001 0.320 0.010
 RAND5 0.0014 0.0014 -0.0001 0.340 0.010
 RAND7 0.0010 0.0014 -0.0004 0.650 0.010
 RAND0 0.0008 0.0013 -0.0004 0.850 0.010
 RAND9 0.0006 0.0012 -0.0006 0.980 0.010

Two different p-values are printed for each predictor candidate. The Solo pval is the same

quantity printed in the Univariate test. This is the probability that, if the predictor has no

actual mutual information with the target, a mutual information (Relevance here) as large

as that obtained could have occurred. Understand that this quantity considers each

candidate in isolation, not involving any other candidates. Note how nicely this reveals

the uselessness of the third candidate chosen, RAND6.

The Group pval considers the associated candidate along with every prior candidate. It

tests the null hypothesis that the group of candidates selected so far, on average, has no

mutual information with the target.

Regrettably, I am not aware of any way of computing what would be an especially useful

p-value, that which tests the null hypothesis that selecting the candidate provides no

additional (non-redundant) relevance. Such a p-value would be valuable for determining

when to stop including additional candidates in the selected subset. The problem

appears to be that the test statistic at any step is strongly dependent on the relevance of

those predictors already selected. If anyone knows of a way around this problem, I

would love to hear about it.

Hidden Markov Models with Target Correlation 31

Hidden Markov Models with Target Correlation

When working with time series data, the developer need not assume a direct relationship

between predictors and a target. Sometimes it is better to posit an underlying condition,

the state of the process under study, which impacts both the predictors and the target.

This process is assumed to exist at all times in exactly one of two or more possible states.

The state at any given time impacts the distribution of associated variables. Some of

these variables may be observable at the present time (predictors), while others may be

unknown at the present time but be of great interest (targets). Our goal is to use

measured values of the observable variables to determine (or make an educated guess at)

the state of the process, and then use this knowledge to estimate the value of an

unobservable variable which interests us.

It is vital to distinguish this application from ordinary classification methods which are

not restricted to time series data. In simple classification, one measures some predictor

variable(s) and makes a class decision, which in turn may imply likely values of other

(probably unmeasurable) variables. But a hidden Markov model assumes a sequential

process with an important property: the probability of being in a given state at an

observed time depends on the process’s state at the prior observed time. In other words,

a hidden Markov model has memory, while ordinary classification does not.

This memory is immensely useful in some applications. For example, it may prevent

whipsaws. Suppose a certain state tends to be persistent in real life. Ordinary

classification will suffer if there is large random noise in the observed variables, which

may snap the decision back and forth at the whim of chance. But the memory inherent in

a hidden Markov model will tend to hold its decision in a persistent state even as noise in

the measured variables tries to whip the decision back and forth. Of course, the

downside of this memory is a tendency toward delayed decisions; the model may need

several observed values to confirm a state change. But this is often a price well worth

paying, especially in high-noise situations.

One application of a hidden Markov model is the prediction of a financial market.

Perhaps the developer assumes that it is always in either a bull market (a long-term up-

trend), a bear market (a long-term down-trend) or a flat market (no long-term trend). By

definition, bull and bear markets cover an extended time period; one does not go from a

bull to a bear market in one day, and then return to a bull market the next day. Such

direction changes are just short-term fluctuations in a more extensive move. If one were

to use frequent observations to make daily predictions of whether the market is in a bull

32 Hidden Markov Models with Target Correlation

or bear state, these decisions could reverse ridiculously often. One is better off taking

advantage of the memory of a hidden Markov model to stabilize behavior.

Specifying the Test Parameters

When the user clicks Tests / Hidden Markov model, a dialog similar to that shown will

appear. The various parameters are described below.

The leftmost column is used to specify the set of predictor candidates. Multiple

candidates can be selected by dragging the mouse cursor across a block, or by clicking

the first candidate in a block, holding the Shift key, and clicking the last candidate in the

block. Individual candidates can be toggled on and off by holding the Ctrl key while

clicking on the variable.

Hidden Markov Models with Target Correlation 33

The Target column is used to specify the target variable. This variable is ignored when

the models are computed; rather it plays a role in selecting the ‘best’ model.

The Dimension must be 1, 2, or 3. This is the number of predictor variables that will be

used by the hidden Markov model.

The Number of states is exactly that, the number of states in which the process can exist. It

must be at least two, and it typically is small, rarely more than four. Execution time

blows up rapidly as the number of states increases.

The user must choose either Complete or Cyclic permutations and the number of

replications to perform. Please refer to the discussions of this issue earlier in this

document. However, because hidden Markov models virtually always are applied to

serially correlated data, cyclic permutation is the default.

Max printed is the maximum number of models printed in the log file.

WARNING... This test can be extremely slow. A CUDA enhancement is in the works but

is not implemented as of Version 1.3. While threads are being initialized for the first set

of models, the ESCape key is ignored. After that, ESCape is polled only at widely spaced

intervals. Then, when waiting for the final threads to complete, ESCape is again ignored.

For a few thousand cases, 2 dimensions, and 2 states, the complete test should run in a

few minutes or less on modern computers. But if there are many thousands of cases, 3

dimensions, and 4 or more states, the test could require several hours to complete. If you

get in over your head, you may need to use Task Manger to force a shutdown of the

program. Sorry about that, but as of yet I have not been able to figure out an efficient

way to interrupt threads that are in the middle of extensive computation without

inducing significant overhead, which just makes the situation worse.

34 Hidden Markov Models with Target Correlation

Operation of This Test

The Hidden Markov Model test operates in two completely separate steps. In the first step,

every possible combination of predictor candidates is used to fit a hidden Markov model.

Let N be the number of candidates specified by the user (selected from the list in the left

column of the dialog). If the dimension is specified to be 1, then each candidate is used

alone, resulting in N models, one for each candidate. If the dimension is 2, then there are

N*(N-1)/2 models, one for each possible pair of candidates. If the dimension is 3, then

there are N*(N-1)*(N-2)/6 models, one for each possible trio. It must be emphasized that

these models are optimized without regard to the target variable; the target plays no role

whatsoever in the development of the models.

After this (potentially large!) set of hidden Markov models has been found, the

relationship between each of them and the user-specified target variable is found. The

relationship between a model and the target is defined as the multiple-R (the multivariate

correlation coefficient) between the vector of state probabilities and the target. In other

words, for a given model, each case will have associated with it a vector giving the

probability that this observation is in each possible state. These state probability vectors

are regressed on the target variable using ordinary multiple linear regression.

Details of the best (most highly correlated) model are printed. Then the models (up to

Max printed of them) are listed in descending order of relationship with the target. The

multiple-R is printed for each. If Monte-Carlo replications were specified, solo and

unbiased p-values are printed for each model. The solo p-value is the probability that, if

there were actually no relationship between the state (as defined by that model) and the

target, we could have obtained a multiple-R at least as large as we did obtain. The

unbiased p-value for the best model is the probability that if none of the models were

related to the target, the best among them would have a multiple-R at least as large as

that obtained. Subsequent unbiased p-values are upper bounds on similarly defined

probabilities. This issue is discussed in detail earlier in this document.

Note that exact results will not in general be replicated if runs are repeated. This is

because training a hidden Markov model relies on random number generation, and

Windows’ scheduling of training threads is rarely consistent. The competing models will

receive their random numbers in different orders during different runs, resulting in

slightly different solutions being obtained. In rare cases, a ‘satisfactory’ solution will not

be obtained at all. But the probability of this happening depends on how well the data is

explained by a hidden Markov model. Data which is almost entirely random noise will

have the highest probability of leading to disappointing or unstable models.

Hidden Markov Models with Target Correlation 35

An Example of Hidden Markov Models

This section demonstrates a revealing example of the algorithm using synthetic data to

clarify the presentation. The variables in the dataset are as follows:

RAND0 - RAND9 are independent (within themselves and with each other) random time

series. These are the predictor candidates.

SUM12 = RAND1 + RAND2. This is the target variable.

I chose to use two predictors and allow four states in the models. The program fits a

hidden Markov model to each of the (10-9)/2=45 pairs of predictor candidates. Not

surprisingly, the model based on RAND1 and RAND2 has the highest correlation with

SUM12. Its means and standard deviations for each state are printed first:

Means (top number) and standard deviations (bottom number)

State RAND1 RAND2

 1 0.06834 -0.66014
 0.48729 0.21358

 2 -0.73466 0.07687
 0.17187 0.54038

 3 -0.02272 0.35902
 0.39033 0.39555

 4 0.73542 0.08884
 0.17546 0.52133

RAND1 and RAND2 are totally random (they exist in only one state), so attempting to fit

a hidden Markov model to them should be extremely unstable. Indeed, in ten runs of

this test, twice the program found solutions in which the means of the states were all

nearly zero, indicating no differentiation between states. But most of the time it came up

with a pattern essentially identical to the one shown above. This solution is remarkably

similar to a sort of principal components decomposition: RAND1 distinguishes between

State 2 and State 4, while RAND2 distinguishes between State 1 and State 3. Thus,

knowledge of which of the four states the process is in provides great information about

SUM12.

36 Hidden Markov Models with Target Correlation

Next we see the transition probabilities. The figure in Row i and Column j is the

probability that the process will transition from State i to State j. Not surprisingly, they

are almost all identical. The relatively small discrepancies are just due to random

variation in the data.

Transition probabilities...

 1 2 3 4
 1 0.2638 0.2037 0.3494 0.1830
 2 0.2438 0.1945 0.3638 0.1979
 3 0.2130 0.1682 0.4174 0.2014
 4 0.2404 0.2148 0.3272 0.2176

Further properties of each state are then printed:

Percent is the percentage of cases in which this state has the highest probability. The sum

of these quantities across all states may not reach 100 percent, because cases in

which there is a tie for the highest probability are not counted. If the data is

continuous, this should almost never happen.

Correlation is the ordinary correlation coefficient between the target and the membership

probability for this state. On first consideration it might be thought that the beta

weight in the linear equation predicting the target from the state probabilities

would be the better quantity to print. But the beta weight is not printed at all due

to the fact that such weights are notoriously unstable and hence uninformative.

Suppose there is very high correlation between the membership probabilities of

two states, a situation which is especially likely to happen if the user specifies

more states than actually exist in the process. Then both of these probabilities

could be highly correlated with the target, while they might actually have opposite

signs for their beta weights!

Target mean is the mean of the target when this state has the highest membership

probability. Cases in which there is a tie for maximum (almost impossible for

continuous data) do not enter into this calculation.

Target StdDev is the standard deviation of the target when this state has the highest

membership probability. Cases in which there is a tie for maximum (almost

impossible for continuous data) do not enter into this calculation.

Hidden Markov Models with Target Correlation 37

State Percent Correlation Target mean Target StdDev

 1 23.76 -0.53350 -0.54538 0.45473
 2 21.73 -0.52368 -0.71809 0.56342
 3 34.03 0.38210 0.35674 0.47747
 4 20.48 0.62840 0.92173 0.49069

The reader should look back at the table of RAND1 and RAND2 means for each of the

four states and confirm that the correlations and target means shown in the table above

make sense. We also see that the state membership probabilities conform with the

transition matrix. As expected for random series, the target standard deviations are all

about the same.

Last but not least is the list of models, sorted in descending order of their multiple-R with

the target. As expected (or at least hoped), the models involving either RAND1 or

RAND2 appear first, and they are all extremely significant. As soon as these two

variables are exhausted. multiple-R plunges and significance is lost. The remainder of

this table is not shown here, but this situation continues.

------------> Hidden Markov Models correlating with SUM12 <------------

 Predictor 1 Predictor 2 Multiple-R Solo pval Unbiased pval

 RAND1 RAND2 0.8896 0.0010 0.0010
 RAND1 RAND3 0.6937 0.0010 0.0010
 RAND1 RAND5 0.6680 0.0010 0.0010
 RAND0 RAND1 0.6619 0.0010 0.0010
 RAND1 RAND9 0.6604 0.0010 0.0010
 RAND1 RAND8 0.6590 0.0010 0.0010
 RAND2 RAND5 0.6579 0.0010 0.0010
 RAND0 RAND2 0.6554 0.0010 0.0010
 RAND2 RAND9 0.6493 0.0010 0.0010
 RAND1 RAND7 0.5870 0.0010 0.0010
 RAND1 RAND4 0.5845 0.0010 0.0010
 RAND2 RAND4 0.5756 0.0010 0.0010
 RAND2 RAND3 0.5721 0.0010 0.0010
 RAND2 RAND7 0.5667 0.0010 0.0010
 RAND2 RAND6 0.5648 0.0010 0.0010
 RAND2 RAND8 0.5623 0.0010 0.0010
 RAND1 RAND6 0.3938 0.0010 0.0010
 RAND3 RAND9 0.0307 0.1110 0.8760

38 Hidden Markov Models with Target Correlation

A More Practical Example of Hidden Markov Models

This section demonstrates an example of hidden Markov models using actual data, in this

case an application that predicts future movement of a financial market. There are five

candidates for predictor variables and a single target:

CMMA_5 is the current closing price of the market, minus its 5-day moving average. This

shows the degree to which the market just (as of the end of the current day)

departed from its recent price level.

CMMA_10 is a similar quantity, but based on the 10-day moving average.

CMMA_20 is a similar quantity, but based on the 20-day moving average.

LIN_ATR_7 is the slope of the best-fit straight line connecting the prices over the most

recent 7 days, normalized by average true range. This indicates the short-term

price trend in the market.

LIN_ATR_15 is a similar quantity, but based on the 15-day trend.

DAY_RETURN_1 is the market change over the next day, normalized by average true

range. This variable serves as the target, as it represents the future change of the

market price.

This example specifies that two predictors will be used by the model, and three states are

possible. The model that correlates most highly with the target uses CMMA_5 and

CMMA_20 as predictors. The means and standard deviations of these variables are

shown for each of the three states:

Means (top number) and standard deviations (bottom number)

State CMMA_20 CMMA_5

 1 -20.81845 -15.87819
 9.42582 16.57821

 2 24.57826 17.83951
 8.25328 15.22672

 3 3.57633 2.36846
 7.27092 17.76842

Hidden Markov Models with Target Correlation 39

The three states are highly distinct in terms of their predictor distributions. CMMA_20,

in particular, has means that are widely separated relative to their standard deviations.

We see that State 1 is characterized by today’s price being much lower than recent prices,

State 2 is characterized by today’s price being much higher than recent prices, and State 3

is characterized by today’s price being about the same as recent prices. This sounds

almost too ‘sensible’ to be believed, but numerous reruns of the test consistently

produced similar results.

The transition probability matrix, shown below, reveals several interesting properties.

First, we see that states have considerable persistence; there is about a 90 percent

probability that tomorrow will remain in the same state as today. What is also interesting

is that it is nearly impossible for the market to transition between States 1 and 2 without

going through State 3, and in fact probably staying in State 3 for some time. In fact, the

probability of going from State 1 to State 2 is zero to at least four digits!

Transition probabilities...

 1 2 3
 1 0.8978 0.0000 0.1022
 2 0.0014 0.9095 0.0890
 3 0.0711 0.0747 0.8542

The table of additional properties shows how these states relate to the target, the price

change of the market the next day. We see that State 3, that corresponding to prices

remaining fairly constant, is the most common, occurring almost 40 percent of the time.

We also see at least one-day persistence of price movements into the future, as State 1,

which corresponds to a pattern of today’s closing price being far below recent prices, is

associated with a negative price movement tomorrow. Similarly, State 1, which

corresponds to a pattern of today’s closing price being far above recent prices, is

associated with an upward price movement tomorrow. Finally, it is noteworthy that the

standard deviation of the target when in State 1 is almost fifty percent higher than when

in the other two states. Thus, we can expect unusually large market turbulence when we

have been in a pattern of prices closing far below their recent values. This agrees well

with intuition, but it is nice to see it corroborated numerically.

State Percent Correlation Target mean Target StdDev

 1 27.75 -0.07034 -0.05099 0.86047
 2 32.41 0.06831 0.08906 0.60901
 3 39.84 -0.00049 0.02438 0.64007

40 Hidden Markov Models with Target Correlation

Finally, we have the list of models sorted according to their relationship to the target.

The major take-away from this list is that the CMMA variables are much more important

to predicting tomorrow’s price movement than the linear trend variables. Also, the

degree of significance of these relationships is impressive, usually the minimum

obtainable from the 1000 Monte-Carlo replications performed.

 Predictor 1 Predictor 2 Multiple-R Solo pval Unbiased pval

 CMMA_20 CMMA_5 0.0807 0.0010 0.0010
 CMMA_5 LIN_ATR_7 0.0762 0.0010 0.0010
 CMMA_10 CMMA_5 0.0689 0.0010 0.0010
 CMMA_10 CMMA_20 0.0686 0.0010 0.0010
 CMMA_20 LIN_ATR_7 0.0650 0.0010 0.0010
 CMMA_20 LIN_ATR_15 0.0442 0.0010 0.0010
 CMMA_10 LIN_ATR_7 0.0408 0.0010 0.0010
 CMMA_10 LIN_ATR_15 0.0330 0.0020 0.0080
 CMMA_5 LIN_ATR_15 0.0227 0.0480 0.1500
 LIN_ATR_15 LIN_ATR_7 0.0168 0.1790 0.4750

Stationarity Test for Break in Mean 41

Figure 5: Dialog for stationarity test for break in mean

Stationarity Test for Break in Mean

Stationarity in the mean is vital to most prediction schemes. If a predictor or target

significantly changes its mean in the midst of a data stream, it would be foolish to assume

that a prediction model will perform well on both sides of this break. Thus, we should

always check for this sort of nonstationarity in all predictors and targets.

Even for applications in which series being evaluated are not being used as predictors or

targets, this test is also useful. We may have a process whose performance is indicated

by a numerical value. It may be the error rate of a prediction system, or cost savings

achieved by a new manufacturing process. A classic example is following the

performance of a market trading system. Suppose a previously profitable system

suddenly deteriorates. We naturally wish to determine whether this falloff in

performance is within historical norms or perhaps signifies something more serious.

This test is performed by clicking Test / Stationarity break in mean. The dialog box shown

below will appear:

42 Stationarity Test for Break in Mean

Figure 6: Testing for break in mean

The user must select one or more variables. The user also specifies the range of recent

history which will be searched for a break in the mean. The default of doing no search at

all, but rather looking at only the most recent observation, allows the fastest detection of

a change. However, it is also the least sensitive test, being based on a single observation

relative to the rest of history. Employing a wider search range greatly increases the

sensitivity of the test, at the price of delayed confirmation of a change in the mean.

The multiple comparisons field has a subtle but important function. Suppose you are

performing a one-time test. You have one or more series which you plan to employ as

predictors and/or targets in a modeling operation. You simply want to test whether any

of them have a significant break in their mean. Then you can leave the multiple

comparisons field at its default of one.

But now suppose you are monitoring incoming data from a series. For example, you

may be assessing quarterly returns of a market trading system. Every time a new quarter

rolls around you repeat the test. The statistical term for this repetition of the same test

with different data is multiple comparisons. Its effect is to increase the chance that you will

observe a statistically significant result, even though the effect you are looking for is not

present. Sooner or later, random chance is going to present a significant result due to

nothing more than luck.

The user can compensate for this effect by having the program adjust its p-values under

the assumption that a specified number of tests will be performed. Of course, in real life

it would be difficult to make an honest assessment in advance of exactly how much

testing will be done. Still, this capability is better than blithely ignoring this vital issue!

At a minimum, the user can see the effect of multiple tests on the computed p-values, and

make a good-faith assessment of the number of tests that will be performed.

Because there will be huge correlation between successive test statistics due to overlap of

the testing regions, ordinary multiple-comparison tests are invalid. For this special

application, an ad hoc but reasonable methodology is followed. Look at Figure 6 below:

Stationarity Test for Break in Mean 43

Figure 6 illustrates the simple situation of testing with a range of 3 (minimum recent

history) to 5 (maximum recent history) cases on the ‘recent’ side of the hypothetical break.

It also shows 2 multiple comparisons. The dotted lines show the breakpoints tested.

For the original, unpermuted data only the ‘First comparison’ would be performed.

Whichever of the three trial breakpoints produces the largest break will be the score as of

the most current observation.

For all permutations, both comparisons will be performed. The null-hypothesis score

will be the greatest of the six scores (three for each of the two comparisons). We then

count how many of these null hypothesis scores equal or exceed the obtained score for

each test. As per the usual Monte-Carlo permutation test, let there be m permutations,

with k of them having a score equaling or exceeding the greatest score among the tests

(which, strictly speaking, is not known until all tests are complete!). Then the p-value is

(k+1)/(m+1). This is the approximate probability that, if there were no break in the mean,

we would have obtained a maximum break score across all tests that is at least as large as

that actually observed.

There are several theoretical problems with this multiple-comparison test. Foremost, it is

not strictly correct to keep re-evaluating the p-value on each test. By rights we should

wait until all tests are complete and examine the maximum break across all tests. The

computed p-value relates to this maximum break. Of course, in real life this would

defeat the whole purpose of the test! We want to test on an ongoing basis. But I strongly

suspect that, compared to other sources of random error, this is of minor consequence.

Also, the shifting of test windows probably does a good job of accounting for serial

correlation in the test statistics, but I have no rigorous proof. Because each sequential test

involves a massive overlap in the data that goes into the test, the test statistics will have

similarly massive serial correlation. The algorithm illustrated in Figure 6 simulates what

would happen in real life, but rigorous justification would be nice.

In short, the mathematical foundations of this test are shaky. Nonetheless, in a multiple-

comparisons situation, this test is almost certainly far superior to failing to compensate in

any way, and I have reasonable confidence that it is actually quite good. But be warned.

If the user sets the Monte-Carlo permutation test replications to zero or one, no MCPT

will be performed, and only one column of results will be printed. This column is labeled

Z(U), and it is the absolute z-score corresponding to the Mann-Whitney U-test statistic for

the difference in means between the data before and after the break point.

44 Stationarity Test for Break in Mean

In the more usual situation of the user specifying a large number of replications (100-1000

or so), two additional columns are printed. The Solo pval for a variable is the approximate

p-value for that variable considered in isolation; it is the probability that if the variable

had no break in its mean we would have obtained a test statistic at least as large as was

actually obtained.

If this quantity is not small, the developer should be inclined to believe that the variable

does not have a significant mean break. Of course, this logic is, in a sense, accepting a

null hypothesis, which is well known to be a dangerous practice. However, if a

reasonable number of cases are present and a reasonable number of Monte-Carlo

replications have been done, this test is powerful enough that failure to achieve a small p-

value can be interpreted as the variable being decently stationary in its mean.

If more than one variable is specified, then the Unbiased pval column has a useful

interpretation. When several variables are tested, chances are that one or more of them

will, by sheer chance, have an usually large apparent mean break, even if in truth no such

break exists. The Unbiased pval compensates for this effect.

The Unbiased pval is printed for all variables. For the first variable, the one having the

greatest observed mean break, this is the approximate probability that, if none of the

variables had a mean break, we could get a greatest mean break among them at least as

large as that observed. For those other, lesser candidates, the Unbiased pval is an upper

bound for the true unbiased p-value of the variable. Thus, a very small Unbiased pval for

any candidate is a strong indication that the candidate has a significant mean break.

Unfortunately, unlike the Solo pval, large values of the Unbiased pval are not necessarily

evidence that the candidate is break-free. Large values, especially near the bottom of the

sorted list, may be due to over-estimation of the true p-value. The author is not aware of

any algorithm for computing correct unbiased p-values for any candidate other than that

having the largest break. However, because this measure is conservative, it does have

great utility in discovering nonstationary variables.

On a final note, be aware that having a statistically significant mean break does not equate

to having a practically significant mean break. If the dataset is large, even a trivial mean

break, something of no practical consequence, may show statistical significance. This test

should be treated as a tool, a supplementary source of information, as opposed to the

final arbiter of stationarity.

Stationarity Test for Break in Mean 45

Serial Correlation and Cyclic Permutation

Like many other tests in VarScreen, the user may select either complete or cyclic

permutation. In other tests, the cyclic method is useful for variables having significant

serial correlation. However, with a test for a break in the mean, one must be cautious, as

positive serial correlation can, in and of itself cause the mean to wander. Thus, any

situation in which cyclic permutation is warranted is likely to also be a situation in which

the mean will be inherently nonstationary, or at least appear so! The user will nearly

always employ complete permutation. Still, in some special situations, cyclic

permutation is appropriate. This should become more clear as we work through several

examples.

We begin with the most basic situation in which the variables have negligible serial

correlation and the user wishes to search nearly the entire extent of the data stream for a

break in the mean. We’ll use the same RAND0 through RAND9 that have appeared in

prior demonstrations. These are random series, independent within themselves and with

one another. There are 6300 cases. We decide to keep at least 50 cases on each side of the

sought-after break in order to provide decent sensitivity, realizing that if a mean break

happens in the outer 50 cases we will miss it. Thus, we specify a minimum of 50 and a

maximum of 6250 recent cases. Since this is a one-shot test we leave the multiple

comparisons parameter at its default of one. The following results are obtained with 100

iterations:

 Variable Z(U) Solo pval Unbiased pval

 RAND6 3.3257 0.0600 0.3900
 RAND8 2.8718 0.1200 0.8100
 RAND5 2.5216 0.2800 0.9900
 RAND9 2.5128 0.3600 0.9900
 RAND0 2.4845 0.3900 1.0000
 RAND3 2.3591 0.3900 1.0000
 RAND2 2.0359 0.6600 1.0000
 RAND7 2.0212 0.7500 1.0000
 RAND1 1.9353 0.7400 1.0000
 RAND4 1.3772 0.9800 1.0000

One of these variables, RAND6, manages through luck to get a solo p-value of 0.06. But

its unbiased p-value of 0.39 tells us that this was almost certainly just a fluke from having

tested ten variables.

46 Stationarity Test for Break in Mean

But what if our variables have substantial positive serial correlation? It is vital that we do

not attempt to perform an ‘across the extent’ test for a mean break, such as the 50-6250

test just shown. If we were to use complete permutation, the serial correlation in the null

hypothesis runs would be destroyed, while the serial correlation in the unpermuted data

would cause the mean to wander, making it virtually certain that a significant (probably

highly significant!) break would be found, whether one truly exists or not. But cyclic

permutation would not work here either. The only effect of the data rotation effected by

cyclic permutation would be to shift the position of the break; the search for a break

would still find it in nearly every permutation. So the null hypothesis distribution would

be too large, resulting in overly large p-values.

The only sort of test we can do when the data has substantial serial correlation is to limit

the searched range to a very small fraction of the number of cases, so that when the null

hypothesis distribution is computed via cyclic permutation, only a tiny fraction of that

distribution will find the original mean break in the search. The most common such

situation is when we suspect that a series we are measuring has recently suffered a shift

in mean beyond that which can be expected from any positive serial correlation.

So let’s suppose that we want to examine only the most recent ten cases out of 6300.

We’ll use the DEP_RAND0 through DEP_RAND9 variables seen in other tests. These

variables, while independent of one another, have large positive serial correlation. The

incorrect approach is to use complete permutation, as this destroys the serial correlation

in the null hypothesis. If we were to make this foolish mistake, we would get the result

shown below. Remember that these variables have no break in the mean other than the

wandering that is to be expected from positive serial correlation.

 Variable Z(U) Solo pval Unbiased pval

 DEP_RAND3 4.2651 0.0100 0.0100
 DEP_RAND5 3.8843 0.0100 0.0100
 DEP_RAND9 3.6829 0.0100 0.0100
 DEP_RAND0 3.4434 0.0100 0.0100
 DEP_RAND6 3.3758 0.0100 0.0100
 DEP_RAND8 3.1717 0.0100 0.0200
 DEP_RAND7 3.1334 0.0100 0.0500
 DEP_RAND4 2.5973 0.0300 0.2300
 DEP_RAND1 2.1878 0.0900 0.6300
 DEP_RAND2 0.7855 0.9500 1.0000

It’s obvious that this is a crazy test. Even most of the unbiased p-values are tiny.

Stationarity Test for Break in Mean 47

But if we switch to cyclic permutation, we will be testing whether the mean of the most

recent few cases differs from the mean of the earlier cases more than is usual in a series

with this level of serial correlation. The results are as follows:

 Variable Z(U) Solo pval Unbiased pval

 DEP_RAND3 4.2651 0.1000 0.6600
 DEP_RAND5 3.8843 0.2000 0.8900
 DEP_RAND9 3.6829 0.1600 0.9600
 DEP_RAND0 3.4434 0.2400 0.9800
 DEP_RAND6 3.3758 0.2000 0.9800
 DEP_RAND8 3.1717 0.3400 0.9900
 DEP_RAND7 3.1334 0.3000 0.9900
 DEP_RAND4 2.5973 0.4500 1.0000
 DEP_RAND1 2.1878 0.6600 1.0000
 DEP_RAND2 0.7855 0.8800 1.0000

This is more reasonable. Even the solo p-value of the ‘worst’ variable is not terribly

significant, and its unbiased p-value correctly confirms that nothing unusual is going on

here.

Finally, suppose we want to perform this exact same test but with the understanding that

a few more observations will be coming in and we will want to repeat the test. In

particular, we agree that we will be performing this same test a total of five times, each

time a new case arrives. So we specify 5 multiple comparisons and observe the following

results:

 Variable Z(U) Solo pval Unbiased pval

 DEP_RAND3 4.2643 0.1300 0.8900
 DEP_RAND5 3.8833 0.2600 0.9800
 DEP_RAND9 3.6887 0.3600 0.9800
 DEP_RAND0 3.4422 0.3300 0.9900
 DEP_RAND6 3.3811 0.4800 0.9900
 DEP_RAND8 3.1702 0.4600 1.0000
 DEP_RAND7 3.1319 0.4300 1.0000
 DEP_RAND4 2.5955 0.6200 1.0000
 DEP_RAND1 2.1892 0.7600 1.0000
 DEP_RAND2 0.7836 1.0000 1.0000

As a result of allowing multiple comparisons, the p-values have all increased somewhat.

Also note that the Z(U) values have changed slightly. This is because the number of cases

tested is slightly reduced for multiple comparisons, as illustrated in Figure 6 on Page 42.

48 Feature Weighting as Regularized Energy-Based Learning

FREL: Feature Weighting as Regularized Energy-Based
Learning

The FREL algorithm (Yun Li et al, ‘FREL: A Stable Feature Selection Algorithm’, IEEE

Transactions on Neural Networks and Learning Systems, July 2015) is a useful method for

ranking, and even weighting, predictor variables in a classification application which is

relatively low noise but is plagued by high dimensionality (numerous predictors) and

small sample size. The implementation in VarScreen is strongly based on their innovative

algorithm, but with significant modifications that I believe improve on the original

version by providing more accurate and stable weights (at the cost of slower execution).

My implementation also includes an approximate Monte-Carlo permutation test (MCPT)

of the null hypothesis that all predictors have equal value, as well as an MCPT of the null

hypothesis that the predictors, taken as a group, are worthless. Sadly, I am unable to

devise a FREL-based MCPT of any null hypothesis concerning individual predictors

taken in isolation.

The ‘model’ which inspires FREL is weighted nearest-neighbor classification. The

distance between a test case having predictors x = {x1, ..., xK} and a training-set case t = {t1,

..., tK} is defined as the city-block distance between these cases, with each dimension

having its own weight. This is defined as:

Then, if one wishes to classify an unknown test case x based on a training set, one would

compute the distance between the test case and each member of the training set. The

chosen class for the test case would be the class of the training case having minimum

distance from the test case.

Of course, performing this classification presupposes that we know appropriate weights.

The procedure can be inverted and used to find optimal weights, and we could then

interpret the weights as measures of importance of the predictors (assuming that the

predictors have commensurate scaling!). All we would do is define a measure of

classification quality and then find weights that maximize this quality measure.

An approach to machine learning that is becoming more and more popular is energy-

based modeling. One has a set of random variables, which in the current context would be

predictors, and a prediction target or class membership. The model defines a scalar

energy as a function of the values of these variables, sometimes called their configuration.

This energy is a measure of the compatibility of the configuration, with small values of

Feature Weighting as Regularized Energy-Based Learning 49

energy corresponding to compatible configurations. If we have a known energy-based

model and we wish to make an inference (a prediction or classification) based on

specified values of the predictors, we fix the predictors and vary the target or class

variable to identify the configuration that minimizes the energy.

In order to find a good energy-based model, we tune the parameters of the model in such

a way that ‘correct’ configurations (as indicated by the training set) have small energy

and ‘incorrect’ configurations have large energy.

Once the structure of the model is specified, in order to find optimal parameters we

define a loss functional (a function of a function). The model is a function which maps

configurations of variables to energy values, and the loss functional maps models to

scalar loss values. In order to train the model, we find the version (parameters for the

model family) which minimizes the loss functional.

The most common version of this latter operation, which we will do here, is to define a

per-sample loss functional as a function of the model and a single case, and then average

this per-sample measure across the entire training set.

This is a good time for a brief digression to make sure that two crucial issues are clear.

First, many models, such as nearest-neighbor classification and some types of kernel

regression, implicitly include the entire training set (or some other dataset) as a key

component of the model. Do not confuse this with discussions of the training set related

to training. It’s still just the model, and we need not explicitly mention the presence of

the training set as part of the model. Second, do not confuse energy with loss. Energy is

a measure of the compatibility of a given variable configuration with a model, and it is

used to make a prediction. Loss is a measure of the quality of a model in a way that

generally includes a training set, and it is used to find an optimal model.

The energy that a model M assigns to a hypothetical variable configuration {x, y} can be

conveniently written as E(M, x, y). An extremely common and useful way to express the

per-sample loss for a single training case {xi, yi} is L(yi, E(M, xi, m), in which the term

E(M, xi, m) actually stands for multiple energy values, one for each possible value of y.

In other words, the per-sample loss for a single case is a function of the true value of y for

that case, and the energies given by the model for x associated with every possible y.

Note, by the way, that the distinction between function and functional become a bit murky

here, depending on whether we think in terms of E being a hypothetical function or an

observed number. In any case, the idea should be clear.

50 Feature Weighting as Regularized Energy-Based Learning

We are almost done presenting a general form of an effective loss function(al) for training

an optimal (in the sense of the loss) model. We have seen the form of a per-sample loss,

and stated that averaging this quantity over every sample in the training set is

reasonable. The only remaining issue is that of regularization. This enables us to embed

prior knowledge about the model in the final solution. Typically, this involves limiting

the size of weights involved in the expression of the model, although other approaches

are possible. With these things in mind, we can express the loss of a given model M for a

given training set T and regularization function R as shown below. This is a scalar

quantity which we will minimize in order to develop a good model.

To review, a good model will fulfill two requirements: it will have low energy for correct

configurations and high energy for incorrect configurations. Looked at another way,

when a good model is presented with a set of predictors x, its energy will be low when it

is simultaneously presented with the correct y for that x, and its energy will be high

when it is simultaneously presented with any incorrect y.

It is tempting, and often appropriate, to consider only the first half of this two-part

requirement: the model will have low energy for correct configurations. This is

especially true for models in which fulfilling the first half automatically fulfills the second

half. For example, suppose we have a regression equation as the model, and we define

the energy associated with the model and a training case as the squared difference

between the correct answer and the answer provided by the regression function. If the

loss is just this energy, then averaged across the entire training set, the loss is the mean

squared error (MSE). The optimal model is produced by minimizing the MSE, a

venerable approach.

But for many model architectures, this halfway method is not a good approach. It is

much better, if not mandatory, to explicitly take into account the second half of the

requirement: the energy of incorrect answers should be large. And intuitively, we don’t

much care about easy situations, those incorrect answers that have huge energy. Even a

weak model will do well with them. What we must worry about is those situations in

which an incorrect answer has dangerously low energy. We want our model to be able

to raise the energy of these problematic cases as much as possible above the energy of the

correct answer.

Feature Weighting as Regularized Energy-Based Learning 51

This intuition leads to the following definition:

The most offending incorrect answer for a case, which we will call ÿ, is the incorrect answer

that has the lowest energy. This is the answer most likely to cause an error, because it is

the incorrect answer that is most difficult for the model to distinguish from the correct

answer. The second half of the training procedure discussed earlier, that incorrect

answers should have large energy, is more general than is necessary. All we really care

about is that the most offending incorrect answer has energy as large as possible,

compared to the energy of the correct answer. The other incorrect answers are of

relatively minor importance because they are easier for the model to avoid.

In particular, what we often want to maximize is the difference between the energy of the

most offending incorrect answer and the energy of the correct answer. This will give us a

model that is optimal in the sense of effectively handling the most difficult cases, while

letting the easy cases slide.

A popular per-sample loss criterion, and which is used in VarScreen, is the log loss shown

below. Note how it is a monotonic function of the difference between the two energies,

so optimizing either is equivalent to optimizing the other (for a single case, not averaged

across the training set!).

Now that a theoretical foundation is laid, we can apply these ideas to the specific model

used in the FREL paper and VarScreen. Recall from the beginning of this section that we

use weighted nearest-neighbor classification. Thus, in order to compute E(M, xi, yi) for

training case i, we check all other training cases in the correct class, yi. The smallest

distance is the energy for the correct class. Similarly, to compute E(M, xi, ÿ i) we search all

other training cases in an incorrect class and find the distance to the nearest. Of course,

although this is simple to describe and implement, it can be horrendously slow to

compute. The quantity being minimized is the average across the training set of the per-

sample losses shown in the equation above. If there are n training cases and K predictors,

a single evaluation of the grand loss function requires on the order of Kn2 operations.

Yikes! Luckily, FREL is most useful for situations in which the training set is small

relative to the number of predictor candidates, so that squared term will hopefully not be

a serious problem.

52 Feature Weighting as Regularized Energy-Based Learning

All that remains to be settled is the regularization. In any reasonable application, the

energy of the incorrect answers will, on average, exceed that of the correct answers;

otherwise the model would be worthless! For the loss function just shown applied to

weighted nearest-neighbor classification, increasing the weights together will decrease

the loss, because the term being exponentiated will become increasingly negative. Thus,

naive minimization of the loss will result in the weights blowing up without bound.

Thus, we are inspired to penalize large weights. This is common practice, even in

situations in which this blowup is not natural. The reason is that in many models, large

weights are associated with overfitting and poor out-of-sample performance. In

VarScreen we use the common method of penalizing by the sum of the squares of the

weights. The sum of their absolute values is also common and may be implemented in a

future version of the program.

The optimal weights determined by minimizing regularized loss can be interpreted as

measures of importance of the individual predictors. However, two issues must be

considered. First, the scaling of the predictors obviously impacts the weights, so their

scaling should be commensurate. VarScreen takes care of this by internally scaling per

their standard deviation. Second, interpretation by the user is aided by normalizing the

weights in some way for display. In VarScreen they are linearly normalized so as to sum

to 100.

A frequently useful variation is to take many bootstrap samples from the dataset and

compute the final weight estimate by averaging the estimates produced from each

bootstrap sample. The sampling must be done without replacement, as nearest-neighbor

algorithms are irreparably damaged when the dataset contains exact replications of cases.

Bootstrapping FREL has at least two major advantages over doing one FREL analysis of

the entire dataset:

1) Stability is usually improved. A critical aspect of any weighting scheme is that the

computed optimal weights should be affected as minimally as possible by small changes

in the dataset. Such changes might be inclusion or exclusion of a few training cases, or

change might be effected by the addition of noise to the data. An average of bootstraps is

much more robust against data changes compared to a single complete FREL processing.

2) Because run time of the FREL algorithm is proportional to the square of the number of

cases, we can greatly decrease the run time by performing many iterations of a small

sample.

For these reasons, bootstrapping is generally recommended.

Feature Weighting as Regularized Energy-Based Learning 53

FREL Operation in VarScreen

We’ve already discussed the mathematics behind the FREL implementation in VarScreen.

This section covers the user interface. When the user clicks Test / Regularized energy-based,

a dialog box appears. The following information must be supplied by the user:

The leftmost (Predictors) column is used to specify the set of predictor candidates.

Multiple candidates can be selected by dragging the mouse cursor across a block, or by

clicking the first candidate in a block, holding the Shift key, and clicking the last

candidate in the block. Individual candidates can be toggled on and off by holding the

Ctrl key while clicking on the variable.

The Target column is used to specify the target variable. This variable will be partitioned

into two or more classes based on it values. FREL does not permit continuous targets.

Target bins specifies the number of bins into which the target will be categorized. The

number of cases in each bin will be made as equal as possible.

Regularization factor traditionally prevents model weights from running away to

problematic large values. However, in VarScreen this is a fairly non-critical parameter;

even zero is acceptable. This is because the optimization algorithm in VarScreen

inherently prevents weight runaway as part of its stability enforcement. In practical

terms, the effect of the regularization factor is to control the relative spread of weights.

Suppose that predictability is concentrated in just one or a few candidates. If the user

specifies a small or zero value for this parameter, the computed weights will strongly

reflect this focus. However, if a very large regularization factor is specified, the focus will

be less intense; some of the weight will be redistributed away from the dominant

predictors and given to predictors of lesser value. Intense focus on one or a few

dominant predictors can, in some cases, be seen as a form of overfitting.

Bootstrap operation usually increases robustness of the weight estimates and also

decreases runtime, a happy confluence of outcomes. By default, no bootstrapping is

done. But the user can specify that a given number of iterations are performed, each

having a specified sample size. The sample size must be large enough that each sample is

virtually guaranteed to have a significant number of representatives from each target

class. For the number of iterations, my own rough rule of thumb is that the product of

the number of iterations times the sample size should be about twice the number of

training cases.

54 Feature Weighting as Regularized Energy-Based Learning

A Monte-Carlo permutation test is a useful, though time consuming, way to test certain null

hypotheses about the predictor candidates. It is vital to understand that these tests are

radically different from the other permutation tests in VarScreen. For one thing, I am not

aware of any way of performing a perfect individual-candidate MCPT with FREL; the

best I can do is come up with a rough approximation that appears to work well in

practice. More importantly, in other tests, the candidate predictors are handled

individually, so the p-values (at least the solo tests) are independent. But FREL considers

all candidates simultaneously. This dependence changes the nature of MCPT. One effect

is for dominant candidates to ‘suck’ weight out of lesser candidates, thus reducing their

apparent significance. But the important effect is to radically change the nature of the

null and alternative hypotheses of the test.

In other VarScreen tests, the null hypothesis for each solo p-value is that the individual

candidate is worthless, and that for the unbiased p-values is that all candidates are

worthless, and the power of the test is in identifying individual candidates which have

predictive power. But for FREL, the individual MCPT tests have no useful power in

situations in which all candidates have equal predictive power, regardless of whether

that power is tiny or large. The null hypothesis is still generated by making all

candidates worthless, exactly as in other tests. But because of the joint estimation of

weights, it is more intuitive (though not strictly correct!) to think of the null hypothesis as

being that all candidates have equal predictive power, with the unbiased p-values

compensating for the fact that we are testing numerous candidates, and any of them may

be outstanding by random luck. In other words, these individual tests are related to the

predictive power of each candidate relative to their competitors. Their individual predictive

powers play no easily identifiable role in determining p-values.

With this in mind, we can look at the p-values of candidates at the top of the list, those

ranked highest in terms of predictive power and having the largest weights, and consider

the p-values as being the probability that if all candidates were truly equal in predictive

power, the top-ranked candidates would have outperformed the others to the degree

shown. Suppose we see a highly significant result for the single best candidate. It may

be that this best candidate is almost worthless, and its competitors are completely

worthless. Or it may be that this single candidate is excellent, while its competitors are

merely very, very good. In either case we may see the best candidate having a highly

significant p-value. Again, I emphasize that this interpretation is not strictly correct, but I

believe that it is close enough, especially the unbiased p-values, to be effective indicators

of the validity of the obtained results.

Feature Weighting as Regularized Energy-Based Learning 55

The sucking of weight from relatively poor predictors to good predictors has a peculiar

and potentially confusing effect on the solo p-values. As we drop down the sorted list to

the low-ranked candidates, we can see the solo p-values cover a wide range, jumping up

and down between high and low significance randomly. This is illustrating in an

exaggerated manner the fact that the p-values for worthless candidates in any statistical

test have a uniform distribution, with all values being equally likely. This is yet another

reason why we should focus on the unbiased p-values, ignoring the solo p-values except

perhaps (and with great caution) for the few top-ranked candidates.

VarScreen does print one additional p-value, called the Loss p-value. This is a ‘grand’

measure of the ability of all predictors taken together to be effective at correct

classification. The null hypothesis is that none of the candidates have any predictive

power, and the Loss p-value is the probability that if this were so, we would have

achieved a loss at least as low as that obtained. This p-value being small is a necessary

condition for any of the individual p-values to be meaningful. If we cannot be reasonable

certain that at least one of the candidates has predictive power, then there is no point in

considering their relative power!

The user may specify several parameters for the MCPT:

Replications defaults to zero, in which case no Monte-Carlo permutation test is performed.

However, if computer time permits, it is usually best to set this to at least 100, and

perhaps as much as 1000, so that solo and unbiased p-values will be computed. Note that

the minimum possible p-value is the reciprocal of the number of permutations. So, for

example, if the user specifies 100 permutations, the minimum p-value that can appear is

0.01. Run time of this test is linearly related to the number of permutations.

The user must choose either Complete or Cyclic permutations. If the user is confident that

there is no dependency as described earlier in this document, then Complete should be

used; it is the traditional approach which does a complete random shuffle for each

permutation. However, if there is dependency, this type of shuffling will produce

underestimation of p-values, a very dangerous situation. If the dependency is serial (the

data is a time series and the dependency is among samples close in time) then a slight

improvement in the situation can be obtained by using Cyclic permutation. In this type of

shuffle, the time order of the target is kept intact except at the ends by rotating the targets

with end-point wraparound. Shuffling this way preserves most of the serial dependency

in the permutated targets, which makes the algorithm more accurate. The p-values

computed this way will generally be larger than those computed with complete

shuffling, and hence less likely to lead to false rejection of the null hypothesis of no

56 Feature Weighting as Regularized Energy-Based Learning

predictive power. But be warned that the cure is far from complete; computed p-values

will still underestimate the true values, just not as badly.

Note that in most cases it is legitimate to use Cyclic permutation instead of Complete when

there is no dependency. However, if the dataset is small, Cyclic permutation will limit

the number of unique permutations and hence increase the random error inherent in the

process. As long as the dataset is large, some users may prefer to use Cyclic permutation

even if it is assumed that there is no serial dependency; in case there really is hidden

serial dependency, this is a cheap insurance policy. Still, the best practice is to make sure

that the data does not contain dependency and then use Complete permutation. Relying

on Cyclic permutation to take care of dependency problems is living dangerously. And if

the dataset contains fewer than 1000 or so cases, use of Cyclic permutation is not

recommended unless it is necessary to handle dependency.

Feature Weighting as Regularized Energy-Based Learning 57

CUDA Considerations

First, be aware that the default CUDA parameters (Kernels and Granularity) should be fine

for nearly all applications and hardware. However, for users who wish to tweak

operation (or those who must do so because of timeouts) the FREL dialog allows the user

to specify two parameters.

Computation of the loss function entails two nested loops. The outer loop performs cross

validation, letting each training case play the role of a test case, with these individual

losses averaged across the entire training set. The inner loop passes through all cases

other than the test case and finds the energy of the correct answer and that of the most

offending incorrect answer. Since this latter operation also involves finding the weighted

distance between cases, this results in a lot of mathematical operations.

Microsoft Windows has the infamous ‘feature’ of limiting the time during which CUDA

computation can monopolize the video display in a contiguous stretch, typically two

seconds. Therefore, the CUDA Kernels parameter lets the outer loop be broken up into

multiple kernel launches. By default all computation is performed in a single launch,

which is good, because launches have considerable overhead. But if the screen goes

black and a message pops up that the display adapter has been reset, you will have to

increase (as little as possible!) the CUDA Kernels parameter.

The Granularity parameter is more subtle and require an understanding of CUDA

hardware to be fully appreciated. If the granularity is set to 1, each outer-loop case is

assigned to a thread, and this single thread handles the entire inner loop. But CUDA

devices prefer much finer granularity so that they can run thousands or even millions of

threads simultaneously. Otherwise, vast amounts of hardware resources sit idle, a

grievous waste. To avoid this, the inner loop for each outer-loop case is broken up into

Granularity sub-tasks, where this parameter cannot exceed the number of cases. The

bottom line is that a total of Number of cases times Granularity separate threads are

executed. Users with a late-model extremely powerful CUDA processor may benefit

from increasing the granularity beyond the default, perhaps even to its limit of the

number of cases.

58 Feature Weighting as Regularized Energy-Based Learning

Appendix: Version Updates 59

Appendix: Version Updates

1.0 Univariate mutual information between predictor candidates and a single target

Bivariate mutual information between a pair of predictor candidates and one or

more target candidates

1.1 Added the option of uncertainty reduction instead of mutual information for

bivariate mutual information, in order to accommodate targets with widely

differing entropies

1.2 Peng, Long and Ding (2005) “Feature Selection Based on Mutual Information:

Criteria of Max-Dependency, Max-Relevance, and Min Redundancy” algorithm

implemented to select an optimal subset of predictors based on maximum

relevance at predicting the target while simultaneously minimizing redundancy

within the predictor set.

1.3 Hidden Markov models are defined using up to three predictors, without regard

to a target. Then these models are sorted according to the multivariate correlation

of their state probability vectors with a user-supplied target variable.

1.4 The univariate mutual information test now prints a new column: the probability

that a selected candidate will have out-of-sample mutual information less than or

equal to the median out-of-sample mutual information for all candidates.

1.5 One or more time series are examined for a break in their mean using the Mann-

Whitney U-test. The user specifies how far in recent history to look back for a

break. The test includes compensation for examining more than one series

simultaneously, as well as compensation for repeating the test as time passes and

new values for the series become available.

1.6 Feature Weighting as Regularized Energy-Based Learning (FREL): A recent

development for feature ranking and weighting that is excellent for low-noise,

high-dimension, small-sample-size applications.

