
1

Optimal Number of Choices in Rating Contexts 

Sam Ganzfried and Farzana Yusuf

Florida International University, Miami, FL

School of Computing and Information Sciences

http://www.ganzfriedresearch.com/

sam.ganzfried@gmail.com

http://www.ganzfriedresearch.com/


2

Human rating systems

• Humans rate items or entities in many important settings

– Physical attractiveness on dating websites and apps

– Teachers rate students’ work

– Reviewers rate conference submissions

– Etc.

• In these settings, the users assign a numerical (integral) 

score to each item from a small discrete set. However, 

the number of options in this set can vary significantly 

between applications, and even within different 

instantiations of the same application.
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Are you hot or not?
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Compression model
• We study model where users have underlying integral ground 

truth score for each item in {1,…,n} and are required to submit 

an integral rating in {1,…,k}, for k << n. 

• Two generative models:

1. Uniform: the fraction of scores for each value from 1 to n is chosen 

uniformly at random 

2. Gaussian: the scores are chosen according to a Gaussian distribution 

with a given mean and variance

• We then compute “compressed” score distribution by applying 

s  floor(s / (k/n)) to map from {0,..,n-1} to {0,…,k-1}. 

– We also consider a rounding approach that maps each score to closest 

“midpoint:” mk
i = n(2i-1)/(2k). 

• We compute the average “compressed” score ak and its error 

ek = |af - [(n-1)/(k-1)]*ak|, where af is ground truth average score. 

• The goal is to pick argminkek.
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• One could argue that this model is somewhat “trivial” in the 

sense that it would be optimal to set k = n to permit all the 

possible scores, as this would result in the “compressed” scores 

agreeing exactly with the full scores. However, there are many 

reasons that we would like to select k << n in practice, thus 

making this “thought experiment” worthwhile. It is much easier 

for a human to assign a score from a small set than from a large 

set, particularly when rating many items under time constraints.

• We could have made model more complex by adding in a cost 

function that explicitly penalizes larger values of k. This would 

be somewhat arbitrary, and leave this direction for future study. 
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• So, in our simple model, increasing k will always 

decrease ek right?
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Example



8

Example where k=2 outperforms k=3

• af = E[X] = 0.5 * 30 + 0.5 * 60 = 45. 

• If we use k = 2, then the mass at 30 will be mapped down to 0 

(since 30 < 50) and the mass at 60 will be mapped up to 1 (since 

60 > 50). 

• So a2 = 0.5 * 0 + 0.5 * 1 = 0.5, e2 = |45 - 100 (0.5)| = |45 - 50| = 5.

• If we use k = 3, then the mass at 30 will also be mapped down to 

0; but the mass at 60 will be mapped to 1, since 100/3 < 60 < 

200/3. 

• So again a3 = 0.5 * 0 + 0.5 * 1 = 0.5, but now using normalization 

of n/k = 50 we have e2 = |45 - 50 (0.5)| = |45 - 25| = 20. 
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Theoretical characterization
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• From this characterization, we see, for example, that e2 < e3 iff 

|E[X] - 100 + 100 F(50)| < |E[X] - 100 + 50F(100/3) + 

50F(200/3)|.

• If we happened to be in the case where both a2<=af and a3<=af, 

then we could remove the absolute values and reduce the 

expression to see that e2 < e3 iff integral of f(x) from 100/3 to 

50 is smaller than the integral from 50 to 200/3.

• Can perform more comprehensive analysis considering all cases 

to obtain better characterization and intuition for the optimal 

value of k for distributions with different properties.
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Rounding compression

• Can modify the compression function s  floor(s / (k/n)) to 

round s/(k/n) to nearest value.

• For example, for n = 100, k = 2, instead of dividing s by 50 and 

taking the floor, we could instead partition the points according 

to whether they are closest to t1 = 25 or t2 = 75. This would 

produce a compressed average score of a1 = 0.5*25 + 0.5*75 = 

50. No normalization would be necessary, and this would 

produce error of e2 = | af - a2| = |45-50| = 5, as the floor approach 

did as well. Similarly, for k = 3 the region midpoints will be q1 

=100/6, q2 = 50, q3 = 500/6. The mass at 30 will be mapped to 

q1, and the mass at 60 will be mapped to 2. This produces a 

compressed average score of a3= 0.5*100/6 + 0.5*50 = 100/3. 

This produces an error of |45-100/3| = 35/3 = 11.67. Although 

the error for k=3 is smaller than for the floor case, it is still 

significantly larger than for k=2.
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Computational Simulations and Analysis

• Used n = 100, and k = 2,3,4,5,10. 

• For Gaussian model used s = 1000 (number of samples), 
μ = 50, σ = 50/3.

• For each set of simulations we computed the errors for 
all considered values of k for m = 100,000 “items” (each 
corresponding to a different distribution generated 
according to the specified model). 

• The main quantities we are interested in computing are 
the number of times that each value of k produces the 
lowest error over the m items (i.e., the “number of 
victories”), and the average value of the errors over all 
items for each k value. 
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Rounding compression simulations

• Not surprisingly, we see that the number of victories increases 

monotonically with the value of k. while the average error 

decreased monotonically (recall that we would have zero error if 

we set k = 100). However, using a smaller number of 

compressed scores produced the optimal error in a far from 

negligible number of the trials. For the uniform model, using 10 

scores minimized error only around 53% of the time, while 5 

scores minimized error 17% of the time, and even using 2 scores 

minimized it 5.6% of the time. The results were similar for the 

Gaussian model, though a bit more in favor of larger values of k, 

which is what we would expect because the Gaussian model is 

less likely to generate “fluke” distributions that could favor the 

smaller values. 
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Simulations for flooring compression
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• Comparing just k = 2 vs. k =3, as expected k = 3 generally 

performed better, but surprisingly k = 2 produced a lower error 

37% of the time. As before, the larger k value performs 

relatively better in the Gaussian model. We also looked at 

results for the most extreme comparison k = 2 vs k = 10. Using 

k = 2 outperformed 10 8.3% of the time in the uniform setting, 

which is larger than we expected.

• Next slide gives a specific distribution for which k = 2 

particularly outperformed k = 10. Full distribution has mean 

54.188, while k = 2 compression has mean 0.548 (54.253 after 

normalization) and k = 10 has mean 5.009 (55.009 after 

normalization). The normalized errors between the means were 

0.906 for k=10 and 0.048 for k = 2, yielding a difference of 

0.859 in favor of k=2.
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Example where k=2 significantly 

outperforms k=10
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• We next repeated the extreme k = 2 vs. 10 comparison, with a 

restriction that k = 10 could not give a score below 3 or above 6 

(if below 3 set to 3 and if above 6 set to 6). For instance for 

paper reviewing, extreme scores are very uncommon, and we 

suspect the vast majority of scores are in the middle range.

• Some possible explanations are that reviewers who give extreme 

scores may be required to put in additional work to justify their 

scores, and are more likely to be involved in arguments with the 

other reviewers (or with the authors in the rebuttal). Reviewers 

could also experience higher regret or embarrassment for being 

“wrong” and possibly off-base in the review by missing an 

important nuance. 

• In this setting using k=2 outperforms k=10 nearly 1/3 of the time 

in the uniform model.
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• We also consider k = 10 scores within 3 and 7 (as 

opposed to 3-6). Note that the possible scores range 

from 0-9, so this restriction is asymmetric in that the 

lowest three possible scores are eliminated while only 

the highest two are. This is motivated by the intuition 

that raters may be less inclined to give extremely low 

scores which may hurt the feelings of an author (for the 

case of paper reviewing). 

• In this setting, which is seemingly quite similar to the 

3-6 setting, k=2 produced lower error 93% of the time 

in the uniform model!
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• We next repeated these experiments for rounding 

compression. In this setting, k=3 is the clear choice, 

performing best in both models (by a large margin for 

the Gaussian model). The smaller values of k perform 

significantly better with rounding than flooring (as 

indicated by lower errors) while the larger values 

perform significantly worse, and their errors seem to 

approach 0.5 for both models.
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• Taking both compressions into account, the optimal overall 

approach would still be to use flooring with k=10, which 

produced the smallest average errors of 0.19 and 0.1 in the two 

models, while using k=3 with rounding produced errors of 0.47 

and 0.24. 

• The 2 vs. 3 experiments produced very similar results for the 

two compressions.

• The 2 vs. 10 results were quite different, with 2 performing 

better almost 40% of the time with rounding, vs. less than 10% 

with flooring.

• In the 2 vs. 10 truncated 3-6 experiments, k=2 performed 

relatively better with rounding for both generative models.

• For the 2 vs. 10 truncated 3-7 experiments k=2 performed better 

nearly all the time.
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Simulations for rounding compression
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Experiments

• Explored data from www.preflib.data on hotel ratings and 

French presidential elections. 

• Trip advisor ratings in several categories from 1-5 (n = 5), we 

used k = 2, 3, 4.

• Average error generally decreases monotonically as k increases, 

as we would expect, though sometimes lower k outperformed 

higher k (both with respect to number of victors and average 

error).

• French presidential candidates rated from 0-20 (n= 20), we used 

k = 2, 3, 4, 5, 8, 10). 

• Again the error generally decreased monotonically as k 

increased, though for one case it was minimized for k = 2.

http://www.preflip.data/
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Future research

• Extend theoretical characterization analysis to get 

better understanding of the specific distributions for 

which different values of k are optimal.

– Our experimental simulation results are in aggregate over 

many different distributions. 

• Specific application domains will have distributions 

with different properties, and improved understanding 

will allow us to determine which k is optimal for the 

types of distributions we expect to encounter.

• This improved theoretical understanding can be 

coupled with further exploration of data.


