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Abstract: Mining frequent subgraphs from graph databases 

is a basic task with broad applications. Frequent subgraph 

mining is defined as finding all subgraphs that appear more 

than specified threshold value. It consists of mainly, two 

steps, candidate generation and frequency calculation. In 
Candidate generation step, most of the existing work starts 

with a frequent edge or vertex to generate frequent 

candidate patterns. This process is not scalable due to 

exponential number of candidate patterns generation. In this 

paper, we present an optimized algorithm to generate 

candidate patterns for mining frequent patterns from a large 

single graph. The proposed algorithm starts and extends 

candidates with frequent subgraphs. The proposed 

algorithm uses graph invariant properties and symmetries 

present in a graph to generate candidate subgraphs thus 

reducing generation of enormous amount of candidate 

subgraphs. Subgraphs are extended by adding another 

frequent subgraph determined by the symmetry mapping of 

subgraph there by reduces the complexities involved in 

candidate generation and frequency counting. An evaluation 

study on datasets explores the strengths and limitations of 

the proposed work. To the best of our knowledge, this is an 

optimized approach to generate candidate subgraphs 

directly using invariant properties. 

 
Keywords: Graph mining, frequent pattern, candidate 

generation, partitioning, graph invariants, symmetry 

 

I. INTRODUCTION 

Mining frequent graph patterns is a well-studied 

problem in graph mining to mine and analyse data in 

applications such as chemical compounds[1], protein 

interactions [2], social networks [3] and web interactions 
[4]. Frequent subgraphs are also play a critical role to 

perform other mining tasks such as indexing, clustering and 

classification. Frequent subgraph mining [5] problem can 

be defined as finding a set of frequent subgraphs from a set 

of graphs in a graph database or from a large single graph 

for a given threshold. In this paper, a single graph scenario 

is considered and a subgraph is said to be frequent if it 

appears at least T times in graph. 

The difficulty in frequent subgraph mining algorithms 

lies in candidate generation and calculating the support of 

subgraphs.  Designing algorithms is a computationally 

challenging and data intensive task to mine frequent 

subgraphs from a large graph. It is due to the (a)size of the 
graph and (b)the enumerated subgraph space increases in 

exponential with the size of graph when finding frequent 

patterns. In recent years, several approaches are developed 

to detect patterns in a large graph [6,7,8,9,10]. In general, 

these algorithms start with a frequent edge or vertex and 

extend the graph by adding a new edge or by adding a new 

vertex to the existing graph recursively until all frequent 

subgraphs are discovered. However the number of 

subgraphs generated in mining process is exponential with 

the size of graph.  

Along with the above issues, one fundamental problem 

that needs to consider in single large graph is overlapping 
of subgraphs shown in Figure 1. In general, one can 

consider two subgraphs as different if they differ just by a 

single edge. As a result we may find number of overlapped 

subgraphs as candidates. On the other hand, two subgraphs 

are different if they don’t share any or just by sharing single 

edge or node. A critical step in obtaining such no 

overlapping or minimum overlapping frequent subgraphs is 

to find maximum common subgraph or maximum 

independent set which itself is NP-complete. 

 

 
 (a)   (b) 

 

 
  (c) 
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Fig. 1. Frequent subgraphs in a single graph. (a) Graph (b)Subgraphs in a 

graph (c) Subgraphs with maximum and minimum overlapping. 

 

In this paper, we propose an optimized algorithm to 

generate candidate subgraphs based on the symmetries 

present in a graph. This algorithm starts candidate 

generation with a frequent subgraph contrasting with other 

algorithms which start with a frequent vertex or edge. It 

generates candidate subgraphs with minimal overlapping 

subgraphs and avoids enumeration of all subgraphs in 

candidate generation. The algorithm uses symmetries 

present in a graph to generate candidate subgraphs. Unlike 
most algorithms, this algorithm extends candidates by 

adding another frequent candidate subgraph determined by 

the symmetry mapping of subgraph. 

  

A.  Our Approach 

Fig. 2 depicts the outline of our approach. At first, 

partition the vertices of graph by identifying symmetries 

present(vertex triples) in the graph using graph invariants. If 

the size of a part is more than specified threshold, generate 

1st level candidates by enumerating the associated graph of 

each vertex in the part. Then apply subgraph extension 
algorithm to find frequent candidates. If the part size is less 

than threshold support, then identify symmetries using 

vertex dual approach, label based candidate enumeration to 

generate frequent candidates. Adjacent list is used to 

represent graphs which ease the traversal of graph. 

Subsequent sections explain the proposed algorithm in 

detail. 

 

 
 

Fig. 2 Outline of Framework 

 

With this approach, firstly, we address the issue of 
scalability and complexity during candidate generation. 

Secondly, isomorphism is almost avoided which is required 

in frequency counting and duplicate candidate 

identification. 

The rest of paper is organized as follows. Section II 

defines the preliminary concepts and problem formulation. 

Section III discusses the proposed framework for frequent 

subgraph mining in a single large graph. We study an 

optimized approach of candidate generation using graph 

invariants. In turn using them to find frequent patterns. 

Section IV presents experimental evaluation. Section V 

discusses the related work and Section VI concludes the 

paper. 
I. PRELIMINARIES 

 

Definition1: A labeled graph is defined as G = (V, E, L, l), 

where V is a set of vertices, ὉṖὠ ὠis a set of edges, L is 

a set of labels, and l is a function that gives a unique label to 

each vertex of G.  

Definition2: Subgraph: A graph g=(V', E', L', l') is a 

subgraph of another graph G=(V, E, L, l) iff V'Ṗ V, and E'Ṗ 

E (᷈(v1, v2)  ɴE' → v1, v2  ɴV')and it holds that(lbl(u) = lbl' 

(μ(u)))  ᷈(lbl(v) = lbl'(μ(v)))  ᷈(lbl(u, v) = lbl'(μ(u), μ(v))). 
In other words, the labels for each corresponding edge as 

well as the labels of edge’s end points i.e labels of vertices 

are to be identical.  g Ṗ G denotes that g is a subgraph of G. 

Definition3: Subgraph Isomorphism: For two labeled 

graphs G and H, a subgraph isomorphism is an injection  f: 

V(G) → V(H)such that vᶅ Vɴ(G), L(v) = L'(f (v)) and 

(ᶅό,v)  ɴE(G)ᵾ( f(ό), f(v))  ɴE(H) and L(ό, v) = L'(f (ό), f 

(v)) where L and L' are labels of G and H respectively. This 
mapping preserves labels on the vertices and edges.  

As we are considering single graph setting as input, the 

problem formulation for finding frequent subgraphs in a 

single graph setting is defined as follows: 

Definition4: Frequent Subgraph: Given a graph G and a 

frequency threshold T, a subgraph Gi, with an observed 

support f is frequent if and only if f ≥T 

The storage order of vertices in adjacency list is defined as 

follows: 

Definition 5: Vertex order: For a vertex v, let A be the set 

of m adjacent vertices u1, u2,…, um,  the order of vertices u 

are, which satisfies the following criteria: 

(1) For each uk  ɴA, lbl(uk) ≥ lbl(u(k+1)),  ᶅk, 1 ≤ k ≤ m  

(2) For each uk  ɴ A, deg(uk) ≤ deg(u(k+1)), Ὧᶅȟρ Ë
Î ÉÆÆ lbl(uk)= lbl(u(k+1)) 

(3) For each uk  ɴ A,  lbl(u1, v) ≤ l(u2, v), Ὧᶅȟρ Ë
Î ÉÆÆ lbl(uk)= lbl(u(k+1)) 

Definition 6: an ordered partition Ѵ is a sequence {V1, 

V2,…, Vp} of non-empty subsets  of  V such that{V1, V2,…, 
Vp} is a partition of V. The subsets V1, V2,…, Vp are called 

cells of Ѵ. A trivial cell is with size one and discrete 

partition has only trivial cells. While the unit partition has 

only one cell and refers to complete symmetric graph. An 

ordered partition is an equitable ordered partition iff the 

vertices are partitioned based on the definition 5. In a 

regular graph the unit partition is equitable.  

Definition 7: Vertex triple: For a vertex v with m adjacent 

vertices u1, u2,…, um,  vertex triple T(v)is a string defined as: 

Tdv +Tlv +Tev where “+” is string concatenation, and which 

satisfies the following criteria: 

 

(1) For each v ɴ  A, Tlv  =(l(u1) + l(u2) +… +l(um))., where 

l(uk) ≤ l(u(k+1)), for all k, 1 ≤ k ≤ m 

(2) For each v  ɴ A, Tdv =(d(u1), d(u2),… d(um)) where 

d(uk) ≥ d(u(k+1)), for all k, 1 ≤ k ≤ m – 1 and l(uk)≤ 

l(u(k+1)), for all k, 1 ≤ k ≤ m 

https://xlinux.nist.gov/dads/HTML/graph.html
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(3)  For each v ɴ  A,  a sequence Tev=(l(u1, v) + l(u2, v) +…                      

 +l(um, v)) where ui is the in the order of lv. 
Vertex dual D(v)is a string defined as: Tlv +Tev which is 

composed with 1 and 3 of above. 

Definition 8: The symmetry group of G denoted by 

Sym(G)is a set of symmetries of G forms a group under 

functional composition. A symmetry of graph G is a 

permutation of G's vertices that preserves G's edge relation, 

i.e., G' = G. The Aut(G) of a graph G is the set of all 

automorphisms of G with permutation composition as 

group operation. 

Lemma1: Given two vertices v1 and v2 with their triples 

T(v1) and T(v2) of a labeled graph G, v1  is  symmetric to v2 

if and only if T(v1) = T(v2). 

Lemma2: Given two vertices v1 and v2 with their duals D(v1) 

and D(v2) of a labeled graph G, v1  is symmetric to v2 with 

their partial associated graph if and only if D(v1) = D(v2). 

As these vertices are symmetrical, the associated 

subgraph of a vertex with its adjacent vertices is also 

symmetrical. This symmetry property of vertices can be 

used to enumerate subgraphs just by connecting an edge 

between subgraphs of vertices. By this Lemma 1 and 

Lemma 2 the problem of mining frequent symmetrical 

nodes is equivalent to mining their corresponding subgraphs 

consequently candidate subgraphs to enumerate frequent 
subgraphs. 

 

II. FREQUENT PATTERN MINING 

 

The implementation of finding frequent subgraphs 

algorithm is as follows: (i)The algorithm starts by executing 

partition() algorithm that  partition the set of vertices V of 

graph G into parts and are further refined into orbits based 

on the symmetry of vertices which have vertex transitive 

property. This algorithm is further explained.   (ii) Find 

vertex orbits whose |Sk|>f  and store all associated 
subgraphs of vertices as primary candidates. Here the 

subgraph associated with each vertex of an orbit becomes 

the candidate subgraph. (iii) These candidate subgraphs are 

further extended by candgextn() algorithm to enumerate 

frequent subgraphs. Finally subgraph extension algorithm 

candgextn() is recursively executed to find all the frequent 

subgraphs. 

A. Frequent Mining Framework 

Algorithm:  Frequent Subgraph Mining 

Input:          A graph G and frequency threshold f 

Output:      result  N The frequent subgraphs of G 
Begin 

1. Obtain equitable ordered partition of the vertices 

V of a graph G. S N  partition(V(G))  

 S N S1, S2, … Sn 

2. For each vertex orbit Sk  ɴ S do 

if |Sk|>f  then 

 result N  gi of v Sɴk 

3. result  N result U candgextn(Sk) 
End 

B.  Partitioning 

Algorithm: partition() 

Input: V AN set of vertices of graph G 

Output: SN Refined ordered partition of graph G  

Begin 

   1. Compute V N  V1, V2 ... Vn the initial partition according     

to definition 5 

   2. For each cell Vi Vɴ do s.t |Vi | >f 

 For each v Vɴi  do   

             Compute Triv and Dualv(definition 7) 

3. Let Vik be the sub partition of Vi 

Refine Vi  into Vi  NVi1, Vi2 ... Vij s.t  uᶅ, v VɴiT(u) = T(v) 

4. For each  Vij do  

    if |Vij| >f 

 S SN V᷾ij 

    Else If|Vij| <f 

Refine Vi  into  Vi  NVi1, Vi2 ... Vij s.t  uᶅ, v VɴiD(u)= 

D(v)S SN V᷾ij 

End 
Initially, the algorithm starts by forming an equitable 

ordered partition of vertices according to the definition 5, 

thereby extracting all the label and degree information. In 

order to find symmetrical vertices other graph theoretical 

information such as degree of adjacent vertices and labels 

of adjacent vertices and edges are exploited. For each 

vertex v in the cell Vi triple is calculated. These vertices are 

then split into groups of equal triples or duals according to 

the symmetry present, forming vertex orbits Vij. The process 

is iterated for each cell Vi of the initial partition V.  

partition() algorithm eliminates the cells that do not support 

the frequency threshold since according to the anti-
monotone property, their extensions are also infrequent. 

Finally, the partition S, returned by this refinement 

procedure contains the vertices of resultant vertex orbits 

that will become basic subgraphs and can be further 

extendible. At this position a subgraph of a vertex i.e. a 

vertex along with its adjacent vertices in each orbit will 

return a kind of subgraph. 

C. Candidate Generation and Extension 

The algorithm generates candidate subgraphs by 

extending a frequent subgraph with its frequent children 

subgraphs. In the candidate generation process, the 
subgraph associated with a node has been discovered if the 

node has been identified as frequent, and all subgraphs that 

its descendent frequent nodes represent must have been 

discovered too. This process of identifying frequent nodes 

with their associated substructure is algorithmised in the 

next section. 

Algorithm: candgextn(C) 

Input:    A candidate set C 

Output:  The frequent subgraphs of G 

Begin 

1. for each vertex v Cɴ do 

extN  sg(v)  //a subgraph of vertex v in the candidate set 

C 

  mark v visited 

2. for each vertex v Cɴ do 

      find Adj(v) sNet of adjacent vertices of v 
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          Repeat  

  if (Adji Sɴi\C ) and ( vertex i unvisited ) 

  ext N  ext <> sg(i)                       

  mark vertex i visited 

  else   

   ext N  ext <> e(v,i) 

   mark vertex i visited 

        until no more vertices to visit 

3.     return ext 

End 

In the proposed approach, the subgraph enumeration is 

carried out by extending the previously enumerated 
subgraph with newly identified extendible frequent 

subgraph. The input to this algorithm set Si contains only 

the vertices which are symmetrical according to the 

definition 6 and frequent. So each vertex v of the set Si (i.e 

the element of frequent set) can be associated to a small 

subgraph with its adjacent vertices. To extend the subgraph, 

now check the signature of its first adjacent vertex with 

other vertices first adjacent vertex. If they are same then 

connect the vertex v to the subgraph of first adjacent vertex 

v1. Repeat this procedure until no more matching’s found or 

all the vertices are visited. Execute this procedure 
recursively for the next level adjacent vertices also if the 

extensions are possible to further extend the subgraphs. 

This algorithm will return the frequent subgraphs that can 

be enumerated from each vertex orbit. 

D. Frequency Count 

There are two things in candidate generation process 

explained in the above section. One is selection of 

candidate seeds and the other is frequency evaluation of 

candidate subgraphs. The associated subgraphs of frequent 

vertices in an orbit are the first level of frequent subgraphs 

and candidates that are to be enumerated.  The vertices in 

an orbit could be frequent if the size of the orbit is greater 
than threshold frequency. Based on symmetry property, the 

frequency computation using isomorphism is pruned. 

Coming to second step, the extension of candidates is also 

carried out if their siblings are also frequent. But we have to 

check the occurrence of each extended subgraph type. 

There we need isomorphism testing. When compared with 

other algorithms, generated candidate subgraphs are 

promising frequent subgraphs. The only requirement for 

frequency checking is type checking   the candidate 

subgraph is constructed by extending a parent subgraph 

with one frequent sibling vertex associated subgraph. It may 
be a single edge or it may be another subgraph. Since the 

children are also frequent, the associated subgraph can be 

added to generate new candidate. But extending one of a 

child of all candidate subgraphs may not result same new 

subgraph. At this point we may require isomorphism 

testing. 

III. EXPERIMENTAL EVALUATION 

The performance of optimized candidate generation for 

Frequent SubGraphs in a Single Graph (FSSG) is evaluated 

in this section and it is extended version of[18]. Three 

standard data samples are employed to perform 

experimentation.  From these, aviation graph is very large 

and sparse which have number of distinct node labels. 
Other two data sets are from protein interactions which 

exhibit high symmetry in their nature. A brief description of 

datasets is given below. 

Aviation data[11]-The aviation dataset is obtained from 

SUBDUE downloads. This dataset contains a list of records 

extracted from the aviation safety reporting system 

database. Each record corresponds to an event and nodes 

represents the events that caused some damage (and are 

labelled with the ids of the event) while the information 

regarding events represents edges. Aviation consists of 

100K vertices and 133K edges.  The Aviation graph has on 

average one edge per node, thus, it is very sparse.  
Protein-protein interaction data of Saccharomyces 

cerevisiae obtained by Database of Interacting Protein 

(DIP) [12] for the experimental analysis. They provide a set 

of data that is experimentally determined protein 

interactions. It contains 1274 protein nodes and 3222 

interactions between proteins randomly selected from data 

set. Each node corresponds to a type of protein or one of its 

main property and an edge represents the interaction 

between them. For some of interactions, protein structure is 

also implemented as we are retrieving based on the 

symmetries. 
Another protein data set is from DIP[13]. It is a well 

maintained collection of various molecules. Nodes may be 

proteins and these proteins are extended with their original 

structure. It consists of 1178 proteins that are divided into 

691 enzymes and 487 non-enzymes. Average vertices per 

graph are 285 and edges are 715. Different vertex labels 

available are 82. 

The performance of proposed algorithm(fssg) with its 

variation(fssg-l) based on only labels(dual) on above 

mentioned datasets in comparison with the implementation 

of existing approach SIGRAM[6] named gns  is presented 

below. Other existing algorithms employ approximate 
matching, sampling approach etc to retrieve patterns. The 

performance is compared in terms of (a) execution time to 

compute frequent graphs with respect to threshold and (b) 

number of frequent subgraphs found. 

Fig. 3 shows the performance of algorithms with 

respect to frequency threshold and time for different data 

sets. In general the execution time required to generate 

frequent subgraphs at low threshold is exponential when 

compare with the time required at high threshold. This is 

because of the number of frequent subgraphs growing 

exponentially as the threshold decreases. So that the 
required time to execute also increases. The algorithm 

shows linear increase in execution time against threshold as 

it identifies the frequency at the time of partitioning. For 

other algorithms, the rate of increase in runtime is 

exponential when the frequency threshold decreases. Unlike 

other algorithms, the proposed algorithm does not need to 

generate all intermediate subgraphs. Consequently, the 

computation required to perform isomorphism testing for all 

intermediates is pruned, thus, it is efficient.   
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(a) Performance on aviation data 

 

 
(b) Performance on chemical data 

 

 
 

(c) Performance on protein interaction data  

 

Fig. 3. Performance evaluation of algorithm 

 

Frequency threshold: By observing the results, the 

support threshold plays key role to determine frequent 

subgraphs. As the threshold value decreases, there are an 

exponential number of candidate subgraphs that leads to 

exponential runtime. An efficient algorithm should be able 

to solve problem for lower threshold values in an effective 

execution time. 
Results indicate that the proposed algorithm execution 

time increases linearly with the decrease in the frequency 

threshold   in all three data sets, aviation, protein interaction 

and chemical data. But at higher threshold, the algorithm 

takes more time when compared with others. The reason 

behind it is the algorithm performs partitioning. Partitioning 

computation requires certain time irrespective of threshold 

that leads to good performance in lower threshold and 
general performance at higher thresholds. 

Symmetry: The proposed algorithm accomplishes 

mining frequent subgraphs by exploiting the symmetry 

properties present in the given graph. Consequently, the 

proposed algorithm performs well for graphs that have 

symmetry. For protein interaction and chemical set the 

performance is good when compared to aviation data with 

respect to other algorithms as those two data sets contain 

high symmetry in a graph. Actually, traditional algorithms 

suffer to generate candidates for symmetrical graphs 

whereas fssg performs well. 

 
 

(a) Frequency of subgraphs in aviation data 

 

 
 

(b) Frequency of subgraphs in chemical data 
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(c) Frequency of subgraphs in Protein Interaction data 

Fig. 4. frequency of subgraphs 

Coming to the number of frequent graphs generated 
during the process, all algorithms shown nearly similar 

performance except small variations bcz of the process 

adopted to generate frequent graphs. The proposed fssg 

algorithm allows subgraphs with a single vertex or single 

edge overlapping in candidate subgraphs generation where 

as other algorithms are not. And it may show the slight 

difference in the size of frequent subgraph also. 

 

 

IV. RELATED WORK 

One of the first frequent substructure detection 

algorithms that fall under the single input graph category, 

was SUBDUE, an approximate and greedy search algorithm 

proposed by Cook and Holder [14]. SUBDUE finds 

repetitive patterns from the graph data by using background 
knowledge and identifies patterns of the compressed input 

graph by employing the Minimum Description Length 

concept introduced by Rissanen [15]. The system discovers 

substructures that compress the original data by maximum. 

As a side effect it can build a concept hierarchy in the input 

data based on the substructures. The method has been 

successfully applied to chemical compounds data, CAD 

circuits etc. This algorithm is incomplete in terms of 

retrieving all frequent subgraphs.  Later, Gb-Subdue and 

Db-Subdue algorithms have been proposed to address the 

shortcomings of Subdue algorithm. 
SIGRAM[6] is another algorithm proposed by 

Kuramochi and Karypis that mines frequent subgraphs in a 

labelled, sparse and single large graph. They proposed 

HSIGRAM and VSIGRAM algorithms to find frequent 

subgraphs in breadth first and depth first manner. In both 

algorithms apriori principle is adopted to generate the 

candidate subgraphs and MIS metric to determine edge-

disjoint embeddings of a graph. SIGRAM needs to 

enumerate all embedded subgraphs and it is expensive as 

the computation of Maximum Independent Set is NP-hard. 

The same authors developed GREW [7], a heuristic 

approach that find long vertex-disjoint embeddings in a 
large graph.  It is able to identify multiple patterns 

concurrently by employing heuristics and maintains 

location of identified frequent subgraph by rewriting the 
given graph. But it is unable to identify all frequent 

patterns.  Another frequent subgraph mining algorithm 

GRAMI[8] proposed by Mohammed at el, identifies 

minimal set of subgraphs that satisfy threshold and avoids 

enumeration of all frequent subgraphs. GRAMI generalizes 

the concept of frequent pattern mining by allowing 

distance-constrained paths in the patterns. He mapped the 

problem of subgraph isomorphism to a CSP problem and 

solved CSP problem to find frequent subgraphs. Zhou and 

Holder [9] proposed a random sampling approach for very 

large graphs that don’t fit in memory. They provided a 

sampling method called random areas selection sampling to 
identify frequent subgraphs efficiently in a single large 

graph. Other works have been proposed like NODAR[16] 

and G-Miner[17] based on the pattern growth approach, 

Although these approaches mine completely, the discovered 

subgraphs are semantically very complex and require high 

consumption in terms of time and computing resources. 
 

V. CONCLUSION 

An algorithm to provide an efficient and fast 

computational approach to generate candidate subgraphs in 

a large graph using invariants of a graph is presented in this 

paper. The proposed algorithm achieves the specified 
outcome by exploiting the symmetries present in a graph 

and make use of them to generate candidate subgraphs and 

to reduce isomorphism testing. This algorithm performs 

partitioning based on signature identifies the symmetries 

present in a graph and make available to enumerate frequent 

subgraphs faster than existing techniques. The obtained 

experimental results confirmed the effectiveness of the 

proposed algorithm.  This algorithm can also be applied to 

search structures in graph data sets for general applications. 

The algorithm can also be extended to find frequent 

subgraphs for unlabelled graphs. 
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