
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 198 | P a g e

Optimized Candidate Generation for Frequent

Subgraphs in a Single Graph

D.Kavitha 1 V. Kamakshi Prasad2 3J.V.R. Murthy
1SrAssistant Professor Professor(ComputerScience& Engineering) Professor
PVPSIT &Director of Evaluation Dept of Computer Science,
Vijayawada JNTUH, HYD, Telangana J.N.T.U Kakinada, Kakinada
1dkavithad29@gmail.com, 2kamakshiprasad@jntuh.ac.in, 3mjonnalagedda@gmail.com

Abstract: Mining frequent subgraphs from graph databases

is a basic task with broad applications. Frequent subgraph

mining is defined as finding all subgraphs that appear more

than specified threshold value. It consists of mainly, two

steps, candidate generation and frequency calculation. In
Candidate generation step, most of the existing work starts

with a frequent edge or vertex to generate frequent

candidate patterns. This process is not scalable due to

exponential number of candidate patterns generation. In this

paper, we present an optimized algorithm to generate

candidate patterns for mining frequent patterns from a large

single graph. The proposed algorithm starts and extends

candidates with frequent subgraphs. The proposed

algorithm uses graph invariant properties and symmetries

present in a graph to generate candidate subgraphs thus

reducing generation of enormous amount of candidate

subgraphs. Subgraphs are extended by adding another

frequent subgraph determined by the symmetry mapping of

subgraph there by reduces the complexities involved in

candidate generation and frequency counting. An evaluation

study on datasets explores the strengths and limitations of

the proposed work. To the best of our knowledge, this is an

optimized approach to generate candidate subgraphs

directly using invariant properties.

Keywords: Graph mining, frequent pattern, candidate

generation, partitioning, graph invariants, symmetry

I. INTRODUCTION

Mining frequent graph patterns is a well-studied

problem in graph mining to mine and analyse data in

applications such as chemical compounds[1], protein

interactions [2], social networks [3] and web interactions
[4]. Frequent subgraphs are also play a critical role to

perform other mining tasks such as indexing, clustering and

classification. Frequent subgraph mining [5] problem can

be defined as finding a set of frequent subgraphs from a set

of graphs in a graph database or from a large single graph

for a given threshold. In this paper, a single graph scenario

is considered and a subgraph is said to be frequent if it

appears at least T times in graph.

The difficulty in frequent subgraph mining algorithms

lies in candidate generation and calculating the support of

subgraphs. Designing algorithms is a computationally

challenging and data intensive task to mine frequent

subgraphs from a large graph. It is due to the (a)size of the
graph and (b)the enumerated subgraph space increases in

exponential with the size of graph when finding frequent

patterns. In recent years, several approaches are developed

to detect patterns in a large graph [6,7,8,9,10]. In general,

these algorithms start with a frequent edge or vertex and

extend the graph by adding a new edge or by adding a new

vertex to the existing graph recursively until all frequent

subgraphs are discovered. However the number of

subgraphs generated in mining process is exponential with

the size of graph.

Along with the above issues, one fundamental problem

that needs to consider in single large graph is overlapping
of subgraphs shown in Figure 1. In general, one can

consider two subgraphs as different if they differ just by a

single edge. As a result we may find number of overlapped

subgraphs as candidates. On the other hand, two subgraphs

are different if they don’t share any or just by sharing single

edge or node. A critical step in obtaining such no

overlapping or minimum overlapping frequent subgraphs is

to find maximum common subgraph or maximum

independent set which itself is NP-complete.

 (a) (b)

 (c)

mailto:dkavithad29@gmail.com
mailto:kamakshiprasad@jntuh.ac.in
mailto:mjonnalagedda@gmail.com

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 199 | P a g e

Fig. 1. Frequent subgraphs in a single graph. (a) Graph (b)Subgraphs in a

graph (c) Subgraphs with maximum and minimum overlapping.

In this paper, we propose an optimized algorithm to

generate candidate subgraphs based on the symmetries

present in a graph. This algorithm starts candidate

generation with a frequent subgraph contrasting with other

algorithms which start with a frequent vertex or edge. It

generates candidate subgraphs with minimal overlapping

subgraphs and avoids enumeration of all subgraphs in

candidate generation. The algorithm uses symmetries

present in a graph to generate candidate subgraphs. Unlike
most algorithms, this algorithm extends candidates by

adding another frequent candidate subgraph determined by

the symmetry mapping of subgraph.

A. Our Approach

Fig. 2 depicts the outline of our approach. At first,

partition the vertices of graph by identifying symmetries

present(vertex triples) in the graph using graph invariants. If

the size of a part is more than specified threshold, generate

1st level candidates by enumerating the associated graph of

each vertex in the part. Then apply subgraph extension
algorithm to find frequent candidates. If the part size is less

than threshold support, then identify symmetries using

vertex dual approach, label based candidate enumeration to

generate frequent candidates. Adjacent list is used to

represent graphs which ease the traversal of graph.

Subsequent sections explain the proposed algorithm in

detail.

Fig. 2 Outline of Framework

With this approach, firstly, we address the issue of
scalability and complexity during candidate generation.

Secondly, isomorphism is almost avoided which is required

in frequency counting and duplicate candidate

identification.

The rest of paper is organized as follows. Section II

defines the preliminary concepts and problem formulation.

Section III discusses the proposed framework for frequent

subgraph mining in a single large graph. We study an

optimized approach of candidate generation using graph

invariants. In turn using them to find frequent patterns.

Section IV presents experimental evaluation. Section V

discusses the related work and Section VI concludes the

paper.
I. PRELIMINARIES

Definition1: A labeled graph is defined as G = (V, E, L, l),

where V is a set of vertices, ὉṖὠ ὠis a set of edges, L is

a set of labels, and l is a function that gives a unique label to

each vertex of G.

Definition2: Subgraph: A graph g=(V', E', L', l') is a

subgraph of another graph G=(V, E, L, l) iff V'Ṗ V, and E'Ṗ

E (᷈(v1, v2) ɴE' → v1, v2 ɴV')and it holds that(lbl(u) = lbl'

(μ(u))) ᷈(lbl(v) = lbl'(μ(v))) ᷈(lbl(u, v) = lbl'(μ(u), μ(v))).
In other words, the labels for each corresponding edge as

well as the labels of edge’s end points i.e labels of vertices

are to be identical. g Ṗ G denotes that g is a subgraph of G.

Definition3: Subgraph Isomorphism: For two labeled

graphs G and H, a subgraph isomorphism is an injection f:

V(G) → V(H)such that vᶅ Vɴ(G), L(v) = L'(f (v)) and

(ᶅό,v) ɴE(G)ᵾ(f(ό), f(v)) ɴE(H) and L(ό, v) = L'(f (ό), f

(v)) where L and L' are labels of G and H respectively. This
mapping preserves labels on the vertices and edges.

As we are considering single graph setting as input, the

problem formulation for finding frequent subgraphs in a

single graph setting is defined as follows:

Definition4: Frequent Subgraph: Given a graph G and a

frequency threshold T, a subgraph Gi, with an observed

support f is frequent if and only if f ≥T

The storage order of vertices in adjacency list is defined as

follows:

Definition 5: Vertex order: For a vertex v, let A be the set

of m adjacent vertices u1, u2,…, um, the order of vertices u

are, which satisfies the following criteria:

(1) For each uk ɴA, lbl(uk) ≥ lbl(u(k+1)), ᶅk, 1 ≤ k ≤ m

(2) For each uk ɴ A, deg(uk) ≤ deg(u(k+1)), Ὧᶅȟρ Ë
Î ÉÆÆ lbl(uk)= lbl(u(k+1))

(3) For each uk ɴ A, lbl(u1, v) ≤ l(u2, v), Ὧᶅȟρ Ë
Î ÉÆÆ lbl(uk)= lbl(u(k+1))

Definition 6: an ordered partition Ѵ is a sequence {V1,

V2,…, Vp} of non-empty subsets of V such that{V1, V2,…,
Vp} is a partition of V. The subsets V1, V2,…, Vp are called

cells of Ѵ. A trivial cell is with size one and discrete

partition has only trivial cells. While the unit partition has

only one cell and refers to complete symmetric graph. An

ordered partition is an equitable ordered partition iff the

vertices are partitioned based on the definition 5. In a

regular graph the unit partition is equitable.

Definition 7: Vertex triple: For a vertex v with m adjacent

vertices u1, u2,…, um, vertex triple T(v)is a string defined as:

Tdv +Tlv +Tev where “+” is string concatenation, and which

satisfies the following criteria:

(1) For each v ɴ A, Tlv =(l(u1) + l(u2) +… +l(um))., where

l(uk) ≤ l(u(k+1)), for all k, 1 ≤ k ≤ m

(2) For each v ɴ A, Tdv =(d(u1), d(u2),… d(um)) where

d(uk) ≥ d(u(k+1)), for all k, 1 ≤ k ≤ m – 1 and l(uk)≤

l(u(k+1)), for all k, 1 ≤ k ≤ m

https://xlinux.nist.gov/dads/HTML/graph.html

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 200 | P a g e

(3) For each v ɴ A, a sequence Tev=(l(u1, v) + l(u2, v) +…

 +l(um, v)) where ui is the in the order of lv.
Vertex dual D(v)is a string defined as: Tlv +Tev which is

composed with 1 and 3 of above.

Definition 8: The symmetry group of G denoted by

Sym(G)is a set of symmetries of G forms a group under

functional composition. A symmetry of graph G is a

permutation of G's vertices that preserves G's edge relation,

i.e., G' = G. The Aut(G) of a graph G is the set of all

automorphisms of G with permutation composition as

group operation.

Lemma1: Given two vertices v1 and v2 with their triples

T(v1) and T(v2) of a labeled graph G, v1 is symmetric to v2

if and only if T(v1) = T(v2).

Lemma2: Given two vertices v1 and v2 with their duals D(v1)

and D(v2) of a labeled graph G, v1 is symmetric to v2 with

their partial associated graph if and only if D(v1) = D(v2).

As these vertices are symmetrical, the associated

subgraph of a vertex with its adjacent vertices is also

symmetrical. This symmetry property of vertices can be

used to enumerate subgraphs just by connecting an edge

between subgraphs of vertices. By this Lemma 1 and

Lemma 2 the problem of mining frequent symmetrical

nodes is equivalent to mining their corresponding subgraphs

consequently candidate subgraphs to enumerate frequent
subgraphs.

II. FREQUENT PATTERN MINING

The implementation of finding frequent subgraphs

algorithm is as follows: (i)The algorithm starts by executing

partition() algorithm that partition the set of vertices V of

graph G into parts and are further refined into orbits based

on the symmetry of vertices which have vertex transitive

property. This algorithm is further explained. (ii) Find

vertex orbits whose |Sk|>f and store all associated
subgraphs of vertices as primary candidates. Here the

subgraph associated with each vertex of an orbit becomes

the candidate subgraph. (iii) These candidate subgraphs are

further extended by candgextn() algorithm to enumerate

frequent subgraphs. Finally subgraph extension algorithm

candgextn() is recursively executed to find all the frequent

subgraphs.

A. Frequent Mining Framework

Algorithm: Frequent Subgraph Mining

Input: A graph G and frequency threshold f

Output: result N The frequent subgraphs of G
Begin

1. Obtain equitable ordered partition of the vertices

V of a graph G. S N partition(V(G))

 S N S1, S2, … Sn

2. For each vertex orbit Sk ɴ S do

if |Sk|>f then

 result N gi of v Sɴk

3. result N result U candgextn(Sk)
End

B. Partitioning

Algorithm: partition()

Input: V AN set of vertices of graph G

Output: SN Refined ordered partition of graph G

Begin

 1. Compute V N V1, V2 ... Vn the initial partition according

to definition 5

 2. For each cell Vi Vɴ do s.t |Vi | >f

 For each v Vɴi do

 Compute Triv and Dualv(definition 7)

3. Let Vik be the sub partition of Vi

Refine Vi into Vi NVi1, Vi2 ... Vij s.t uᶅ, v VɴiT(u) = T(v)

4. For each Vij do

 if |Vij| >f

 S SN V᷾ij

 Else If|Vij| <f

Refine Vi into Vi NVi1, Vi2 ... Vij s.t uᶅ, v VɴiD(u)=

D(v)S SN V᷾ij

End
Initially, the algorithm starts by forming an equitable

ordered partition of vertices according to the definition 5,

thereby extracting all the label and degree information. In

order to find symmetrical vertices other graph theoretical

information such as degree of adjacent vertices and labels

of adjacent vertices and edges are exploited. For each

vertex v in the cell Vi triple is calculated. These vertices are

then split into groups of equal triples or duals according to

the symmetry present, forming vertex orbits Vij. The process

is iterated for each cell Vi of the initial partition V.

partition() algorithm eliminates the cells that do not support

the frequency threshold since according to the anti-
monotone property, their extensions are also infrequent.

Finally, the partition S, returned by this refinement

procedure contains the vertices of resultant vertex orbits

that will become basic subgraphs and can be further

extendible. At this position a subgraph of a vertex i.e. a

vertex along with its adjacent vertices in each orbit will

return a kind of subgraph.

C. Candidate Generation and Extension

The algorithm generates candidate subgraphs by

extending a frequent subgraph with its frequent children

subgraphs. In the candidate generation process, the
subgraph associated with a node has been discovered if the

node has been identified as frequent, and all subgraphs that

its descendent frequent nodes represent must have been

discovered too. This process of identifying frequent nodes

with their associated substructure is algorithmised in the

next section.

Algorithm: candgextn(C)

Input: A candidate set C

Output: The frequent subgraphs of G

Begin

1. for each vertex v Cɴ do

extN sg(v) //a subgraph of vertex v in the candidate set

C

 mark v visited

2. for each vertex v Cɴ do

 find Adj(v) sNet of adjacent vertices of v

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 201 | P a g e

 Repeat

 if (Adji Sɴi\C) and (vertex i unvisited)

 ext N ext <> sg(i)

 mark vertex i visited

 else

 ext N ext <> e(v,i)

 mark vertex i visited

 until no more vertices to visit

3. return ext

End

In the proposed approach, the subgraph enumeration is

carried out by extending the previously enumerated
subgraph with newly identified extendible frequent

subgraph. The input to this algorithm set Si contains only

the vertices which are symmetrical according to the

definition 6 and frequent. So each vertex v of the set Si (i.e

the element of frequent set) can be associated to a small

subgraph with its adjacent vertices. To extend the subgraph,

now check the signature of its first adjacent vertex with

other vertices first adjacent vertex. If they are same then

connect the vertex v to the subgraph of first adjacent vertex

v1. Repeat this procedure until no more matching’s found or

all the vertices are visited. Execute this procedure
recursively for the next level adjacent vertices also if the

extensions are possible to further extend the subgraphs.

This algorithm will return the frequent subgraphs that can

be enumerated from each vertex orbit.

D. Frequency Count

There are two things in candidate generation process

explained in the above section. One is selection of

candidate seeds and the other is frequency evaluation of

candidate subgraphs. The associated subgraphs of frequent

vertices in an orbit are the first level of frequent subgraphs

and candidates that are to be enumerated. The vertices in

an orbit could be frequent if the size of the orbit is greater
than threshold frequency. Based on symmetry property, the

frequency computation using isomorphism is pruned.

Coming to second step, the extension of candidates is also

carried out if their siblings are also frequent. But we have to

check the occurrence of each extended subgraph type.

There we need isomorphism testing. When compared with

other algorithms, generated candidate subgraphs are

promising frequent subgraphs. The only requirement for

frequency checking is type checking the candidate

subgraph is constructed by extending a parent subgraph

with one frequent sibling vertex associated subgraph. It may
be a single edge or it may be another subgraph. Since the

children are also frequent, the associated subgraph can be

added to generate new candidate. But extending one of a

child of all candidate subgraphs may not result same new

subgraph. At this point we may require isomorphism

testing.

III. EXPERIMENTAL EVALUATION

The performance of optimized candidate generation for

Frequent SubGraphs in a Single Graph (FSSG) is evaluated

in this section and it is extended version of[18]. Three

standard data samples are employed to perform

experimentation. From these, aviation graph is very large

and sparse which have number of distinct node labels.
Other two data sets are from protein interactions which

exhibit high symmetry in their nature. A brief description of

datasets is given below.

Aviation data[11]-The aviation dataset is obtained from

SUBDUE downloads. This dataset contains a list of records

extracted from the aviation safety reporting system

database. Each record corresponds to an event and nodes

represents the events that caused some damage (and are

labelled with the ids of the event) while the information

regarding events represents edges. Aviation consists of

100K vertices and 133K edges. The Aviation graph has on

average one edge per node, thus, it is very sparse.
Protein-protein interaction data of Saccharomyces

cerevisiae obtained by Database of Interacting Protein

(DIP) [12] for the experimental analysis. They provide a set

of data that is experimentally determined protein

interactions. It contains 1274 protein nodes and 3222

interactions between proteins randomly selected from data

set. Each node corresponds to a type of protein or one of its

main property and an edge represents the interaction

between them. For some of interactions, protein structure is

also implemented as we are retrieving based on the

symmetries.
Another protein data set is from DIP[13]. It is a well

maintained collection of various molecules. Nodes may be

proteins and these proteins are extended with their original

structure. It consists of 1178 proteins that are divided into

691 enzymes and 487 non-enzymes. Average vertices per

graph are 285 and edges are 715. Different vertex labels

available are 82.

The performance of proposed algorithm(fssg) with its

variation(fssg-l) based on only labels(dual) on above

mentioned datasets in comparison with the implementation

of existing approach SIGRAM[6] named gns is presented

below. Other existing algorithms employ approximate
matching, sampling approach etc to retrieve patterns. The

performance is compared in terms of (a) execution time to

compute frequent graphs with respect to threshold and (b)

number of frequent subgraphs found.

Fig. 3 shows the performance of algorithms with

respect to frequency threshold and time for different data

sets. In general the execution time required to generate

frequent subgraphs at low threshold is exponential when

compare with the time required at high threshold. This is

because of the number of frequent subgraphs growing

exponentially as the threshold decreases. So that the
required time to execute also increases. The algorithm

shows linear increase in execution time against threshold as

it identifies the frequency at the time of partitioning. For

other algorithms, the rate of increase in runtime is

exponential when the frequency threshold decreases. Unlike

other algorithms, the proposed algorithm does not need to

generate all intermediate subgraphs. Consequently, the

computation required to perform isomorphism testing for all

intermediates is pruned, thus, it is efficient.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 202 | P a g e

(a) Performance on aviation data

(b) Performance on chemical data

(c) Performance on protein interaction data

Fig. 3. Performance evaluation of algorithm

Frequency threshold: By observing the results, the

support threshold plays key role to determine frequent

subgraphs. As the threshold value decreases, there are an

exponential number of candidate subgraphs that leads to

exponential runtime. An efficient algorithm should be able

to solve problem for lower threshold values in an effective

execution time.
Results indicate that the proposed algorithm execution

time increases linearly with the decrease in the frequency

threshold in all three data sets, aviation, protein interaction

and chemical data. But at higher threshold, the algorithm

takes more time when compared with others. The reason

behind it is the algorithm performs partitioning. Partitioning

computation requires certain time irrespective of threshold

that leads to good performance in lower threshold and
general performance at higher thresholds.

Symmetry: The proposed algorithm accomplishes

mining frequent subgraphs by exploiting the symmetry

properties present in the given graph. Consequently, the

proposed algorithm performs well for graphs that have

symmetry. For protein interaction and chemical set the

performance is good when compared to aviation data with

respect to other algorithms as those two data sets contain

high symmetry in a graph. Actually, traditional algorithms

suffer to generate candidates for symmetrical graphs

whereas fssg performs well.

(a) Frequency of subgraphs in aviation data

(b) Frequency of subgraphs in chemical data

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

500 750 1000 1250 1500 1750 2000

T
im

e
(i

n
 s

e
c
)

Threshold fssg fssg-l gns

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

20 40 60 80 100 120

T
im

e
(i

n
 s

e
c
)

Threshold

fssg fssg-l gns

0

100

200

300

400

500

600

0 200 400 600 800

ti
m

e
(i

n
 s

e
c
)

Threshold

fssg fssg-l gns

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

500 750 1000 1250 1500 1750 2000

F
re

q
u

e
n

c
y

Threshold

fssg fssg-l gns

0

50

100

150

200

250

0 100 200 300 400 500 600

F
re

q
u

e
n

c
y

Threshold

fssg fssg-l gns

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 203 | P a g e

(c) Frequency of subgraphs in Protein Interaction data

Fig. 4. frequency of subgraphs

Coming to the number of frequent graphs generated
during the process, all algorithms shown nearly similar

performance except small variations bcz of the process

adopted to generate frequent graphs. The proposed fssg

algorithm allows subgraphs with a single vertex or single

edge overlapping in candidate subgraphs generation where

as other algorithms are not. And it may show the slight

difference in the size of frequent subgraph also.

IV. RELATED WORK

One of the first frequent substructure detection

algorithms that fall under the single input graph category,

was SUBDUE, an approximate and greedy search algorithm

proposed by Cook and Holder [14]. SUBDUE finds

repetitive patterns from the graph data by using background
knowledge and identifies patterns of the compressed input

graph by employing the Minimum Description Length

concept introduced by Rissanen [15]. The system discovers

substructures that compress the original data by maximum.

As a side effect it can build a concept hierarchy in the input

data based on the substructures. The method has been

successfully applied to chemical compounds data, CAD

circuits etc. This algorithm is incomplete in terms of

retrieving all frequent subgraphs. Later, Gb-Subdue and

Db-Subdue algorithms have been proposed to address the

shortcomings of Subdue algorithm.
SIGRAM[6] is another algorithm proposed by

Kuramochi and Karypis that mines frequent subgraphs in a

labelled, sparse and single large graph. They proposed

HSIGRAM and VSIGRAM algorithms to find frequent

subgraphs in breadth first and depth first manner. In both

algorithms apriori principle is adopted to generate the

candidate subgraphs and MIS metric to determine edge-

disjoint embeddings of a graph. SIGRAM needs to

enumerate all embedded subgraphs and it is expensive as

the computation of Maximum Independent Set is NP-hard.

The same authors developed GREW [7], a heuristic

approach that find long vertex-disjoint embeddings in a
large graph. It is able to identify multiple patterns

concurrently by employing heuristics and maintains

location of identified frequent subgraph by rewriting the
given graph. But it is unable to identify all frequent

patterns. Another frequent subgraph mining algorithm

GRAMI[8] proposed by Mohammed at el, identifies

minimal set of subgraphs that satisfy threshold and avoids

enumeration of all frequent subgraphs. GRAMI generalizes

the concept of frequent pattern mining by allowing

distance-constrained paths in the patterns. He mapped the

problem of subgraph isomorphism to a CSP problem and

solved CSP problem to find frequent subgraphs. Zhou and

Holder [9] proposed a random sampling approach for very

large graphs that don’t fit in memory. They provided a

sampling method called random areas selection sampling to
identify frequent subgraphs efficiently in a single large

graph. Other works have been proposed like NODAR[16]

and G-Miner[17] based on the pattern growth approach,

Although these approaches mine completely, the discovered

subgraphs are semantically very complex and require high

consumption in terms of time and computing resources.

V. CONCLUSION

An algorithm to provide an efficient and fast

computational approach to generate candidate subgraphs in

a large graph using invariants of a graph is presented in this

paper. The proposed algorithm achieves the specified
outcome by exploiting the symmetries present in a graph

and make use of them to generate candidate subgraphs and

to reduce isomorphism testing. This algorithm performs

partitioning based on signature identifies the symmetries

present in a graph and make available to enumerate frequent

subgraphs faster than existing techniques. The obtained

experimental results confirmed the effectiveness of the

proposed algorithm. This algorithm can also be applied to

search structures in graph data sets for general applications.

The algorithm can also be extended to find frequent

subgraphs for unlabelled graphs.

VI. REFERENCES

[1] M. Deshpande, M. Kuramochi, N. Wale, and G.

Karypis. Frequent substructure-based approaches for

classifying chemical compounds. IEEE Transactions
on Knowledge and Data Engineering 17(18):1036–

1050, 2005

[2] Taewook kim, Meijing Li, Keun Ho Ryu and jungpil

Shin. Prediction of Protein Function from Protein-

Protein Interaction Network by weighted Graph

Mining,4th International Conference on

BioInformatics and Biomedical

technology,IPCBEE,vol29,2012.

[3] Jiang C., Coenen F., Zito M. Finding Frequent

Subgraphs in Longitudinal Social Network Data Using

a Weighted Graph Mining Approach. In: Cao L., Feng
Y., Zhong J. (eds) Advanced Data Mining and

Applications ADMA,Pp.405-416,2010.

[4] Debora Donato, Aristides Gionis. A survey of Graph

Mining for Web Applications. Managing and Mining

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100 120

F
re

q
u

e
n

c
y

Threshold

fssg fssg-l gns

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 204 | P a g e

Graph Data, Advances in Database Systems,Vol 40,

Springer,2010.
[5] A. Inokuchi, T. Washio, and H. Motoda. An apriori-

based algorithm for mining frequent substructures

from graph data. In Proc. 2000 European Symp.

Principle of Data Mining and Knowledge Discovery

(PKDD’00), pages 13–23, 1998.

[6] M. Kuramochi and G.Karypis, Finding frequent

patterns in a large sparse graph. Data Mining.

Knowledge Discovery, 11(3),pp.243–271,2005.

[7] M.Kuramochi and G. Karypis, GREW – a scalable
frequent subgraph discovery algorithm. In Proceedings

of the Fourth IEEE International Conference on Data

Mining (ICDM’04), 2004.

[8] M.Elseidy, E.Abdelhamid,S Skiadopoulos andP. Kalni

s,GraMi: Frequent subgraph and pattern mining in a

single large graph. Proceedings of VLDB

Endowment, 7,pp.517–528, 2014.

[9] R. Zou and L. B. Holder. Frequent subgraph mining

on a single large graph using sampling techniques. In

Proc. of Workshop on Mining and Learning with

Graphs, pages 171–178, 2010.

[10] I. Bordino, D. Donato, A. Gionis, S. Leonardi. Mining
Large Networks with Subgraph Counting. IEEE

ICDM Conference, 2008.

[11] SUBDUE DATABASES: http://ailab.wsu.edu/subdue/

[12] L.Salwinski, C.S. Miller, A.J. Smith, F.K. Pettit, J.U.

Bowie and D. Eisenberg, The database of interacting

proteins: 2004 update. Nucleic Acids Research. 2004,

32: D449-D451

[13] DIP; http://dip.doe-mbi.ucla.edu

[14] J.Cook and L.Holder, Substructure discovery using

minimum description length and background

knowledge. Journal of Artificial Intelligence Research,
1, 231–255, 1994

[15] L.Babia. P.Erdos and S.Selkos.Random Graph

Isomorphism. SIAM Journal of Computing,9(3):628-

635,August,1984.

[16] A. Hellal and L. B. Romdhane, "NODAR: mining

globally distributed substructures from a single labeled

graph," Journal of Intelligent Information Systems,

vol. 40, no. 1, pp. 1-15, 2013

[17] Jianga, H. Xiong, C. Wang and A.-H. Tan, "Mining

globally distributed frequent subgraphs in a single

labeled graph," Data & Knowledge Engineering, vol.

68, no. 10, p. 1034–1058, 2009.
[18] D Kavitha, Kamakshi V Prasad and J V R Murthy.

Finding Frequent Subgraphs in a Single Graph based

on Symmetry. International Journal of Computer

Applications 146(11):5-8, July 2016

http://ailab.wsu.edu/subdue/
http://dip.doe-mbi.ucla.edu/

