
IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 453 | P a g e

Test bench Design for validating Inter Processor

Communication (IPC) in a multi-core SoC
P. Nagabhushan Reddy1, Dr. T. Bhaskara Reddy2

1P. Nagabhushan Reddy, Research Student, RU, Kurnool – 518002
2Professor, Dept of Computer Science. S.K. University. Anantapur-515003

Abstract- Multi-core devices are used in a wide range of

applications including medical, automotive, industrial,

communication infrastructure, graphics and mobile handsets.

Multi-core devices have more than one programmable

processor on the same silicon die.

Applications designed for multi-core device typically require

Inter Processor Communication (IPC) f. IPC is a software

module used for messaging, data transfer and synchronization

among the cores. The number of cores and varying operating

systems across these cores increase the complexity of the IPC.

Testing an IPC module involves creating a multi-core test

framework to execute test scenarios. A test scenario is a set of

execution contexts, each being a thread/process running on a

specific processor executing a sequence of operations. The

purpose of this paper is to explain the design of the multi-core

test framework, its features and challenges during

implementation.

Keywords- Inter Processor Communication (IPC), Test Frame

work, PAL, Shared Memory

I. INTRODUCTION

A. Multi-core device

A multi-core device has more than one programmable

processor (core) on the same silicon die. If all the cores in the

silicon die are same, then the device is called Homogeneous

and if the cores are different it is called Heterogeneous device.

Typically in an application on SoC, ARM is used for overall

system control, user interface etc and DSP is used for

computational intensive tasks like multimedia processing.

Fig.1: Block diagram of a Multi-core SoC (example)

B. Inter processor communication (IPC)

The application programmers require an easier and robust way

to control and communicate with different cores present in the

SoC. At hardware level, the processor cores communicate

among them using different mechanisms like inter-processor

interrupts, shared memory, shared peripherals etc. Usage of

Inter processor interrupts and other mechanisms directly by

the applications running on the main processor is not the right

way to work with multiple cores, as it increases the

complexity of the application manifolds and makes the system

and software prone to bugs.

IPC software module provides a standard way for all the

processors in a SoC to communicate. It provides peer to peer

protocols (for control, streaming, notification etc) for the

communication. Refer Fig.2 for various services offered by

IPC. IPC module abstracts the hardware and provides

different interfaces and features to the application. IPC

module internally uses the hardware mechanisms the device

offers.

Fig.2: Services offered by IPC

With IPC module in place, application writers can focus on

developing the applications rather than spending effort for

developing custom ways to communicate among the cores.

C. Validating the IPC

The IPC software supports various SoCs having different

configurations (numbers of cores, memory, services etc). This

module is used by various customers in different applications

such as wireless, automotive, communication infrastructure,

video etc.

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 454 | P a g e

Validation of IPC software includes creating different

categories of test cases as shown in the figure and which can

be run across multiple platforms and operating systems.

Fig.3: Application usage of IPC

II. LITERATURE REVIEW

The current work done on the test bench for IPC can work in

scenarios where the SoC has only two processors. But if the

number of processors increase, the test bench cannot scale.

III. PROPOSED WORK

Test bench architecture

The following figure represents different modules of the test

bench.

Fig.4: Test-bench architecture

The functionality of each module is explained below:

 Test manager: is instantiated on only one processor. It

has access to the test scripts. Test manager is responsible

for framework initialization, test script parsing,

distribution of the test information to test agents present

on each processor, triggering and monitoring the test

execution and composing the test result.

 Test agent: is instantiated on each of the processors. It is

responsible for taking the processor specific input test

parameters and executing the operations which may

involve creating different execution contexts and

executing specific instructions in each of the context. It

also communicates the result back to the test manager.

 Test case: files contain the actual test logic

implementation for running a test.

 Utilities: contain common modules which can be used by

different test cases. For example log module can be used

as a utility for printing the logs and test information while

executing the test case.

 OSAL: is an abstraction layer for the OS services.

 PAL: helps in abstracting the platform specific code.

 IPC API Abstraction Layer: is an abstraction to the IPC

APIs. The test application will not directly call the IPC

APIs but instead call into this abstraction layer. The

advantage of having this layer is to minimize the changes

to the test code if the IPC APIs or parameters change.

Test execution

The following diagram represents simple test execution flow.

Fig.5: Important blocks of the test framework

The sequence of test execution is split into the following

phases:

(i). Framework Initialization

During this phase, the test manager and test agents are

initialized. The test bench itself is dependent on certain IPC

resources and shared memory. All these resources are

acquired. The system is ready for consuming the test scripts.

(ii).Parsing the test script

Test script contains the test information. It contains the details

regarding the operations that need to be performed on each

processor. The parser module, which is part of the Test

manager, parses the script and collects the information

required for executing the test on each processor. This

information is passed to the respective Test agent.

(iii). Test execution

Once the Test agent receives the test information, the Test

manager instructs all Test agents to start the testing. Test

agents residing on each processor will create the required

contexts and run the test operations as per the test information.

The result is communicated to the Test manager.

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 455 | P a g e

(iv).Test Result

The Test manager collates all information coming from the

Test agents and will present the final test result. After this step

the test manager is ready to execute another test.

(v).Framework exit

This is the final phase. This phase is entered after all the tests

are executed. All the resources acquired for test bench are

released.

IV. RESULT

Here are the improved results w.r.t old test bench and

methodology

Features Old Test Bench New Test

Bench

Execute test

cases between

2 processors

Yes Yes

Can execute

the actual use

cases and

scenario

No Yes

Can run test

scenario

across more

than 2

processors

No Yes

Emulate

Customer use

case

No Yes

Other benefits of the new test framework

A. Ease of test addition and execution

New test cases can be created using the test script. Test code

need not always be changed for executing new test cases. The

test flow will vary based on the sequence of operations and

parameters specified in the test script file.

B. Faster and efficient porting

The test bench architecture enables easy porting of test cases

across different operating system and silicon platforms.

C. Test bench product

The test bench is released as a product to the development

team and the customer. Developers can use the test bench for

regression testing. Customers can use the testbench and

execute the tests on their custom boards and setup. Users can

also add custom test applications to the testbench.

V. CONCLUSION AND IMPROVEMENTS

In this paper we have elaborated the need of inter-process

communication, some of the IPC methods, mechanisms and

their implementation. We have also discussed the reasons on

why it is important to have a solid validation plan for IPC.

Without proper validation, any bug in the IPC will break the

complete system.

The existing test methodology can work only if the SoC has

two processor. As we are moving towards the latest SoCs

having multiple processors (multiple ARM cores and DSP

cores), its important to have the Test bench that is capable of

handling the practical scenarios, scenarios span across

multiple processors and be able to measure the Functionality,

Performance, stability and also the Power of each of the core

and at system level. The new test bench framework we have

proposed address all these requirements and will help the

system developers to effectively validate the IPC and that

inturn helps in less number of issues and improved Time to

Market.

Currently the intermediate logs generated on all the processors

during the test are not routed to a common point. We are

currently working on a solution which can route the log

information to a single processor.

Fault handling and recovery mechanism for the test frame

work needs to be added to make it robust.

Overall, the inter-process communication is great for

introducing reliable communication, maximum performance,

great functionality, application modularity and support and

also secure communication in our multi-process environment.

VI. REFERENCES
[1]. Zoran. S and Madevska. B “Inter-Process Communication,

Analysis, Guidelines And Its Impact On Computer Security”

The 7th International Conference for Informatics and

Information Technology , pp: 46-50, 2010

[2]. Inter Processor Communication training-TI.

https://training.ti.com/system/files/docs/keystone-intro-ipc-

slides.pdf

[3]. Microsoft MSDN library, online material,

http://msdn.microsoft.com.

[4]. N. Lekic ; Z. Mijanovic ; D. Gobovic ; R. Dragovic-Ivanovic

“The simple multiprocessor communication system”

https://ieeexplore.ieee.org/document/1046428

[5]. Dr.Vasuki “Design and Implementation of Multiprocessor

Communication In Embedded Processors for Real Time and

Industrial Automation”

http://www.internationaljournalssrg.org/IJEEE/2014/Volume1-

Issue1/IJEEE-V1I1P104.pdf

[6]. Gregory T. Byrd, Bruce A. Delagi, Michael J. Flynn

“Communication Mechanisms In Shared Memory

Multiprocessors”

http://i.stanford.edu/pub/cstr/reports/csl/tr/94/623/CSL-TR-94-

623.pdf

[7]. P. Nagabhushan Reddy, Dr. T. Bhaskara Reddy, “Latest Power

Management Technologies for Mobile Computing Devices”.

https://training.ti.com/system/files/docs/keystone-intro-ipc-slides.pdf
https://training.ti.com/system/files/docs/keystone-intro-ipc-slides.pdf
http://msdn.microsoft.com/
https://ieeexplore.ieee.org/document/1046428
http://www.internationaljournalssrg.org/IJEEE/2014/Volume1-Issue1/IJEEE-V1I1P104.pdf
http://www.internationaljournalssrg.org/IJEEE/2014/Volume1-Issue1/IJEEE-V1I1P104.pdf
http://i.stanford.edu/pub/cstr/reports/csl/tr/94/623/CSL-TR-94-623.pdf
http://i.stanford.edu/pub/cstr/reports/csl/tr/94/623/CSL-TR-94-623.pdf

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 456 | P a g e

AUTHORS

Nagabhushan Reddy is currently working as Platform

Architect at Intel Technology India Pvt. Ltd. He has been

working on the Power Management (Modern Standby)

Enabling, Debug and Validation Activities on Intel Core

Platforms from last several years. He did his B.Tech in ECE

from S.K.University and Masters from BITS, Pilani. He is

also a Research Student at Rayalaseema University, Kurnool.

He started his career as Product Engineer at Havells India Pvt

Ltd working on the development of Static Energy Meters and

later worked with various companies (across various domains)

Bharat Electronics Ltd (RADAR division), Philips Innovation

Centre (worked on UPNP, DLNA, Car DVD players), Texas

Instruments (Validation-Post Silicion).

Dr.T.BhaskaraReddy is a Professor in the department of

Computer Science and Technology at S.K University,

Anantapur A.P. He holds the post of Deputy Director of

Distance education at S.K.University and He also the CSE

Coordinator of Engineering at S.K.University. He has

completed his M.Sc and Ph.D in computer science from

S.K.University.He has acquired M.Tech from Nagarjuna

University. He has been continuously imparting his knowledge

to several students from the last 17 years. He has published 55

National and International publications. 10 International

conferences. 13 National conferences. One UGC Major

Research Project. Attended several seminars in 3 countries. He

has completed major research project (UGC).

