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Abstract—In this paper, we propose a scheme for
a resilient distributed consensus problem through a
set of trusted nodes within the network. Currently,
algorithms that solve resilient consensus problem de-
mand networks to have high connectivity to overrule
the effects of adversaries, or require nodes to have
access to some non-local information. In our scheme,
we incorporate the notion of trusted nodes to guarantee
distributed consensus despite any number of adversar-
ial attacks, even in sparse networks. A subset of nodes,
which are more secured against the attacks, constitute
a set of trusted nodes. It is shown that the network be-
comes resilient against any number of attacks whenever
the set of trusted nodes form a connected dominating
set within the network. We also study a relationship
between trusted nodes and the network robustness.
Simulations are presented to illustrate and compare our
scheme with the existing ones.

Index Terms—Resilience, consensus, graph robust-
ness, adversary, dominating set.

I. Introduction

In distributed networks, individual nodes interact lo-
cally to accomplish some global objective. Abnormal or
malicious behavior by a subset of nodes can affect the
global behavior, and may prevent the system from achiev-
ing the overall objective. To overcome the adversarial
effects, design and analysis of resilient algorithms for
distributed networks is required, and has been an active
area of research. One of the integral problems in dis-
tributed networks and controls is distributed consensus,
which finds a wide variety of applications in the domain
of distributed optimization, clock synchronization, social
networks, coverage, and formation control to name a few
(see e.g., [1], [2]).

In this paper, we propose a scheme for the distributed
consensus problem that is resilient to an arbitrary number
of attacks. A key object in our scheme is the notion of
trusted nodes, which is a subset of secured nodes deployed
within the network. It is shown that all the normal nodes
successfully achieve consensus within a network, even a
sparse one, whenever trusted nodes form a connected
dominating set within the network.

The issue of agreement among nodes in the presence
of adversaries has been extensively studied in the area of
distributed computing ([3], [4]). In the context of network
control systems, resilient protocols for consensus in the
presence of malicious, byzantine, non-colluding and other

threat models have been studied recently, and it is ob-
served that the resilience of various consensus algorithms
is tied strongly to the underlying topology of networks.

In [5], it is shown that a network needs to be at least
(2F +1)-connected1 to overrule the effects of F malicious
nodes under the local model of communication. Similar
results have been reported in [6], in which algorithms
are presented to identify and detect F byzantine attacks
whenever the underlying graph of the network is at least
(2F +1)-connected, and F non-colluding attacks whenever
it is (F + 1)-connected. Consensus under the generalized
fault model using Iterative Approximate Byzantine Con-
sensus (IABC) algorithm has been reported in [7]. Ad-
versarial Robust Consensus Protocol (ARC-P), proposed
in [8], guarantees consensus in the presence of malicious
and byzantine adversaries in networks with fixed and time-
varying topologies modeled by directed graphs. Recently,
a more generalized form of ARC-P (and other related
algorithms) has been studied in [9], which is known as
the Weighted Mean-Subsequence-Reduced (W-MSR) al-
gorithm. A new notion of robustness is introduced in [9],
which completely characterizes the resilience properties of
W-MSR in terms of the underlying graph structure of the
network.

These algorithms, under certain constraints, ensure con-
sensus in the presence of adversarial nodes, and offer
resilience within networks. However, there are certain lim-
itations to them that become crucial in various practical
scenarios. For instance, these schemes may require indi-
vidual nodes to have a global knowledge of the network,
or some information that is beyond their local neighbor-
hood, for instance as in [5], [6]. Moreover, algorithms that
require only local information by the nodes to update
their states, may pose high connectivity constraints on
the network that are hard to verify. For instance, under
W-MSR algorithm [9] (or ARC-P [8]), to handle F total
attacks, a graph needs to satisfy a certain robustness
property ((F +1,F +1)-robust)[9], [11]. In other words, it
is not possible to make sparse networks (like tree) resilient
against adversarial attacks using these protocols.

In this paper, we offer a scheme for resilient consensus
in networks (even sparse) in the presence of any number
of adversaries by incorporating the idea of trusted nodes,

1A graph is κ-connected if at least κ vertices are required to be
deleted from the graph to make it disconnected.
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which are the subset of nodes that cannot be compromised
by adversarial attacks. In other words, these are the nodes
with higher security. Similar concept has been used in [10],
in which trusted nodes are incorporated in tree networks.
Simulations in [10] show the usefulness of this concept
for certain cases, although analysis is not provided. Sim-
ilarly, in [12], a two-layer hierarchical framework, which
integrates trust evaluation mechanism for the purpose
of detecting adversaries, is presented. In this paper, we
characterize constraints on trusted nodes to guarantee
distributed consensus in the presence of any number of
adversarial attacks and even for sparse networks.

The rest of the paper is organized as follows: in Section
II, problem formulation is given; resilient consensus pro-
tocol with trusted nodes is presented in Section III, and
analyzed in Section IV, in which constraints on trusted
nodes are stated to ensure consensus. The protocol is
illustrated through examples in Section V. In Section VI,
we comment on the relationship between the notion of
robustness and trusted nodes. The paper is concluded in
Section VII.

II. Problem Formulation

A network of agents is modeled by an undirected graph
G(V,E), in which the vertex set V represents agents and
the edge set E corresponds to the information exchange
among agents. An edge between node i and j is represented
by (i,j) = (j, i). The neighborhood of node i is defined as
N (i) = {j ∈ V : (i,j) ∈ E}, and the closed neighborhood
is N [i] = N (i) ∪ {i}. The cardinality of N (i) is called the
degree of node i.

There are three types of nodes that exist within the
network, normal nodes, trusted nodes, and adversaries, as
defined below. Each node i has a state value at a given time
instant k, denoted by xi(k). This value can be a sensor
measurement, position variable, optimization parameter,
opinion, or any other observation. For simplicity, we as-
sume xi(k) ∈ R. All these results are easily extendable if
xi(k) ∈ Rd, for d > 1.

A. Normal Nodes

All nodes have initial values xi(0)’s, and they update
them by synchronously interacting with their neighbors. In
fact, each node i updates its value according to an update
rule that depends only on the state values of nodes in N [i],
i.e.,

xi(k + 1) = f({xj(k)}), j ∈ N [i] (1)

A normal node, at each time step, computes its value ac-
cording to this pre-defined update law, by receiving values
from its neighbors that might also contain adversaries.
Also, note that a node does not have a knowledge about
the identities of its neighbors except the the trusted nodes.

B. Adversaries and Threat Models

An adversary is a node that does not follow the update
rule (1) to update its state value, and therefore, might

prevent the network from achieving the required objective.
If an adversarial node sends the same value to all of
its neighbors, then it is commonly called a malicious
attack. On the other hand, if a misbehaving node sends
different values to different nodes in the neighborhood, the
term byzantine is typically used. We will call these nodes
collectively as adversaries.

Moreover, the scope of threat is typically defined in
terms of the maximum number of attacks (adversarial
nodes) that can occur within the system. Let F be the
number of maximum attacks, which can occur at nodes
within the network (except the trusted nodes). In the
current literature, resilient consensus protocols require to
have a knowledge of F in some form. One of our objectives
is to ensure the consensus in the presence of adversaries
even if nodes do not have this information.

C. Trusted Nodes

Trusted nodes are the normal nodes that cannot be
compromised by an adversarial attack. It simply means
that attacking these nodes is sufficiently difficult (e.g.
because of their high security investment), and we can
safely assume that they cannot be attacked. Furthermore,
trusted nodes also update their value according to the
update rule (1).

D. Main Objective – Resilient Consensus

The objective is to design an update rule (1) (resilient
consensus protocol) for the normal nodes, a subset of
which consists of trusted nodes, so that they all achieve a
common state value even in the presence of F adversaries,
where F can be any number. In other words, for any
number of adversarial attacks, we want to achieve the
following,

(i) as k → ∞, xi(k) = xj(k) = x for all the normal nodes
i,j.

(ii) Let xmin(0) and xmax(0) be the minimum and
the maximum of the initial values of the normal nodes
respectively, then xmin(0) ≤ xi(k) ≤ xmax(0), for all k and
for any normal node i.

(iii) For any number of adversaries F , determine neces-
sary and sufficient conditions on the number, location and
connectivity of trusted nodes to achieve (i) and (ii).

Conditions (i) and (ii) are referred to as the agree-
ment and safety conditions respectively in [9]. It is to
be mentioned here that existing algorithms for resilient
consensus require the network be highly connected, even
if the number of adversaries is small. Thus, we want to
have a scheme that is resilient even for the networks that
are sparse.

III. Resilient Consensus Algorithm

A. Consensus Algorithm

A wide variety of algorithms exist in literature to
achieve consensus among the nodes in a distributed set
up. Linear consensus protocol has been extensively studied



and adapted in the context of various applications. In its
simplest form, in a network consisting of n nodes, every
node i updates its value according to the following update
rule,

xi(k + 1) =
∑

j∈N [i]

wij(k)xj(k) (2)

Let α ∈ R, and 0 < α < 1, then wij(k) in (2) satisfy
wij(k) ≥ α, ∀j ∈ N [i] and for all times k. Moreover,

n
∑

j=1
wij(k) = 1, ∀i, k. Linear consensus protocol in (2)

has been extensively studied and convergence conditions
have been found for many different types of network
including time-varying, directed, continuous and discrete-
time (e.g., [16], [2]). However, it has also been shown
that (2) is not resilient against adversarial attacks: even a
single misbehaving node can make the network not achieve
consensus, thus leading to the study of resilient consensus
protocols. We present a scheme that guarantees consensus
for any number of adversaries, even in sparse networks,
given a sufficient number of trusted nodes.

B. Resilient Consensus Protocol with Trusted Nodes
(RCP-T)

The algorithm is described as follows:
Step 1: A node i receives state values from its neighbors,

and arrange them as a sorted list.
Step 2: (a) If node i has at least one trusted node in

N [i], then let Ti be the set of trusted nodes in N [i]. If
ti
M and ti

m be the maximum and minimum values in Ti at
time k respectively, then we define ri

M = max
(

xi(k), ti
M

)

,
and ri

m = min
(

xi(k), ti
m

)

. Moreover, let

Ri(k) = {j ∈ N [i] : ri
m ≤ xj(k) ≤ xi

M }

(b) If node i does not have any trusted node in N [i],
then i removes F largest values that are greater than xi(k)
from the sorted list in step 1. If the number of values
that are greater than xi(k) is less than F , then all values
greater than xi(k) are removed from the list. Similarly,
if the number of values smaller than xi(k) is less than
F , i removes all values smaller than xi(k), otherwise F
smallest values are removed from the list. Let Ri(k) be
the set of nodes corresponding to the values that are left
in the updated list.

Step 3: Each normal node i updates its value according
to the following rule,

xi(k + 1) =
∑

j∈Ri(k)

wij(k)xj(k) (3)

Here, wij(k) satisfy the above conditions. It is to be
noted that if every node in the network is connected to
at least one trusted node, then step 2(b) is never needed.
We want to analyze under what conditions on the set of
trusted nodes, RCP-T guarantees consensus even in the
presence of any large number of adversaries.

C. RCP-T and W-MSR Algorithm

If none of the nodes is connected to a trusted node,
then RCP-T is same as the W-MSR algorithm in [9], thus,
RCP-T is different from W-MSR in step 2(a). Moreover,
under the W-MSR algorithm, it is shown in [9] that the
network is resilient against F number of total attacks
if and only if the network satisfies the so called (r,s)-
robustness property with r = s = F + 1. (r,s)-robustness
is defined below.

Definition 3.1: [9] Given a graph G(V,E). Let S ⊆ V ,
and X r

S be the set of vertices in S that are adjacent to at
least r neighbors in (V − S), i.e.,

X r
S = {i ∈ S : | N (i) − S |≥ r}

A graph G(V,E) is said to be (r,s)-robust if for any two
nonempty, disjoint subsets, say S1 and S2, at least one of
the following is true,

(i) | X r
S1

|=| S1 |
(ii) | X r

S2
|=| S2 |

(iii) | X r
S1

| + | X r
S2

| ≥ s

Under the W-MSR algorithm, acquiring resilience
against F adversaries require the network to have a
large connectivity. For instance, a network that is re-
silient against F ≥ 2 adversarial attacks, is at least
(⌈

3(F +1)
2

⌉

− 1
)

-connected. Similarly, a tree network can-

not handle a single attack. Moreover, every normal node
needs to have a correct information of F . Thus, our
objective is to develop a scheme that can make the network
resilient against any number of adversaries, even if the
network is sparse and do not have high connectivity. RCP-
T achieves this objective by introducing the notion of
trusted nodes.

IV. Analysis

In this section, we analyze RCP-T. Let xmin(k) and
xmax(k) be the minimum and maximum values of normal
nodes at time k. Since, a normal node i updates its
value by taking the convex combination of values in Ri(k)
in (3), which lie in the range [xmin(k) xmax(k)], thus
xi(k+1) ∈ [xmin(k) xmax(k)], which implies that condition
(ii) (safety condition) in Section II-D is satisfied.

Next, we need to find out under what constraints, RCP-
T converges. In other words, we have to find out the
necessary and sufficient conditions on the trusted nodes
that guarantee consensus in the presence of any number
of adversaries.

A. Sufficiency Condition on Trusted Nodes for Resilient
Consensus

First, we show that all trusted nodes reach a consensus
under RCP-T if they are connected. Second, every normal
node converges to a value of a trusted node if it is
connected to at least one trusted node. Thus, if every
normal node is connected to at least one trusted node, and
all trusted nodes induce a connected subgraph, RCP-T



converges irrespective of the number of adversarial nodes
present within the network. To prove these statements, we
use the techniques employed in [9].

Lemma 4.1: Under RCP-T, all trusted nodes reach
consensus in the presence of any number of adversarial
nodes, if the set of trusted nodes induce a connected
subgraph.

Proof: Let T be a set of trusted nodes that induce a
connected subgraph. Assume M(k) and m(k) to be the
maximum and minimum values of trusted nodes at time
step k. Since every trusted node updates its value by
taking the convex combination of values in the interval
[m(k) M(k)], both m(k) and M(k) are bounded and mono-
tone functions of time k, with limiting values, say Dm and
DM respectively.

For consensus among trusted nodes, it suffices to show
DM = Dm. Suppose that DM ̸= Dm, then there exists a
constant ϵ0 such that DM − ϵ0 > Dm + ϵ0. Moreover, let
XM (k,ϵℓ) = {i ∈ T : xi(k) > DM − ϵℓ}, and Xm(k,ϵℓ) =
{j ∈ T : xj(k) < Dm − ϵℓ}. Note that XM (k,ϵℓ) and

XM (k,ϵℓ) are disjoint. Fix ϵ < αN

1−αN ϵ0. Let kϵ be such that
M(k) < DM + ϵ and m(k) > Dm − ϵ, ∀ k > kϵ. Now, con-
sider nonempty, disjoint sets XM (kϵ,ϵ0) and Xm(kϵ,ϵ0).
Since, nodes in T induce a connected subgraph, at least
one of the following is always true irrespective of the
number of malicious nodes,

(i) ∃ xi ∈ XM (kϵ,ϵ0) that is connected to some trusted
node in (T − XM (kϵ,ϵ0))

(ii) ∃ xj ∈ Xm(kϵ,ϵ0) that is connected to some trusted
node in (T − Xm(kϵ,ϵ0)).

Without loss of generality, assume that (i) is true. Note
that the maximum value of any node in (T − XM (kϵ,ϵ0)) is
DM − ϵ0, and the maximum value of a node in XM (kϵ,ϵ0)
is M(kϵ). Thus, we get the following

xi(kϵ + 1) ≤ (1 − α)M(kϵ) + α(DM − ϵ0)

≤ (1 − α)(DM + ϵ) + α(DM − ϵ0)

= DM − (αϵ0 − (1 − α)ϵ)

= DM − ϵ1

Here, ϵ1 = αϵ0 − (1 − α)ϵ, and satisfies 0 < ϵ < ϵ1 < ϵ0.
Similarly, if (ii) is true, for some xj ∈ Xm(kϵ,ϵ0), we will
get xj(kϵ + 1) ≥ Dm + ϵ1. Note that | XM (kϵ + 1,ϵ1) |<|
XM (kϵ,ϵ0) | owing to the fact that at least one trusted
node in XM (kϵ,ϵ0) decreases its value to at least DM −ϵ1.
Similarly, | Xm(kϵ + 1,ϵ1) |<| Xm(kϵ,ϵ0) |.

We define ϵℓ recursively as ϵℓ = αϵℓ−1 − (1 − α)ϵ, and
note that ϵℓ−1 < ϵℓ. Repeat the same analysis for time
steps (kϵ + ℓ), until for some ℓ = K, either XM (kϵ +
K,ϵK) = ∅, or Xm(kϵ +K,ϵK) = ∅. Such K exists, as there
are finite number of trusted nodes. Observe that

XM (kϵ + K,ϵK) = ∅ ⇒ xi(kϵ + K) ≤ DM − ϵK , ∀ i ∈ T
Xm(kϵ + K,ϵK) = ∅ ⇒ xi(kϵ + K) ≥ Dm + ϵK , ∀ i ∈ T

Now, if ϵK > 0, we will have a contradiction that the
largest value of any trusted node converges to DM , or the

smallest value converges to Dm. Here, ϵK = αϵK−1 − (1−

α)ϵ, and ϵ = αN

1−αN
ϵ0. It has been shown in [9] (Theorem

1) that this ϵK and ϵ yield ϵK > 0. Thus, we get a
contradiction. Hence, ϵ0 must be 0, and Dm = DM .

Lemma 4.2: Under RCP-T, if a normal node i is con-
nected to at least one trusted node, and the set of trusted
nodes induce a connected subgraph, then xi(k) → D, as
k → ∞, even in the presence of any number of adversary
nodes. Here, D is the limit value of trusted nodes.

Proof: Let T ⊂ V be the set of trusted nodes. Since,
nodes in T are connected, xj ’s are converging, i .e., xj →
D, ∀j ∈ T as per Lemma 4.1. Moreover, let kϵ be such
that D − ϵ < xj(k) < D + ϵ, ∀k > kϵ. Furthermore, let τ
be a trusted node in N [i] that has the minimum value in
N [i]∩T , if xi(kϵ) > D + ϵ. If xi(kϵ) < D − ϵ, then let τ be
a node with the maximum value in N [i]∩T . Without loss
of generality, we assume the former case. Since, normal
node i updates its state by taking the convex combination
of values in the range xi(k) and xτ (k), xi is converging
and a monotone function, and therefore, has a limit X .
We have to show that X = D.

Lets assume that X ̸= D, which implies that X − ϵ0 >
D+ϵ0 for some constant ϵ0. Further, we fix ϵ < α

1−α ϵ0. Let
kϵ be some time such that xτ (k) > D−ϵ and xi(k) < X +ϵ,
for all k > kϵ. Note that such a kϵ exists owing to the con-
vergence of xi. Since, all nodes involved in the computation
of xi(kϵ + 1) have values not greater than xi(kϵ) < X + ϵ.
Also, observe that xτ has a value not greater than X − ϵ0.
Thus, we get

xi(kϵ + 1) < (1 − α)(X + ϵ) + α(X − ϵ0)

= X − αϵ0 + (1 − α)ϵ = X − ϵ1

Thus, xi(kϵ +1) < X − ϵ1, where ϵ1 = αϵ0 − (1−α)ϵ > 0,
with ϵ < α

1−α ϵ0. This contradicts the fact that xi converges
to X , which provides the desired contradiction. Thus, it
must be the case that ϵ0 = 0 and X = D.

Thus, if every normal node is connected to at least
one trusted node and the set of trusted nodes induce a
connected subgraph, consensus will always be achieved
among the normal nodes (including the trusted nodes)
irrespective of the number of malicious attacks. We can
relate these conditions to the notion of connected domi-
nating set of the underlying graph defined as below,

Definition 4.1: Let G(V,E) be an undirected graph. A
set S ⊆ V is a connected dominating set whenever,

(i) For any i ∈ V , there exists some s ∈ S such that
s ∈ N [i].

(ii) The vertex set S induce a connected subgraph.
The cardinality of the minimum connected dominating

set is known as connected domination number, denoted by
γc. Moreover, if a set S ⊆ V satisfies only (i), then it is
called a dominating set of G.

Thus, in a network containing at least γc trusted nodes,
which are arranged to form a connected dominating set,
consensus can always be achieved in the presence of any
number of adversaries. This is useful as the notion of



connected dominating sets has been widely studied in the
graph theory and sensor network literature. Further, we
get a sufficient condition on the number of trusted nodes
required to ensure consensus in the presence of any number
of malicious agents. Thus, using Lemma 4.1, and Lemma
4.2, we can directly state the following main result.

Theorem 4.3: (Sufficient Condition) Under RCP-T, a
network of agents achieve consensus in the presence of any
number of adversaries if there exists a set of trusted nodes
that form a connected dominating set in the network.

B. Necessary Condition on Trusted Nodes for Resilient
Consensus

Now, we will show that if a set of trusted nodes do not
form a connected dominating set, then there always exists
a scenario, in which consensus cannot be achieved within
a network in the presence of adversaries.

Lemma 4.4: If the set of trusted nodes do not form a
connected dominating set, there always exists a scenario,
in which consensus cannot be achieved by the normal
nodes implementing RCP-T, in the presence of adversarial
nodes.

Proof: Let a set of trusted nodes do not form a
dominating set and there exists a normal node i that
is not connected to any trusted node. Moreover, assume
that all of the neighbors of i are adversarial nodes, and
xj ∈ [a b] , ∀j ∈ N [i], where a and b are any two real
numbers. If xℓ < a (or xℓ > b), ∀ℓ ∈ V −N [i], then node i
will never update its value, and rest of the normal nodes
will not converge to the value of node i, thus consensus
will not be achieved among normal nodes.

For the connectivity condition on trusted nodes, let
there be σ > 1 connected components in the subgraph
induced by the trusted nodes. Assume that all trusted
nodes in the ith connected component have value ci, and
ci ̸= cj , ∀i,j ∈ {1,2, · · · , cσ}. cj is the state value of all the
trusted nodes in the jth connected component. In such a
scenario, none of the trusted nodes will update their values
under RCP-T. Since, trusted nodes in different connected
components have different values, consensus will not be
achieved.

Using Lemma 4.4 and the fact that any node in the
network can be an adversarial node (except trusted node),
we can state the following result directly.

Theorem 4.5: (Necessary Condition) For an arbi-
trary number of adversaries, connected dominating set of
trusted nodes is a necessary condition for consensus among
normal nodes.

It is to be mentioned here that the notion of connected
dominating set in graphs has been extensively studied in
both graph theory (e.g., [13]), and sensor network litera-
ture (e.g., [14], [15]), wherein a wide variety of applications
along with various distributed algorithms for constructing
small sized dominating sets have been reported.

Remark: It is to be mentioned here that if trusted nodes
form a connected dominating set, a much simpler strategy
for resilient consensus can be derived as follows: In the

update stage (Step 3) of RCP-T, instead of incorporating
all the values in Ri(k), a node i just considers the value
of its trusted neighbor while ignoring the rest of the
values in Ri(k). However, this approach is not prudent
as Ri(k) may also contain state values of other normal
neighbors of i, and ignoring their state values means a
useful information is being discounted and not employed
during the update step. This might result in a consensus
value that is far away from the true average of the initial
values of the normal nodes.

V. Simulations

In this section, we illustrate RCP-T through a couple
of examples and also compare it with W-MSR algorithm
[9]. In our first example, we illustrate the algorithm for
a network that has a tree graph topology. Building area
networks, which are an important concept in smart grid,
are often modeled by such network topologies [10]. In fact,
we use the building area network example in [10].

A tree network with 26 nodes is shown in Fig. 1. Values
inside nodes indicate node id’s, whereas the initial state
values xi(0) are shown alongside the nodes. The node
set {3,7,12,18,26} forms a connected dominating set and
therefore, chosen as a set of trusted nodes. We assume that
nodes in {5,10,15,17,21} are adversaries such that ∀k ≥ 0

x5(k + 1) = 50
x10(k + 1) = 100 sin(0.1πk) + 100
x15(k + 1) = 25 sin(0.04πk) + 150
x17(k + 1) = 170 − 0.2k
x21(k + 1) = 210

1 2

3

4 6 8 9 11 13 1614 19 20 22 23 24 25

7 12 18

26

5 10 15 17 21

10 20 40 50 60 80 90 100 110 130 140 150 160 170 190 200 210 220 230 240 250

15 50 95 150

168.18 Advanced metering
infrastructure

Smart appliances

Fig. 1. A building area network represented by a tree graph.

If all the normal nodes implement RCP-T, then consen-
sus is achieved among the normal nodes as shown in Fig.
2. If W-MSR algorithm is implemented, consensus is not
achieved even if only one adversary exists in the network
as shown in Fig. 2. The primary reason is that the network
does not have ‘enough connectivity’, or more precisely, it
is not (2,2)-robust. However, in the presence of trusted
nodes that form a connected dominating set, any number
of adversarial attacks can be handled.

Tree graphs are examples of sparse networks, thus we
select a more connected network as our second example.
The graph shown in Fig. 3 is (2,2)-robust [9]. Node id’s
are shown inside the nodes, whereas initial values are
shown near them. Nodes 3 and 7 are trusted nodes and
they form a connected dominating set. Nodes 4 and 6
are attacked by adversaries. In the first plot, all normal
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Fig. 2. In the first plot, consensus is achieved among the normal nodes implementing RCP-T in the presence of five adversaries. In the
second plot, nodes implement W-MSR, and consensus is not achieved in the presence of a single adversary.
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Fig. 3. (a) A (2,2)-robust graph. (b) Consensus is achieved under RCP-T. (c) Normal nodes implement W-MSR, and fail to achieve consensus.

nodes achieve consensus in the presence of trusted nodes
while implementing RCP-T. In the second plot, nodes
implement W-MSR, and consensus is not achieved in the
presence of two adversaries. It should be noted that in the
case of RCP-T, consensus will be achieved in the presence
of any number of adversaries.

VI. Number of Trusted Nodes and Robustness

It is shown above that the sufficient number of guards
required to overcome the effect of any number of adver-
saries, under RCT-P is equal to the connected domination
number (γc) of the underlying graph. Moreover, if no
trusted nodes are present, a network can achieve consensus
in the presence of at most F adversaries if and only if the
graph is (F + 1,F + 1)-robust. So, an interesting question
can be asked in a more general setting as follows,

For a given network that can handle F adversarial
attacks, what is the minimum number of trusted nodes
that need to be added to achieve consensus in the presence
of F ′ > F adversaries?

For instance, for a given (F + 1,F + 1) robust graph,
what is the minimum number of trusted nodes that need
to be in the network so that consensus can be achieved in
the presence of F ′ = F +1 adversaries. It turns out that the
answer is not straight forward. An interesting observation
in this regard is that in certain cases, adding as many as

(γc − 1) trusted nodes is not enough to make (F + 1,F +
1) robust network resilient against F +1 adversaries. Two
such examples are shown in Fig. 4 and Fig. 5.

The graph in Fig. 4 is (2,2) robust [9]. Thus, it is
resilient against F = 1 malicious attack. The connected
domination dumber of the graph γc = 4. There is no way to
make this graph resilient against any two malicious attacks
by adding three trusted nodes. One example situation is
illustrated in Fig. 4. Note that the set of trusted nodes
form a dominating set (not a connected dominating set).
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Fig. 4. (a) {5,12,14} is the set of trusted nodes, and {3,4} are
malicious nodes. (b) Normal nodes fail to achieve consensus.

Another example in which any lesser than γc trusted
nodes in an (F + 1,F + 1)-robust network, do not ensure
consensus among normal nodes in the presence of F + 1



attacks, is shown in Fig. 5. The graph is again (2,2)-robust
[9], with γc = 2.
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Fig. 5. (a) Node 1 is the set of trusted nodes, and nodes 5 and 6 are
malicious nodes. (b) Normal nodes fail to achieve consensus.

Thus, it seems that for many networks, adding trusted
nodes is useful when they have a sufficient existence within
the network (i.e., γc), in which case resilience against any
number of attacks is achieved. Furthermore, any number
of trusted nodes, which is lesser than this threshold (γc),
might not improve the resilience properties of such net-
works, as shown in above examples. Characterization of
such networks will be an interesting problem.

At the same time, there are networks in which adding
fewer than γc trusted nodes indeed improve their resilience
property. The graph shown in Fig. 6 is not resilient even
against a single malicious attack, as it is not (2,2)-robust.
Here, γc(G) = 3, but having two trusted nodes make G
resilient against one malicious attack.
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Fig. 6. A graph G. {4,9} is the set of trusted nodes.

Thus, to completely understand the connection be-
tween trusted nodes and robustness, relationship between
connected domination number of a graph and its (r,s)-
robustness needs to be studied. An interesting problem
can be to figure out the connected domination number of
an (r,s)-robust graph for s = r.

VII. Conclusions

In a network, there may be nodes that are more se-
cure than the others. This information can be used to
relax connectivity constraints on the network topology
to ensure consensus among nodes despite adversaries. In
other words, it is possible to make a network resilient
(for consensus purpose) against any number of adversarial
attacks, even if the network is sparsely connected, by
making a subset of nodes more secure. In this paper, we

have shown that if a set of trusted nodes form a connected
dominating set, consensus can be achieved despite any
number of misbehaving nodes. Moreover, there is a rela-
tionship between the notion of (r,s)-robustness [9], which
characterizes the resilience properties of a network, and
trusted nodes. This relationship can be studied by figuring
out the connected domination number of (r,s)-robust
graphs. Moreover, instead of simply assuming that trusted
nodes are completely secured from adversarial attacks due
to higher security investments, it will be interesting to
introduce varying level of trust among nodes, and then
analyze the resilience of networks, which is also one of our
future work.
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