Math 2471 Calc 3 - Homework #4

Pg. 900, #11-33,45,47, 59, 63, 69, 74, 77, 79 and 85

Pg. 937, #7, 9, 15 and 16

Pg. 900 #11-33 Find both partial derivatives for the following

#11
$$f(x,y) = 2x - 5y + 3$$

#13 $z = 6x - x^2y + 8y^2$
#17 $z = e^{xy}$
#21 $z = \ln \frac{x}{y}$
#23 $z = \ln(x^2 + y^2)$
#31 $z = \cos(xy)$

Find f_x and f_y and evaluate at the given point

#45
$$f(x,y) = e^x y^2$$
, $(\ln 3, 2)$
#47 $f(x,y) = \cos(2x - y)$, $(\frac{\pi}{4}, \frac{\pi}{3})$

Find the partial derivatives of the following and evaluate if a point is given

#59
$$w = \sqrt{x^2 + y^2 + z^2}$$

#63 $f(x, y, z) = x^3 y z^2$, (-2, 1, 2)

Find f_x and f_y in the following and determine points where $f_x = 0$ and $f_y = 0$

#69
$$f(x,y) = x^2 + xy + y^2 - 2x + 2y$$

#74 $f(x,y) = 3x^3 - 12xy + y^3$

Find the second partial derivatives for the following 77, 79 and 85

#77
$$z = 3xy^2$$

#79 $z = x^4 - 2xy + 3y^3$
#85 $z = \cos(xy)$

Pg. 937 Find the equation of the tangent plane at the given point for the following

#7
$$z = x^2 + y^2 + 3$$
, $(2,1,8)$
#9 $z = sqrtx^2 + y^2$, $(3,4,5)$
#15 $x^2 + y^2 - 5z^2 = 15$, $(-4,-2,1)$
#16 $x^2 + 2z^2 = y^2$, $(1,3,-2)$

Due: Wed. June 17, 2020.