Math 2471 Calc 3 - Homework \#4

Pg. 900, \#11-33,45,47, 59, 63, 69, 74, 77, 79 and 85
Pg. 937, \#7, 9, 15 and 16

Pg. 900 \#11-33 Find both partial derivatives for the following

$$
\begin{array}{ll}
\# 11 & f(x, y)=2 x-5 y+3 \\
\# 13 & z=6 x-x^{2} y+8 y^{2} \\
\# 17 & z=e^{x y} \\
\# 21 & z=\ln \frac{x}{y} \\
\text { \#23 } & z=\ln \left(x^{2}+y^{2}\right) \\
\# 31 & z=\cos (x y)
\end{array}
$$

Find f_{x} and f_{y} and evaluate at the given point

$$
\begin{array}{ll}
\# 45 & f(x, y)=e^{x} y^{2},(\ln 3,2) \\
\# 47 & f(x, y)=\cos (2 x-y),\left(\frac{\pi}{4}, \frac{\pi}{3}\right)
\end{array}
$$

Find the partial derivatives of the following and evaluate if a point is given

$$
\begin{array}{ll}
\# 59 & w=\sqrt{x^{2}+y^{2}+z^{2}} \\
\# 63 & f(x, y, z)=x^{3} y z^{2},(-2,1,2)
\end{array}
$$

Find f_{x} and f_{y} in the following and determine points where $f_{x}=0$ and $f_{y}=0$

$$
\begin{array}{ll}
\# 69 & f(x, y)=x^{2}+x y+y^{2}-2 x+2 y \\
\# 74 & f(x, y)=3 x^{3}-12 x y+y^{3}
\end{array}
$$

Find the second partial derivatives for the following 77, 79 and 85

$$
\begin{array}{ll}
\# 77 & z=3 x y^{2} \\
\# 79 & z=x^{4}-2 x y+3 y^{3} \\
\# 85 & z=\cos (x y)
\end{array}
$$

Pg. 937 Find the equation of the tangent plane at the given point for the following

$$
\begin{array}{ll}
\text { \#7 } & z=x^{2}+y^{2}+3,(2,1,8) \\
\# 9 & z=s q r t x^{2}+y^{2},(3,4,5) \\
\# 15 & x^{2}+y^{2}-5 z^{2}=15,(-4,-2,1) \\
\# 16 & x^{2}+2 z^{2}=y^{2},(1,3,-2)
\end{array}
$$

Due: Wed. June 17, 2020.

