Signed Group Orthogonal Designs And Their Applications

Ebrahim Ghaderpour

University of Lethbridge

2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

An orthogonal design, OD, of order *n* and type (u_1, \ldots, u_ℓ) , denoted $OD(n; u_1, \ldots, u_\ell)$, is a square matrix *X* of order *n* with entries from $\{0, \pm x_1, \ldots, \pm x_\ell\}$, where the x_j 's are commuting variables, that satisfies

$$XX^t = \left(\sum_{j=1}^{\ell} \frac{u_j x_j^2}{2}\right) I_n,$$

where X^t denotes the transpose of X, and I_n is the identity matrix of order n.

An orthogonal design, OD, of order *n* and type (u_1, \ldots, u_ℓ) , denoted $OD(n; u_1, \ldots, u_\ell)$, is a square matrix *X* of order *n* with entries from $\{0, \pm x_1, \ldots, \pm x_\ell\}$, where the x_j 's are commuting variables, that satisfies

$$XX^t = \left(\sum_{j=1}^{\ell} \frac{u_j x_j^2}{2}\right) I_n,$$

where X^t denotes the transpose of X, and I_n is the identity matrix of order *n*.

An OD in which there is no zero entry is called a full OD.

Orthogonal designs

Example

• Let
$$A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
. It can be seen that $AA^t = (a^2 + b^2)I_2$, and so A is an $OD(2; 1, 1)$.

Orthogonal designs

Example

• Let
$$A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
. It can be seen that $AA^t = (a^2 + b^2)I_2$, and so
A is an $OD(2; 1, 1)$.
• Let $B = \begin{bmatrix} a & b & c & c \\ -b & a & c & -c \\ c & c & -a & -b \\ c & -c & b & -a \end{bmatrix}$. It can be seen that
 $BB^t = (a^2 + b^2 + 2c^2)I_4$,
and so *B* is an $OD(4; 1, 1, 2)$.

<ロ> (四) (四) (三) (三) (三)

A Hadamard matrix of order n is a square matrix of order n with {±1} entries such that HH^t = nI_n.

- A Hadamard matrix of order n is a square matrix of order n with {±1} entries such that HH^t = nI_n.
- Equating all variables of any full OD to 1 results in a Hadamard matrix.

- A Hadamard matrix of order n is a square matrix of order n with $\{\pm 1\}$ entries such that $HH^t = nI_n$.
- Equating all variables of any full OD to 1 results in a Hadamard matrix.
 It is conjectured that a Hadamard matrix of order 4n exists for each n ≥ 1.

- A Hadamard matrix of order n is a square matrix of order n with {±1} entries such that HH^t = nI_n.
- Equating all variables of any full OD to 1 results in a Hadamard matrix.
 It is conjectured that a Hadamard matrix of order 4n exists for each n ≥ 1.
- J. Seberry obtained the first asymptotic existence result for Hadamard matrices, namely, for any odd integer q > 3, there is a Hadamard matrix of order 2ⁿq for every

$$n \geq 2\log_2(q-3).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

The number of variables in an OD of order $n = 2^{a}b$, b odd, cannot exceed $\rho(n)$ (Radon's number), where

$$\rho(n)=8c+2^d,$$

and c, d are obtained from a = 4c + d, $0 \le d < 4$.

The number of variables in an OD of order $n = 2^{a}b$, b odd, cannot exceed $\rho(n)$ (Radon's number), where

$$\rho(n)=8c+2^d,$$

and c, d are obtained from a = 4c + d, $0 \le d < 4$.

Example

The maximum number of variables in ODs of orders $12 = 2^2 \cdot 3$ and $32 = 2^5 \cdot 1$ are 4 and 10, respectively.

イロト イポト イヨト イヨト 二日

The asymptotic existence of orthogonal designs

Theorem (P. Eades, P. Robinson and J. Seberry)

Suppose that there is an $OD(d; w_1, \ldots, w_m)$, where w_1, w_2, \ldots, w_m are powers of 2 and $w_1 + \cdots + w_m = d$.

The asymptotic existence of orthogonal designs

Theorem (P. Eades, P. Robinson and J. Seberry)

Suppose that there is an $OD(d; w_1, ..., w_m)$, where $w_1, w_2, ..., w_m$ are powers of 2 and $w_1 + \cdots + w_m = d$. Then for every k-tuple $(u_1, ..., u_k)$ of positive integers such that $u_1 + \cdots + u_k = 2^a d$, there is an integer $N = N(u_1, ..., u_k)$ such that for each $n \ge N$, there is an

 $OD(2^{n+a}d; 2^{n}u_1, \ldots, 2^{n}u_k).$

The asymptotic existence of orthogonal designs

Theorem (P. Eades, P. Robinson and J. Seberry)

Suppose that there is an $OD(d; w_1, ..., w_m)$, where $w_1, w_2, ..., w_m$ are powers of 2 and $w_1 + \cdots + w_m = d$. Then for every k-tuple $(u_1, ..., u_k)$ of positive integers such that $u_1 + \cdots + u_k = 2^a d$, there is an integer $N = N(u_1, ..., u_k)$ such that for each $n \ge N$, there is an

$$OD(2^{n+a}d; 2^{n}u_1, \ldots, 2^{n}u_k).$$

Theorem (E. Ghaderpour and H. Kharaghani)

For any k-tuple (u_1, \ldots, u_k) of positive integers, there is an integer $N = N(u_1, \ldots, u_k)$ such that a full OD of type

$$(2^n u_1,\ldots,2^n u_k)$$

exists for each $n \geq N$.

A signed group S is a group with a distinguished central element of order two.

A signed group S is a group with a distinguished central element of order two.

Example

• The trivial signed group $S_{\mathbb{R}} = \{1, -1\}$ which is a group of order two.

A signed group S is a group with a distinguished central element of order two.

Example

- The trivial signed group $S_{\mathbb{R}} = \{1, -1\}$ which is a group of order two.
- The complex signed group S_C = (i; i² = −1) = {±1, ±i} is a group of order four. This is the smallest non-trivial signed group.

A signed group S is a group with a distinguished central element of order two.

Example

- The trivial signed group $S_{\mathbb{R}} = \{1, -1\}$ which is a group of order two.
- The complex signed group S_C = (i; i² = -1) = {±1, ±i} is a group of order four. This is the smallest non-trivial signed group.
- The set of all monomial {0, ±1}-matrices of order *n*, denoted SP_n, forms a group of order 2ⁿn!.

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

A signed group orthogonal design, SOD, of type (u_1, \ldots, u_k) , where u_1, \ldots, u_k are positive integers, and of order n, is a square matrix X of order n with entries from $\{0, \epsilon_1 x_1, \ldots, \epsilon_k x_k\}$, where the x_j 's are commuting variables and $\epsilon_j \in S$, $1 \le j \le k$, for some signed group S, that satisfies

$$XX^* = \left(\sum_{i=1}^k u_i x_i^2\right) I_n,$$

where X^* is the transpose conjugate of X. We denote this SOD by $SOD(n; u_1, \ldots, u_k)$.

イロン 不同と 不同と 不同と

A signed group orthogonal design, SOD, of type (u_1, \ldots, u_k) , where u_1, \ldots, u_k are positive integers, and of order n, is a square matrix X of order n with entries from $\{0, \epsilon_1 x_1, \ldots, \epsilon_k x_k\}$, where the x_j 's are commuting variables and $\epsilon_j \in S$, $1 \le j \le k$, for some signed group S, that satisfies

$$XX^* = \left(\sum_{i=1}^k u_i x_i^2\right) I_n,$$

where X^* is the transpose conjugate of X. We denote this SOD by $SOD(n; u_1, \ldots, u_k)$.

 An SOD over the complex signed group S_C results in a complex OD, COD.

・ロン ・回 と ・ 回 と ・ 回 と

A signed group orthogonal design, SOD, of type (u_1, \ldots, u_k) , where u_1, \ldots, u_k are positive integers, and of order n, is a square matrix X of order n with entries from $\{0, \epsilon_1 x_1, \ldots, \epsilon_k x_k\}$, where the x_j 's are commuting variables and $\epsilon_j \in S$, $1 \le j \le k$, for some signed group S, that satisfies

$$XX^* = \left(\sum_{i=1}^k u_i x_i^2\right) I_n,$$

where X^* is the transpose conjugate of X. We denote this SOD by $SOD(n; u_1, \ldots, u_k)$.

- An SOD over the complex signed group $S_{\mathbb{C}}$ results in a complex OD, COD.
- An SOD over the trivial signed group $S_{\mathbb{R}}$ results in an OD.

A real monomial representation (remrep) of degree *n* is a signed group homomorphism $\pi : S \to SP_n$:

• $\pi(ab) = \pi(a)\pi(b)$ for all $a, b \in S$,

$$\bullet \ \pi(-1) = -I_n.$$

A real monomial representation (remrep) of degree *n* is a signed group homomorphism $\pi : S \to SP_n$:

• $\pi(ab) = \pi(a)\pi(b)$ for all $a, b \in S$,

$$\bullet \ \pi(-1) = -I_n.$$

 An SOD with no zero entries is called a full SOD. Equating all variables to 1 in any full SOD results in a signed group Hadamard matrix, SH.

Signed group Hadamard matrices and their applications

R. Craigen introduced and studied SHs extensively and eventually he showed the following theorem:

R. Craigen introduced and studied SHs extensively and eventually he showed the following theorem:

Theorem (R. Craigen)

For any odd positive integer q, there exists a circulant SH of order 2q over a signed group S that admits a remrep of degree $2^{2N(q)-1}$.

R. Craigen introduced and studied SHs extensively and eventually he showed the following theorem:

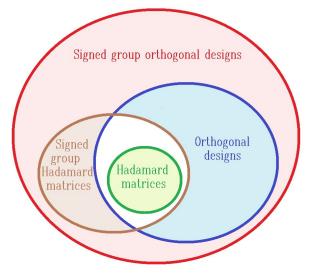
Theorem (R. Craigen)

For any odd positive integer q, there exists a circulant SH of order 2q over a signed group S that admits a remrep of degree $2^{2N(q)-1}$.

 R. Craigen and I. Livinskyi showed that for any odd integer q > 1, there exists a Hadamard matrix of order 2ⁿq for every

$$n \ge \frac{1}{5}\log_2(\frac{q-1}{2}) + 13.$$

・ロト ・回ト ・ヨト ・ヨト ・ヨ



An application of signed group orthogonal designs

Theorem

Suppose that there exists a $SOD(n; u_1, ..., u_k)$ for some signed group *S* equipped with a remrep π of degree *m*, where *m* is the order of a Hadamard matrix. Then there exists an

 $OD(mn; mu_1, \ldots, mu_k).$

An application of signed group orthogonal designs

Theorem

Suppose that there exists a $SOD(n; u_1, ..., u_k)$ for some signed group *S* equipped with a remrep π of degree *m*, where *m* is the order of a Hadamard matrix. Then there exists an

 $OD(mn; mu_1, \ldots, mu_k).$

Example

A $COD(n; u_1, ..., u_k)$ can be viewed as a $SOD(n; u_1, ..., u_k)$ over the complex signed group $S_{\mathbb{C}}$. Define $\pi : S_{\mathbb{C}} \to SP_2$ by

$$i \longrightarrow \left[\begin{array}{cc} 0 & 1 \\ - & 0 \end{array}
ight].$$

An application of signed group orthogonal designs

Theorem

Suppose that there exists a $SOD(n; u_1, ..., u_k)$ for some signed group S equipped with a remrep π of degree m, where m is the order of a Hadamard matrix. Then there exists an

 $OD(mn; mu_1, \ldots, mu_k).$

Example

A $COD(n; u_1, \ldots, u_k)$ can be viewed as a $SOD(n; u_1, \ldots, u_k)$ over the complex signed group $S_{\mathbb{C}}$. Define $\pi : S_{\mathbb{C}} \to SP_2$ by

$$i \longrightarrow \left[egin{array}{cc} 0 & 1 \ - & 0 \end{array}
ight].$$

It can be verified that π is a remrep of degree 2, and so by the previous theorem, there exists an $OD(2n; 2u_1, \ldots, 2u_k)$.

Let *S* be a signed group, and $A = [a_{ij}]$ be a square matrix such that $a_{ij} \in \{0, \epsilon_1 x_1, \dots, \epsilon_k x_k\}$, where $\epsilon_{\ell} \in S$ and x_{ℓ} is a variable, $1 \leq \ell \leq k$.

Let *S* be a signed group, and $A = [a_{ij}]$ be a square matrix such that $a_{ij} \in \{0, \epsilon_1 x_1, \ldots, \epsilon_k x_k\}$, where $\epsilon_{\ell} \in S$ and x_{ℓ} is a variable, $1 \leq \ell \leq k$. For each $a_{ij} = \epsilon_{\ell} x_{\ell}$ or 0, let $\overline{a}_{ij} = \overline{\epsilon_{\ell}} x_{\ell}$ or 0, and $|a_{ij}| = |\epsilon_{\ell} x_{\ell}| = x_{\ell}$ or 0. We define $abs(A) := [|a_{ij}|]$.

Let *S* be a signed group, and $A = [a_{ij}]$ be a square matrix such that $a_{ij} \in \{0, \epsilon_1 x_1, \ldots, \epsilon_k x_k\}$, where $\epsilon_{\ell} \in S$ and x_{ℓ} is a variable, $1 \leq \ell \leq k$. For each $a_{ij} = \epsilon_{\ell} x_{\ell}$ or 0, let $\overline{a}_{ij} = \overline{\epsilon_{\ell}} x_{\ell}$ or 0, and $|a_{ij}| = |\epsilon_{\ell} x_{\ell}| = x_{\ell}$ or 0. We define $abs(A) := [|a_{ij}|]$. We call A is quasisymmetric, if

$$abs(A) = abs(A^*),$$

where $A^* = [\overline{a}_{ji}]$.

< □ > < @ > < 注 > < 注 > ... 注

Example

The following matrix is a circulant matrix of order 3 over the complex signed group $S_{\mathbb{C}}$:

$$C = \begin{bmatrix} ia & b & -ib \\ -ib & ia & b \\ b & -ib & ia \end{bmatrix}$$

Example

The following matrix is a circulant matrix of order 3 over the complex signed group $S_{\mathbb{C}}$:

$$C = \begin{bmatrix} ia & b & -ib \\ -ib & ia & b \\ b & -ib & ia \end{bmatrix}.$$

So, $C = \operatorname{circ}(ia, b, -ib)$ and $C^* = \operatorname{circ}(-ia, ib, b).$

・ロト・西ト・ヨト・ヨー うへの

Example

The following matrix is a circulant matrix of order 3 over the complex signed group $S_{\mathbb{C}}$:

$$C = \begin{bmatrix} ia & b & -ib \\ -ib & ia & b \\ b & -ib & ia \end{bmatrix}$$

So, $C = \operatorname{circ}(ia, b, -ib)$ and $C^* = \operatorname{circ}(-ia, ib, b)$. The circulant matrix C is also quasisymmetric because

$$abs(C) = abs(C^*) = circ(a, b, b).$$

(日) (部) (注) (注) (言)

Theorem

Suppose that $(u_1, u_2, ..., u_k)$ is a k-tuple of positive integers and let $u_1 + \cdots + u_k = u$. Then there is a full circulant quasisymmetric

 $SOD(4u; 4u_1, 4u_2, \ldots, 4u_k)$

for some signed group S that admits a remrep of degree 2^n , where depending on the sequences used to create this SOD,

$$n \leq \frac{3}{13} \sum_{i=1}^{k} \log(\underline{u_i}) + 8k + 2,$$

or

$$n \leq \frac{1}{5} \sum_{i=1}^{k} \log(\frac{u_i}{i}) + 10k + 2.$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Theorem

Suppose that $(u_1, u_2, ..., u_k)$ is a k-tuple of positive integers and let $u_1 + \cdots + u_k = u$. Then for each $n \ge N$ there is an

 $OD(2^n \boldsymbol{u}; 2^n \boldsymbol{u_1}, \ldots, 2^n \boldsymbol{u_k}),$

where

$$N \leq \frac{3}{13} \sum_{i=1}^k \log(\boldsymbol{u}_i) + 8k + 4,$$

or

$$N \leq \frac{1}{5} \sum_{i=1}^{k} \log(\frac{u_i}{2}) + 10k + 4.$$

38 / 39

(ロ) (同) (E) (E) (E)

Thank you for your attention and Happy birthday ta Hadi Kharaghani

・ロト ・回ト ・ヨト ・ヨト