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Orthogonal designs

Definition

An orthogonal design, OD, of order n and type (u1, . . . , u`),
denoted OD(n; u1, . . . , u`), is a square matrix X of order n with
entries from {0,±x1, . . . ,±x`}, where the xj ’s are commuting
variables, that satisfies

XX t =

(∑̀
j=1

ujx
2
j

)
In,

where X t denotes the transpose of X , and In is the identity matrix
of order n.

An OD in which there is no zero entry is called a full OD.
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Orthogonal designs

Example

Let A =

[
a b

−b a

]
. It can be seen that AAt = (a2 + b2)I2, and so

A is an OD(2; 1, 1).

Let B =


a b c c

−b a c −c

c c −a −b

c −c b −a

. It can be seen that

BB t = (a2 + b2 + 2c2)I4,

and so B is an OD(4; 1, 1, 2).
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Hadamard matrices

A Hadamard matrix of order n is a square matrix of order n
with {±1} entries such that HHt = nIn.

Equating all variables of any full OD to 1 results in a
Hadamard matrix.
It is conjectured that a Hadamard matrix of order 4n exists for
each n ≥ 1.

J. Seberry obtained the first asymptotic existence result for
Hadamard matrices, namely, for any odd integer q > 3, there
is a Hadamard matrix of order 2nq for every

n ≥ 2 log2(q − 3).
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Radon’s number

The number of variables in an OD of order n = 2ab, b odd,
cannot exceed ρ(n) (Radon’s number), where

ρ(n) = 8c + 2d ,

and c , d are obtained from a = 4c + d , 0 ≤ d < 4.

Example

The maximum number of variables in ODs of orders 12 = 22 · 3
and 32 = 25 · 1 are 4 and 10, respectively.
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The asymptotic existence of orthogonal designs

Theorem (P. Eades, P. Robinson and J. Seberry)

Suppose that there is an OD
(
d ; w1, . . . ,wm

)
, where w1,w2, . . . ,wm are

powers of 2 and w1 + · · ·+ wm = d .

Then for every k-tuple
(
u1, . . . , uk

)
of positive integers such that

u1 + · · ·+ uk = 2ad , there is an integer N = N
(
u1, . . . , uk

)
such that for

each n ≥ N, there is an

OD
(
2n+ad ; 2nu1, . . . , 2

nuk
)
.

Theorem (E. Ghaderpour and H. Kharaghani)

For any k-tuple
(
u1, . . . , uk

)
of positive integers, there is an integer

N = N
(
u1, . . . , uk

)
such that a full OD of type(

2nu1, . . . , 2
nuk
)

exists for each n ≥ N.
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Signed groups

Definition

A signed group S is a group with a distinguished central element
of order two.

Example

The trivial signed group SR = {1,−1} which is a group of
order two.

The complex signed group SC =
〈
i ; i2 = −1

〉
= {±1,±i} is a

group of order four. This is the smallest non-trivial signed
group.

The set of all monomial {0,±1}-matrices of order n, denoted
SPn, forms a group of order 2nn!.
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Signed group orthogonal designs

Definition

A signed group orthogonal design, SOD, of type
(
u1, . . . , uk

)
, where

u1, . . . , uk are positive integers, and of order n, is a square matrix X of
order n with entries from {0, ε1x1, . . . , εkxk}, where the xj ’s are
commuting variables and εj ∈ S , 1 ≤ j ≤ k , for some signed group S ,
that satisfies

XX ∗ =

(
k∑

i=1

uix
2
i

)
In,

where X ∗ is the transpose conjugate of X . We denote this SOD by
SOD

(
n; u1, . . . , uk

)
.

An SOD over the complex signed group SC results in a complex
OD, COD.

An SOD over the trivial signed group SR results in an OD.
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Signed groups

Definition

A real monomial representation (remrep) of degree n is a signed
group homomorphism π : S → SPn :

π(ab) = π(a)π(b) for all a, b ∈ S ,

π(−1) = −In.

An SOD with no zero entries is called a full SOD. Equating all
variables to 1 in any full SOD results in a signed group
Hadamard matrix, SH.
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Signed group Hadamard matrices and their applications

R. Craigen introduced and studied SHs extensively and eventually
he showed the following theorem:

Theorem (R. Craigen)

For any odd positive integer q, there exists a circulant SH of order
2q over a signed group S that admits a remrep of degree 22N(q)−1.

R. Craigen and I. Livinskyi showed that for any odd integer
q > 1, there exists a Hadamard matrix of order 2nq for every

n ≥ 1

5
log2(

q − 1

2
) + 13.
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An application of signed group orthogonal designs

Theorem

Suppose that there exists a SOD
(
n; u1, . . . , uk

)
for some signed

group S equipped with a remrep π of degree m, where m is the
order of a Hadamard matrix. Then there exists an

OD
(
mn; mu1, . . . ,muk

)
.

Example

A COD
(
n; u1, . . . , uk

)
can be viewed as a SOD

(
n; u1, . . . , uk

)
over the complex signed group SC. Define π : SC → SP2 by

i −→
[

0 1
− 0

]
.

It can be verified that π is a remrep of degree 2, and so by the
previous theorem, there exists an OD

(
2n; 2u1, . . . , 2uk

)
.
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Signed group orthogonal designs

Definition

Let S be a signed group, and A = [aij ] be a square matrix such
that aij ∈

{
0, ε1x1, . . . , εkxk

}
, where ε` ∈ S and x` is a variable,

1 ≤ ` ≤ k .

For each aij = ε`x` or 0, let aij = ε`x` or 0, and |aij | = |ε`x`| = x`
or 0. We define abs(A) :=

[
|aij |
]
.

We call A is quasisymmetric, if

abs(A) = abs(A∗),

where A∗ = [aji ].
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Signed group orthogonal designs

Example

The following matrix is a circulant matrix of order 3 over the complex
signed group SC :

C =


ia b −ib

−ib ia b

b −ib ia

 .

So, C = circ
(
ia, b,−ib

)
and C∗ = circ

(
− ia, ib, b

)
.

The circulant matrix C is also quasisymmetric because

abs(C ) = abs(C∗) = circ
(
a, b, b

)
.
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Asymptotic existence of signed group orthogonal designs

Theorem

Suppose that
(
u1, u2, . . . , uk

)
is a k-tuple of positive integers and

let u1 + · · ·+ uk = u. Then there is a full circulant quasisymmetric

SOD
(
4u; 4u1, 4u2, . . . , 4uk

)
for some signed group S that admits a remrep of degree 2n, where
depending on the sequences used to create this SOD,

n ≤ 3

13

k∑
i=1

log(ui ) + 8k + 2,

or

n ≤ 1

5

k∑
i=1

log(ui ) + 10k + 2.
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An application of signed group orthogonal designs

Theorem

Suppose that
(
u1, u2, . . . , uk

)
is a k-tuple of positive integers and

let u1 + · · ·+ uk = u. Then for each n ≥ N there is an

OD
(
2nu; 2nu1, . . . , 2

nuk
)
,

where

N ≤ 3

13

k∑
i=1

log(ui ) + 8k + 4,

or

N ≤ 1

5

k∑
i=1

log(ui ) + 10k + 4.

38 / 39



39 / 39


