Signed Group Orthogonal Designs And
 Their Applications

Ebrahim Ghaderpour
University of Lethbridge

2014

Definition

An orthogonal design, OD, of order n and type $\left(u_{1}, \ldots, u_{\ell}\right)$, denoted $O D\left(n ; u_{1}, \ldots, u_{\ell}\right)$, is a square matrix X of order n with entries from $\left\{0, \pm x_{1}, \ldots, \pm x_{\ell}\right\}$, where the x_{j} 's are commuting variables, that satisfies

$$
X X^{t}=\left(\sum_{j=1}^{\ell} u_{j} x_{j}^{2}\right) I_{n}
$$

where X^{t} denotes the transpose of X, and I_{n} is the identity matrix of order n.

Definition

An orthogonal design, OD, of order n and type $\left(u_{1}, \ldots, u_{\ell}\right)$, denoted $O D\left(n ; u_{1}, \ldots, u_{\ell}\right)$, is a square matrix X of order n with entries from $\left\{0, \pm x_{1}, \ldots, \pm x_{\ell}\right\}$, where the x_{j} 's are commuting variables, that satisfies

$$
X X^{t}=\left(\sum_{j=1}^{\ell} u_{j} x_{j}^{2}\right) I_{n}
$$

where X^{t} denotes the transpose of X, and I_{n} is the identity matrix of order n.

- An OD in which there is no zero entry is called a full OD.

Example

- Let $A=\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$. It can be seen that $A A^{t}=\left(a^{2}+b^{2}\right) l_{2}$, and so A is an $O D(2 ; 1,1)$.

Example

- Let $A=\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$. It can be seen that $A A^{t}=\left(a^{2}+b^{2}\right) l_{2}$, and so A is an $O D(2 ; 1,1)$.

$$
\begin{gathered}
\text { - Let } B=\left[\begin{array}{rrrr}
a & b & c & c \\
-b & a & c & -c \\
c & c & -a & -b \\
c & -c & b & -a
\end{array}\right] . \\
B B^{t}=\left(a^{2}+b^{2}+2 c^{2}\right) I_{4},
\end{gathered}
$$ and so B is an $O D(4 ; 1,1,2)$.

Hadamard matrices

- A Hadamard matrix of order n is a square matrix of order n with $\{ \pm 1\}$ entries such that $H H^{t}=n I_{n}$.
- A Hadamard matrix of order n is a square matrix of order n with $\{ \pm 1\}$ entries such that $H H^{t}=n I_{n}$.
■ Equating all variables of any full OD to 1 results in a Hadamard matrix.
- A Hadamard matrix of order n is a square matrix of order n with $\{ \pm 1\}$ entries such that $H H^{t}=n I_{n}$.
■ Equating all variables of any full OD to 1 results in a Hadamard matrix.
It is conjectured that a Hadamard matrix of order $4 n$ exists for each $n \geq 1$.
- A Hadamard matrix of order n is a square matrix of order n with $\{ \pm 1\}$ entries such that $H H^{t}=n I_{n}$.
■ Equating all variables of any full OD to 1 results in a Hadamard matrix.
It is conjectured that a Hadamard matrix of order $4 n$ exists for each $n \geq 1$.
- J. Seberry obtained the first asymptotic existence result for Hadamard matrices, namely, for any odd integer $q>3$, there is a Hadamard matrix of order $2^{n} q$ for every

$$
n \geq 2 \log _{2}(q-3)
$$

- The number of variables in an OD of order $n=2^{a} b, b$ odd, cannot exceed $\rho(n)$ (Radon's number), where

$$
\rho(n)=8 c+2^{d}
$$

and c, d are obtained from $a=4 c+d, 0 \leq d<4$.

- The number of variables in an OD of order $n=2^{a} b, b$ odd, cannot exceed $\rho(n)$ (Radon's number), where

$$
\rho(n)=8 c+2^{d}
$$

and c, d are obtained from $a=4 c+d, 0 \leq d<4$.

Example

The maximum number of variables in ODs of orders $12=2^{2} \cdot 3$ and $32=2^{5} \cdot 1$ are 4 and 10 , respectively.

The asymptotic existence of orthogonal designs

Theorem (P. Eades, P. Robinson and J. Seberry)
Suppose that there is an $O D\left(d ; w_{1}, \ldots, w_{m}\right)$, where $w_{1}, w_{2}, \ldots, w_{m}$ are powers of 2 and $w_{1}+\cdots+w_{m}=d$.

Theorem (P. Eades, P. Robinson and J. Seberry)

Suppose that there is an $O D\left(d ; w_{1}, \ldots, w_{m}\right)$, where $w_{1}, w_{2}, \ldots, w_{m}$ are powers of 2 and $w_{1}+\cdots+w_{m}=d$.
Then for every k-tuple $\left(u_{1}, \ldots, u_{k}\right)$ of positive integers such that $u_{1}+\cdots+u_{k}=2^{a} d$, there is an integer $N=N\left(u_{1}, \ldots, u_{k}\right)$ such that for each $n \geq N$, there is an

$$
O D\left(2^{n+a} d ; 2^{n} u_{1}, \ldots, 2^{n} u_{k}\right)
$$

Theorem (P. Eades, P. Robinson and J. Seberry)

Suppose that there is an $O D\left(d ; w_{1}, \ldots, w_{m}\right)$, where $w_{1}, w_{2}, \ldots, w_{m}$ are powers of 2 and $w_{1}+\cdots+w_{m}=d$.
Then for every k-tuple (u_{1}, \ldots, u_{k}) of positive integers such that $u_{1}+\cdots+u_{k}=2^{a} d$, there is an integer $N=N\left(u_{1}, \ldots, u_{k}\right)$ such that for each $n \geq N$, there is an

$$
O D\left(2^{n+a} d ; 2^{n} u_{1}, \ldots, 2^{n} u_{k}\right)
$$

Theorem (E. Ghaderpour and H. Kharaghani)

For any k-tuple $\left(u_{1}, \ldots, u_{k}\right)$ of positive integers, there is an integer $N=N\left(u_{1}, \ldots, u_{k}\right)$ such that a full OD of type

$$
\left(2^{n} u_{1}, \ldots, 2^{n} u_{k}\right)
$$

exists for each $n \geq N$.

Definition

A signed group S is a group with a distinguished central element of order two.

Signed groups

Definition

A signed group S is a group with a distinguished central element of order two.

Example

- The trivial signed group $S_{\mathbb{R}}=\{1,-1\}$ which is a group of order two.

Definition

A signed group S is a group with a distinguished central element of order two.

Example

- The trivial signed group $S_{\mathbb{R}}=\{1,-1\}$ which is a group of order two.
- The complex signed group $S_{\mathbb{C}}=\left\langle i ; i^{2}=-1\right\rangle=\{ \pm 1, \pm i\}$ is a group of order four. This is the smallest non-trivial signed group.

Definition

A signed group S is a group with a distinguished central element of order two.

Example

- The trivial signed group $S_{\mathbb{R}}=\{1,-1\}$ which is a group of order two.
- The complex signed group $S_{\mathbb{C}}=\left\langle i ; i^{2}=-1\right\rangle=\{ \pm 1, \pm i\}$ is a group of order four. This is the smallest non-trivial signed group.
- The set of all monomial $\{0, \pm 1\}$-matrices of order n, denoted $S P_{n}$, forms a group of order $2^{n} n!$.

Definition

A signed group orthogonal design, SOD, of type $\left(u_{1}, \ldots, u_{k}\right)$, where u_{1}, \ldots, u_{k} are positive integers, and of order n, is a square matrix X of order n with entries from $\left\{0, \epsilon_{1} x_{1}, \ldots, \epsilon_{k} x_{k}\right\}$, where the x_{j} 's are commuting variables and $\epsilon_{j} \in S, 1 \leq j \leq k$, for some signed group S, that satisfies

$$
X X^{*}=\left(\sum_{i=1}^{k} u_{i} x_{i}^{2}\right) I_{n},
$$

where X^{*} is the transpose conjugate of X. We denote this SOD by $\operatorname{SOD}\left(n ; u_{1}, \ldots, u_{k}\right)$.

Definition

A signed group orthogonal design, SOD, of type $\left(u_{1}, \ldots, u_{k}\right)$, where u_{1}, \ldots, u_{k} are positive integers, and of order n, is a square matrix X of order n with entries from $\left\{0, \epsilon_{1} x_{1}, \ldots, \epsilon_{k} x_{k}\right\}$, where the x_{j} 's are commuting variables and $\epsilon_{j} \in S, 1 \leq j \leq k$, for some signed group S, that satisfies

$$
X X^{*}=\left(\sum_{i=1}^{k} u_{i} x_{i}^{2}\right) I_{n}
$$

where X^{*} is the transpose conjugate of X. We denote this SOD by $\operatorname{SOD}\left(n ; u_{1}, \ldots, u_{k}\right)$.

- An SOD over the complex signed group $S_{\mathbb{C}}$ results in a complex OD, COD.

Definition

A signed group orthogonal design, SOD, of type $\left(u_{1}, \ldots, u_{k}\right)$, where u_{1}, \ldots, u_{k} are positive integers, and of order n, is a square matrix X of order n with entries from $\left\{0, \epsilon_{1} x_{1}, \ldots, \epsilon_{k} x_{k}\right\}$, where the x_{j} 's are commuting variables and $\epsilon_{j} \in S, 1 \leq j \leq k$, for some signed group S, that satisfies

$$
X X^{*}=\left(\sum_{i=1}^{k} u_{i} x_{i}^{2}\right) I_{n}
$$

where X^{*} is the transpose conjugate of X. We denote this SOD by $\operatorname{SOD}\left(n ; u_{1}, \ldots, u_{k}\right)$.

- An SOD over the complex signed group $S_{\mathbb{C}}$ results in a complex OD, COD.
- An SOD over the trivial signed group $S_{\mathbb{R}}$ results in an OD.

Signed groups

Definition

A real monomial representation (remrep) of degree n is a signed group homomorphism $\pi: S \rightarrow S P_{n}$:

- $\pi(a b)=\pi(a) \pi(b) \quad$ for all $a, b \in S$,
- $\pi(-1)=-I_{n}$.

Definition

A real monomial representation (remrep) of degree n is a signed group homomorphism $\pi: S \rightarrow S P_{n}$:

- $\pi(a b)=\pi(a) \pi(b) \quad$ for all $a, b \in S$,
- $\pi(-1)=-I_{n}$.
- An SOD with no zero entries is called a full SOD. Equating all variables to 1 in any full SOD results in a signed group Hadamard matrix, SH.
R. Craigen introduced and studied SHs extensively and eventually he showed the following theorem:
R. Craigen introduced and studied SHs extensively and eventually he showed the following theorem:

Theorem (R. Craigen)

For any odd positive integer q, there exists a circulant SH of order $2 q$ over a signed group S that admits a remrep of degree $2^{2 N(q)-1}$.
R. Craigen introduced and studied SHs extensively and eventually he showed the following theorem:

Theorem (R. Craigen)

For any odd positive integer q, there exists a circulant SH of order $2 q$ over a signed group S that admits a remrep of degree $2^{2 N(q)-1}$.

- R. Craigen and I. Livinskyi showed that for any odd integer $q>1$, there exists a Hadamard matrix of order $2^{n} q$ for every

$$
n \geq \frac{1}{5} \log _{2}\left(\frac{q-1}{2}\right)+13 .
$$

Theorem

Suppose that there exists a $\operatorname{SOD}\left(n ; u_{1}, \ldots, u_{k}\right)$ for some signed group S equipped with a remrep π of degree m, where m is the order of a Hadamard matrix. Then there exists an

$$
O D\left(m n ; m u_{1}, \ldots, m u_{k}\right)
$$

An application of signed group orthogonal designs

Theorem

Suppose that there exists a $\operatorname{SOD}\left(n ; u_{1}, \ldots, u_{k}\right)$ for some signed group S equipped with a remrep π of degree m, where m is the order of a Hadamard matrix. Then there exists an

$$
O D\left(m n ; m u_{1}, \ldots, m u_{k}\right)
$$

Example

A $\operatorname{COD}\left(n ; u_{1}, \ldots, u_{k}\right)$ can be viewed as a $\operatorname{SOD}\left(n ; u_{1}, \ldots, u_{k}\right)$ over the complex signed group $S_{\mathbb{C}}$. Define $\pi: S_{\mathbb{C}} \rightarrow S P_{2}$ by

$$
i \longrightarrow\left[\begin{array}{cc}
0 & 1 \\
- & 0
\end{array}\right]
$$

Theorem

Suppose that there exists a $\operatorname{SOD}\left(n ; u_{1}, \ldots, u_{k}\right)$ for some signed group S equipped with a remrep π of degree m, where m is the order of a Hadamard matrix. Then there exists an

$$
O D\left(m n ; m u_{1}, \ldots, m u_{k}\right)
$$

Example

A $\operatorname{COD}\left(n ; u_{1}, \ldots, u_{k}\right)$ can be viewed as a $\operatorname{SOD}\left(n ; u_{1}, \ldots, u_{k}\right)$ over the complex signed group $S_{\mathbb{C}}$. Define $\pi: S_{\mathbb{C}} \rightarrow S P_{2}$ by

$$
i \longrightarrow\left[\begin{array}{cc}
0 & 1 \\
- & 0
\end{array}\right]
$$

It can be verified that π is a remrep of degree 2 , and so by the previous theorem, there exists an $O D\left(2 n ; 2 u_{1}, \ldots, 2 u_{k}\right)$.

Signed group orthogonal designs

Definition

Let S be a signed group, and $A=\left[a_{i j}\right]$ be a square matrix such that $a_{i j} \in\left\{0, \epsilon_{1} x_{1}, \ldots, \epsilon_{k} x_{k}\right\}$, where $\epsilon_{\ell} \in S$ and x_{ℓ} is a variable, $1 \leq \ell \leq k$.

Signed group orthogonal designs

Definition

Let S be a signed group, and $A=\left[a_{i j}\right]$ be a square matrix such that $a_{i j} \in\left\{0, \epsilon_{1} x_{1}, \ldots, \epsilon_{k} x_{k}\right\}$, where $\epsilon_{\ell} \in S$ and x_{ℓ} is a variable, $1 \leq \ell \leq k$.
For each $a_{i j}=\epsilon_{\ell} x_{\ell}$ or 0 , let $\bar{a}_{i j}=\bar{\epsilon}_{\ell} x_{\ell}$ or 0 , and $\left|a_{i j}\right|=\left|\epsilon_{\ell} x_{\ell}\right|=x_{\ell}$ or 0 . We define $\operatorname{abs}(A):=\left[\left|a_{i j}\right|\right]$.

Definition

Let S be a signed group, and $A=\left[a_{i j}\right]$ be a square matrix such that $a_{i j} \in\left\{0, \epsilon_{1} x_{1}, \ldots, \epsilon_{k} x_{k}\right\}$, where $\epsilon_{\ell} \in S$ and x_{ℓ} is a variable, $1 \leq \ell \leq k$.
For each $a_{i j}=\epsilon_{\ell} x_{\ell}$ or 0 , let $\bar{a}_{i j}=\bar{\epsilon}_{\ell} x_{\ell}$ or 0 , and $\left|a_{i j}\right|=\left|\epsilon_{\ell} x_{\ell}\right|=x_{\ell}$ or 0 . We define $\operatorname{abs}(A):=\left[\left|a_{i j}\right|\right]$.
We call A is quasisymmetric, if

$$
\operatorname{abs}(A)=\operatorname{abs}\left(A^{*}\right)
$$

where $A^{*}=\left[\bar{a}_{j i}\right]$.

Signed group orthogonal designs

Example

The following matrix is a circulant matrix of order 3 over the complex signed group $S_{\mathbb{C}}$:

$$
C=\left[\begin{array}{rrr}
i a & b & -i b \\
-i b & i a & b \\
b & -i b & i a
\end{array}\right]
$$

Signed group orthogonal designs

Example

The following matrix is a circulant matrix of order 3 over the complex signed group $S_{\mathbb{C}}$:

$$
C=\left[\begin{array}{rrr}
i a & b & -i b \\
-i b & i a & b \\
b & -i b & i a
\end{array}\right] .
$$

So, $C=\operatorname{circ}(i a, b,-i b)$ and $C^{*}=\operatorname{circ}(-i a, i b, b)$.

Example

The following matrix is a circulant matrix of order 3 over the complex signed group $S_{\mathbb{C}}$:

$$
C=\left[\begin{array}{rrr}
i a & b & -i b \\
-i b & i a & b \\
b & -i b & i a
\end{array}\right] .
$$

So, $C=\operatorname{circ}(i a, b,-i b)$ and $C^{*}=\operatorname{circ}(-i a, i b, b)$. The circulant matrix C is also quasisymmetric because

$$
\operatorname{abs}(C)=\operatorname{abs}\left(C^{*}\right)=\operatorname{circ}(a, b, b) .
$$

Theorem

Suppose that $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ is a k-tuple of positive integers and let $u_{1}+\cdots+u_{k}=u$. Then there is a full circulant quasisymmetric

$$
\operatorname{SOD}\left(4 u ; 4 u_{1}, 4 u_{2}, \ldots, 4 u_{k}\right)
$$

for some signed group S that admits a remrep of degree 2^{n}, where depending on the sequences used to create this SOD,

$$
n \leq \frac{3}{13} \sum_{i=1}^{k} \log \left(u_{i}\right)+8 k+2
$$

or

$$
n \leq \frac{1}{5} \sum_{i=1}^{k} \log \left(u_{i}\right)+10 k+2
$$

An application of signed group orthogonal designs

Theorem

Suppose that $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ is a k-tuple of positive integers and let $u_{1}+\cdots+u_{k}=u$. Then for each $n \geq N$ there is an

$$
O D\left(2^{n} u ; 2^{n} u_{1}, \ldots, 2^{n} u_{k}\right)
$$

where

$$
N \leq \frac{3}{13} \sum_{i=1}^{k} \log \left(u_{i}\right)+8 k+4
$$

or

$$
N \leq \frac{1}{5} \sum_{i=1}^{k} \log \left(u_{i}\right)+10 k+4 .
$$

Thank you for your attention

and

Fappy birthday ta
Fadi JKharaghani

