Departure Information	
ATIS CODE TEMP/DEW	P-ALT DEN/ALT

WEIGHT AND BALANCE PA30 N7261Y

WIND

Max Gross3600Empty Weight2262.53Empty Weight C.G.83.49Useful Load1337.47

ALTIMETER _____

ITEM	WEIGHT X	ARM =	MOMENT
Empty Weight	2262.53	83.49	188906.61
Oil (7.5 LBS per Gal)	30.00	51.0	1530.00
Fuel (Inboard)	324.00	90.0	29160.00
Fuel (Outboard)	180.00	95.0	17100.00
Pilot/Pass. (Front)		84.8	
Passenger (Rear)		118.5	
Baggage (Max 200)	20.00	142.0	2840.00
TOTALS			

C.G. = Total Moment Divided by	Cotal Weight C.G. = Most Forward C.G. = 81 Most Rearward C.G. = 92	
S.E.S.C(Single Engine Service Ceiling)	S.E.A.C(Single Engine Absolute Ceiling)	
Departure Performance		
Takeoff Distance	Rate Of Climb (Single Engine)	
Landing Distance	Rate Of Climb (Two Engines)	
Accelerate Stop	Accelerate Go $((50 / (se roc x 60 / ground speed)) x 5280) + Takeoff Distance$ a. $se roc x 60 = a$ b. $a / ground speed = b$ c. $50 / b = c$ d. $c x 5280 = d$	

e. d + TakeoffDistance = Accelerate-Go Distance

(where d is the distance from rotation to clear 50' obstacle)