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A fundamental principle of human
health and nutrition is that diverse di-
ets increase overall health patterns by
lowering infant mortality rates1 and
increasing average life expectancy.2

This principal is the core of the theo-
retical model of nutritional ecology.

Jenike3 recently defined nutritional
ecology as “the interaction of diet, so-
matic maintenance, physical activity,
and pathogenic agents as they relate
to growth, body composition, devel-
opment, and function in a constrain-
ing social, political, and natural envi-
ronment” (p. 207). Here, however, we
offer a modified definition of the con-
cept: Nutritional ecology is the study
of the relationship between essential
nutrient intake and its effects on over-
all human health, including growth
and maintenance in individuals and
general demographic trends in popu-
lations. Our goals in this essay are to
elaborate on the fundamental princi-
pals of nutritional ecology, which may
help to clarify the consequences of di-
etary choices made by Paleolithic for-
agers at various stages of human evo-
lution.

In order to comprehend fully long-
term trends in Paleolithic diet from
the perspective of nutritional ecology,
it is important to understand the basic
principles that underlie dietary diver-
sity and human health patterns. With
few exceptions,4–6 previous studies of

the diet of Paleolithic foragers have
focused on the consumption of fat,
protein, or calories7–27 or on the net
return of calorie extraction from the
environment.28–32 Although human
populations have survived and repro-
duced by consuming a relatively non-
diverse diet, maximizing essential nu-
trient intake through a diversified diet
can lower infant mortality rates and
increase average life expectancy,1,2

thereby positively affecting demo-
graphic trends. The fact that modern
humans require such a diverse suite of
essential nutrients to achieve the max-
imum benefits of health and longevity
suggests that this pattern evolved rel-
atively early in hominid prehistory.
Therefore, we view this pattern as
analogous to a “primitive” condition
or trait in cladistic analysis. Special-
ized diets (vegetarian or the near-ex-
clusive consumption of animal prod-
ucts) may be viewed as derived dietary
adaptations within the hominid lin-
eage.

Diverse diets increase overall hu-
man health1,2,4 because modern hu-
mans require dozens of essential nu-
trients to achieve optimal health
conditions, and these are rarely found
in one food item or one food group.
Although the human body is capable
of manufacturing some nutrients
such as vitamin D, many of those that
are essential must come from outside
food sources. Thus, the more diverse
the diet, the more diverse the intake of
the essential nutrients necessary for
optimal human health.

Essential nutrients are those that
the human body must obtain from
foods.33 Humans require approxi-
mately fifty nutrients for growth and
cell maintenance and repair. These
nutrients are divided into six classes:
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Modern nutritional studies have found that diverse diets are linked to lower infant
mortality rates and longer life expectancies in humans. This is primarily because
humans require more than fifty essential nutrients for growth and cell maintenance
and repair; most of these essential nutrients must come from outside food sources
rather than being manufactured by the body itself; and a diversity of food types is
required to consume the full suite of essential nutrients necessary for optimal
human health. These principles and their related affects on human adaptations and
demography are the hallmarks of a theoretical paradigm defined as nutritional
ecology. This essay applies concepts derived from nutritional ecology to the study
of human evolution. Principles of nutritional ecology are applied to the study of the
Middle-to-Upper Paleolithic transition in order to broadly illustrate the interpretive
ramifications of this approach. At any stage in human evolution, those hominid
populations that chose to diversify their subsistence base may have had a selec-
tive advantage over competitors who restricted their diet principally to one food
type, such as terrestrial mammals.
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proteins, lipids (fat), carbohydrates,
vitamins, minerals, and water. These
can be further divided into two
groups, those that supply energy (cal-
ories) and those that do not supply
energy. Proteins, fats, and carbohy-
drates supply energy, while vitamins,
minerals, and water are noncaloric es-
sential nutrients. Proteins, lipids, and
carbohydrates provide both energy
and the building blocks for tissue de-
velopment and repair. Vitamins are
organic molecules essential to human
metabolism. Minerals are inorganic
elements that play pivotal roles in cell
structure and assist in metabolic pro-
cesses. Water, which is essential to all
life plays multifaceted, complex roles
in metabolic reactions, transporting
materials to cells and waste products
away from cells.

The five primary food groups that
supplied Paleolithic foragers with es-
sential nutrients are terrestrial mam-
mals, fish, shellfish, birds, and plants
(Table 1). Subdividing animals by
general taxonomic categories (such as

terrestrial mammals, birds, shellfish,
and fish) may be useful in discussions
of long-term trends in human health
during the Paleolithic. For example,
terrestrial mammals may be lumped
under a single category because most
of them provide about the same pro-
portions of essential nutrients per unit
gram of flesh.34 However, shellfish
provide additional carbohydrates not
generally available from terrestrial
mammals; fish and shellfish are rela-
tively rich sources of vitamins D and
E; and birds are rich sources of lipids
and provide nearly twice as many kilo-
calories per 100 g of flesh as do terres-
trial mammals, shellfish, and some
fish (Table 1). Thus, different types of
animals provide different sources of
essential nutrients. Paleolithic forag-
ers could not have consumed a bal-
anced intake of essential nutrients
from a single animal group.

Plant foods provide several key nu-
trients that animal products either
lack or generally provide in lower
quantities (Table 1). These include

various carotenoids, among them be-
ta-carotene (a precursor to vitamin A),
vitamin E, and vitamin C. Although
terrestrial animal livers supply signif-
icant levels of vitamins A, C, and E,
relying on liver for E and C may lead
to dangerously toxic levels of vitamin
A. Thus humans, particularly females
during pregnancy, must moderate
liver consumption.33

A diet consisting of a relatively
equal combination of terrestrial mam-
mals, birds, shellfish, fish, and plant
foods would lead to healthier individ-
uals than would a diet based solely or
primarily on one type of animal food
such as terrestrial mammals. This
principle is heuristically illustrated in
Figure 1.

In terms of dietary efficiency, the
nutritional ecology approach does not
define this concept in terms of the net
energy return of calories from the en-
vironment. Dietary efficiency is inex-
tricably linked to consuming a diver-
sity of foods in order to obtain the full
suite of nutrients essential to optimal

TABLE 1. COMPARISON OF CALORIC AND NONCALORIC ESSENTIAL NUTRIENTS
OF 100 G OF FOODS OF VARIOUS CLASSES

Essential Nutrient

Terrestrial
Mammals
(muscle)a

Terrestrial
Mammals
(organs)b Shellfishc Birdsd Fishe Plantsf

Energy (kcal) 119 195 74 215 166 132
Fat (g) 2.8 10.0 .97 14.1 8.1 2.5
Protein (g) 22.0 20.0 12.8 21.7 21.7 8.3
Carbs (g) 0 4.0 2.6 0 0 14.8
Noncaloric
C (mg) .17 12.7 13.0 3.6 .17 32.5
Thiamin (mg) .22 .16 .08 .19 .22 .13
Riboflavin (mg) .26 2.4 .21 .20 .31 .19
Niacin (mg) 4.8 9.4 1.8 4.2 5.9 1.1
B-6 (mg) .34 .50 .06 .53 .40 .07
B-12 (mg) 4.6 27.6 49.4 .65 6.6 0
A (IU) 0 9196g 300 118 322 138
Folate (mg) 7.4 105.0 16.0 21.0 16.7 2.4
D (mcg) 0 .75 4.0 —h 8.0 0
E (mg) .20 1.2 1.0 .70 .25 2.2
Calcium (mg) 9.5 10.8 46.0 22.5 145.7 110
Iron (mg) 3.4 4.1 14.0 5.4 1.7 3.0
Potassium (mg) 338 313 314 288 416 387

a Based on average values of horse, bison, red deer, rabbit, wild boar, and reindeer.
b Based on average values of beef liver, brains, and kidneys.
c Based on the clam Lamellibranchia.
d Based on average values of grouse or partridge and duck.
e Based on average values of Atlantic salmon, sea trout, and sardines.
f Based on average values of over 200 edible plant foods found in the Mediterranean region.4
g 100 g of liver alone provides nearly 36,000 IU. A single daily serving of 35,000 to 50,000 IU may be lethal.33

h Egg yolks contain significant quantities of vitamin D; one egg yolk can supply a .60 mcg of vitamin D, almost as much as 100 g
of beef liver.
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health. This is in part because the hu-
man body rarely uses single essential
nutrients in the performance of single
tasks. In other words, a human body
functioning at optimal condition re-
quires the full suite of essential nutri-
ents to be present. As a result, a di-
verse diet is more efficient than one
based on a limited number of food
types, assuming that the daily require-
ment of calories (energy) is also met.

Without question, extracting enough
calories from the environment to sus-
tain human life is a critical factor in
long-term survival, so energy intake af-
fects human health patterns and demo-
graphic trends.1,35 A person in a steady
state of energy but at risk to health is
defined as suffering from chronic en-
ergy deficiency.36 From a nutrition per-
spective, some dietary models focus on
chronic energy deficiency in prehistory

because they are based on net caloric
return rates rather than the intake
of all essential nutrients. The nutri-
tional ecology approach suggests that
human populations can maintain lev-
els above chronic energy deficiency
but exhibit higher infant mortality
rates and shorter life expectancies
than others who may consume fewer
calories but eat a more balanced diet
of essential nutrients.

The nutritional ecology perspective
has important ramifications for the
causal and chronological relation-
ships among subsistence and demo-
graphics during the Paleolithic. For
example, nutritional ecology inter-
prets the consumption of an eclectic
diet consisting of large and small ter-
restrial game, plant foods, fish, and
shellfish as increased efficiency in es-
sential nutrient intake that would in-

crease overall human health and pos-
itively affect demographic trends. As a
result, nutritional ecology suggests
that increases in human population
densities may be a result of changes in
human diet rather than demographic
pressure instigating dietary changes.
Positive changes in Paleolithic demog-
raphy may have been the result of for-
agers diversifying their diet at specific
places during specific time periods.37

OPERATIONALIZING
THE MODEL

Is the nutritional ecology model test-
able against the archeological record?
Yes, it is. Due to an incomplete arche-
ological record and taphonomic con-
cerns, any model that purports to ex-
plain Paleolithic subsistence patterns
will run into problems with respect to
equifinality and agreements among
researchers on what constitutes ade-
quate testing procedures.38,39 Never-
theless, the nutritional ecology model
is testable through a variety of meth-
ods. One method is simply to show
diachronic trends in the relative pro-
portions of the five food types empha-
sized here through standard zooar-
cheological statistical techniques such
as NISP, MNE, MNI, MAU and Indi-
ces of Diversity.

The faunal remains of four of the
food groups emphasized here are rel-
atively sturdy and often are well pre-
served in archeological contexts, par-
ticularly caves and rockshelters. It has
long been acknowledged that a pres-
ervation bias exists with respect to the
recovery of plant remains. However,
modern excavation techniques are be-
ginning to show success in retrieving
evidence of plant use during the Pa-
leolithic in some environments.40–42

Because both plants and animals of-
ten have seasonally restricted avail-
ability, seasonality determinations
must be made, especially in areas
where caves and rockshelters provide
the only subsistence evidence. This is a
critical problem because these sites
were often used during cold months for
shelter or for special tasks throughout
the year. The conclusion that their fau-
nal remains represent the entire dietary
repertoire may be erroneous.

Stable isotope analysis of skeletal
remains used to interpret hominid di-

Figure 1. Geometric illustration of food diversity and overall human health. Each of the five
circles represents one of the five food types defined in this essay: terrestrial mammals,
shellfish, fish, birds, and plants. At the periphery, human foragers would consume only a
single food type. As groups included more diversity and balance in their subsistence base,
they would move closer to the center. All five circles intersect at the number “5,” which
represents groups foraging at the most nutritionally efficient level possible to maximize life
expectancy rates and minimize infant mortality rates.
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etary adaptations and diversity are
showing promising results.43–57 These
proxy data may illuminate trends in
dietary diversity during the Paleo-
lithic, including general trends in es-
sential nutrient intake. For example, a
tendency in the archeological record
away from the consumption of pri-
marily terrestrial mammals toward
the consumption of more equal pro-
portions of terrestrial mammals,
shellfish, fish, birds, and plants would
indicate healthier populations and
positively affect demography trend.
These interpretations based on faunal
and floral analyses, could then be fur-
ther tested through isotope analysis of
human skeletal remains, as well as the
paleopathology of those remains.58–61

Thus, the assumptions of nutritional
ecology can be satisfactorily investi-
gated through a series of methods that
act to cross-check interpretations.

NUTRITIONAL ECOLOGY AND
HUMAN EVOLUTION

The issues and questions concern-
ing the evolution of modern humans
that nutritional ecology may assist in
researching are vast in number, and
certainly cannot be fully addressed
here. Nevertheless, the Middle Paleo-
lithic-Upper Paleolithic transition in
Europe can be used as an example of
an issue that may be examined
through nutritional ecology. We make
no assumption that nutritional ecol-
ogy can explain all facets of human
evolution in all environments and dur-
ing all time periods. Any model that
made such a claim would do a serious
injustice to the vast array of environ-
mental and social circumstances that
Paleolithic peoples adapted to over
the last three million years.

Studies of later Paleolithic subsis-
tence suggest that a trend toward di-
versified diets may have occurred be-
tween the Middle Paleolithic and
Upper Paleolithic in parts of Europe62

and the Near East.28,63 By at least a
quarter of a million years ago, and
probably much earlier, hominids in
Europe had become efficient big-
game hunters.63 Recent zooarcheo-
logical and stable isotope studies sug-
gest that northern populations of
Neandertals focused their subsistence
strategies on the procurement of large

game animals,27,28,62,64 but that Nean-
dertal diets were probably more di-
verse in the southern portions of their
range.65,66 Upper Paleolithic technolo-
gies tend to be associated with an even
greater increase in food diversi-
ty.28,62,63,67 From a nutritional per-
spective, these changes did not repre-
sent reduced foraging efficiency and
subsistence stress across the transi-
tion from the Middle to Upper Paleo-
lithic, but rather marked increasingly
diversified and more nutritionally bal-
anced diets that probably led to in-
creased population fitness levels,
longer life expectancy, and, ulti-

mately, increased population densi-
ties for Upper Paleolithic foragers.

The potential implications of the
nutritional ecology approach to the
Middle Paleolithic-Upper Paleolithic
transition are complex. Quite possi-
bly, southern Neandertals incorpo-
rated greater amounts of essential nu-
trients into their diet than did the
northern Neandertals. The nutritional
ecology approach suggests that, on av-
erage, individual Neandertals in the
southern latitudes were healthier and
lived longer than their counterparts in
the northern latitudes. This may help

explain why it took Upper Paleolithic
foragers 10,000 years to subsume,
drive out, or replace the southern pop-
ulations of Neandertals, thereby par-
tially explaining the existence of the
“Ebro Frontier.”68 However, we must
also note Zilhão’s69,70 suggestion that
this delay could have been caused by
other paleoenvironmental and social
factors. If healthier Neandertal popu-
lations to the south contributed to this
delay, then it is currently unclear why
the Vindija population of Croatia oc-
curred so late. Nevertheless, relatively
late Neandertal skeletons are being re-
covered from southern Iberia,69–71 a
place with more diverse and dense ed-
ible foods than were available in cen-
tral and northern Europe.72 We hope
that those specimens will yield
enough collagen to allow the measure-
ment of stable isotopes and trace ele-
ments.

In contrast to the northern Nean-
dertals, anatomically modern human
specimens from mid-Upper Paleo-
lithic (Gravettian) sites in central and
eastern Europe show a broader di-
etary source of protein based on �13C
and �15N values. Richards and co-
workers46,47 have argued that less de-
pleted �13C values in the modern hu-
mans were due to an increase in
freshwater fish and waterfowl in the
diet, possibly as high as 50% in the
�15N values for the Kostenki sample.
There seems little doubt that the
Gravettian (ca. 27,000–21,000 BP) in
Europe witnessed the expansion of
Paleolithic peoples into regions that
previously were unoccupied or had
low population densities.73,74 This
may represent the first real “paying-
off” period in terms of lowered infant
mortality rates and longer life expect-
ancies resulting from diversified early
Upper Paleolithic diets. The subtle
shift toward greater dietary diversity
may have been sufficient to enable an-
atomically modern humans finally to
out-compete the Neandertals in cer-
tain regions. Zubrow’s75,76 computer
simulations, for example, showed that
a mere 2% difference in mortality
rates could lead to replacement.
Whether this replacement was at the
grade or species level is irrelevant to
the nutritional ecology model. That
model can accommodate invasionist
replacement, diffusionist gene flow,

The nutritional ecology
approach suggests that,
on average, individual
Neandertals in the
southern latitudes were
healthier and lived
longer than their
counterparts in the
northern latitudes. This
may help explain why it
took Upper Paleolithic
foragers 10,000 years to
subsume, drive out, or
replace the southern
populations of
Neandertals, . . .
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or in-situ mosaic evolutionary mod-
els. It only predicts health conse-
quences based on diet choices made
by hominids given particular circum-
stances in time and space; it makes no
assumptions concerning directional
trends in human evolution.

Diverse diets seem to have been a
trademark of humans in lower and
mid-latitudes during the Late Pleisto-
cene. It is ironic that dietary diversity
should be detected in the mid-Upper
Paleolithic of central Europe. This
was not a period of depressed large
game populations; on the contrary it
was the “Golden Age.”77 Binford78 and
Flannery79 assumed that the terminal
Pleistocene broadening of the diet was
the result of constant population
growth based on Upper Paleolithic
hunting success, which ultimately led
to the over-harvesting of large game.
This supposedly led to technological
innovations such as grinding stones,
nets, and weirs, which lowered han-
dling costs, thus making plants, small
game, and fish more economical.80

However, it is becoming increasingly
apparent that grinding stones should
not be considered a requisite to the
exploitation of nuts and seeds as
food.40–42,81–83 Fine-grained recovery
techniques, taphonomic studies, and
biochemical analyses have shown that
plants, small game, and fish were reg-
ularly exploited much earlier. Increas-
ingly, archeologists are pushing the
concept of a broad-spectrum adapta-
tion further back in time.46,84

It is our hope that nutritional ecol-
ogy will assist in synthesizing re-
search projects aimed at linking diet
and Paleolithic adaptations into a
more cohesive framework for under-
standing the importance of all essen-
tial nutrients to long-term human
health patterns and their demo-
graphic consequences. From an evo-
lutionary perspective, specific dietary
changes may have allowed certain
groups to out-compete rival foragers
and perhaps nonhuman predators.
This may have set in motion processes
that would have profound affects on
human history during the Holocene.
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dertaliens étaient-ils essentiellement carnivores?
résultats préliminaires sur les teneurs en Sr et en
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