Nutritional Ecology and Diachronic Trends in Paleolithic Diet and Health

BRYAN HOCKETT AND JONATHAN HAWS

Modern nutritional studies have found that diverse diets are linked to lower infant mortality rates and longer life expectancies in humans. This is primarily because humans require more than fifty essential nutrients for growth and cell maintenance and repair; most of these essential nutrients must come from outside food sources rather than being manufactured by the body itself; and a diversity of food types is required to consume the full suite of essential nutrients necessary for optimal human health. These principles and their related affects on human adaptations and demography are the hallmarks of a theoretical paradigm defined as nutritional ecology. This essay applies concepts derived from nutritional ecology to the study of human evolution. Principles of nutritional ecology are applied to the study of the Middle-to-Upper Paleolithic transition in order to broadly illustrate the interpretive ramifications of this approach. At any stage in human evolution, those hominin populations that chose to diversify their subsistence base may have had a selective advantage over competitors who restricted their diet principally to one food type, such as terrestrial mammals.

A fundamental principle of human health and nutrition is that diverse diets increase overall health patterns by lowering infant mortality rates\(^1\) and increasing average life expectancy.\(^2\) This principal is the core of the theoretical model of nutritional ecology.

Jenike\(^3\) recently defined nutritional ecology as "the interaction of diet, somatic maintenance, physical activity, and pathogenic agents as they relate to growth, body composition, development, and function in a constraining social, political, and natural environment" (p. 207). Here, however, we offer a modified definition of the concept: Nutritional ecology is the study of the relationship between essential nutrient intake and its effects on overall human health, including growth and maintenance in individuals and general demographic trends in populations. Our goals in this essay are to elaborate on the fundamental principals of nutritional ecology, which may help to clarify the consequences of dietary choices made by Paleolithic foragers at various stages of human evolution.

In order to comprehend fully long-term trends in Paleolithic diet from the perspective of nutritional ecology, it is important to understand the basic principles that underlie dietary diversity and human health patterns. With few exceptions,\(^4\) previous studies of the diet of Paleolithic foragers have focused on the consumption of fat, protein, or calories\(^7\)–\(^27\) or on the net return of calorie extraction from the environment.\(^28\)–\(^32\) Although human populations have survived and reproduced by consuming a relatively non-diverse diet, maximizing essential nutrient intake through a diversified diet can lower infant mortality rates and increase average life expectancy,\(^1\)\(^,\)\(^2\) thereby positively affecting demographic trends. The fact that modern humans require such a diverse suite of essential nutrients to achieve the maximum benefits of health and longevity suggests that this pattern evolved relatively early in hominid prehistory. Therefore, we view this pattern as analogous to a "primitive" condition or trait in cladistic analysis. Specialized diets (vegetarian or the near-exclusive consumption of animal products) may be viewed as derived dietary adaptations within the hominid lineage.

Diverse diets increase overall human health\(^1\)–\(^3\) because modern humans require dozens of essential nutrients to achieve optimal health conditions, and these are rarely found in one food item or one food group. Although the human body is capable of manufacturing some nutrients such as vitamin D, many of those that are essential must come from outside food sources. Thus, the more diverse the diet, the more diverse the intake of the essential nutrients necessary for optimal human health.

Essential nutrients are those that the human body must obtain from foods.\(^3\) Humans require approximately fifty nutrients for growth and cell maintenance and repair. These nutrients are divided into six classes:
proteins, lipids (fat), carbohydrates, vitamins, minerals, and water. These can be further divided into two groups, those that supply energy (calories) and those that do not supply energy. Proteins, fats, and carbohydrates supply energy, while vitamins, minerals, and water are noncaloric essential nutrients. Proteins, lipids, and carbohydrates provide both energy and the building blocks for tissue development and repair. Vitamins are organic molecules essential to human metabolism. Minerals are inorganic elements that play pivotal roles in cell structure and assist in metabolic processes. Water, which is essential to all life plays multifaceted, complex roles in metabolic reactions, transporting materials to cells and waste products away from cells.

The five primary food groups that supplied Paleolithic foragers with essential nutrients are terrestrial mammals, fish, shellfish, birds, and plants (Table 1). Subdividing animals by general taxonomic categories (such as terrestrial mammals, birds, shellfish, and fish) may be useful in discussions of long-term trends in human health during the Paleolithic. For example, terrestrial mammals may be lumped under a single category because most of them provide about the same proportions of essential nutrients per unit gram of flesh. However, shellfish provide additional carbohydrates not generally available from terrestrial mammals; fish and shellfish are relatively rich sources of vitamins D and E; and birds are rich sources of lipids and provide nearly twice as many kilocalories per 100 g of flesh as do terrestrial mammals, shellfish, and some fish (Table 1). Thus, different types of animals provide different sources of essential nutrients. Paleolithic foragers could not have consumed a balanced intake of essential nutrients from a single animal group.

Plant foods provide several key nutrients that animal products either lack or generally provide in lower quantities (Table 1). These include various carotenoids, among them beta-carotene (a precursor to vitamin A), vitamin E, and vitamin C. Although terrestrial animal livers supply significant levels of vitamins A, C, and E, relying on liver for E and C may lead to dangerously toxic levels of vitamin A. Thus humans, particularly females during pregnancy, must moderate liver consumption.

A diet consisting of a relatively equal combination of terrestrial mammals, birds, shellfish, fish, and plant foods would lead to healthier individuals than would a diet based solely or primarily on one type of animal food such as terrestrial mammals. This principle is heuristically illustrated in Figure 1. In terms of dietary efficiency, the nutritional ecology approach does not define this concept in terms of the net energy return of calories from the environment. Dietary efficiency is inextricably linked to consuming a diversity of foods in order to obtain the full suite of nutrients essential to optimal

Table 1. Comparison of Caloric and Noncaloric Essential Nutrients of 100 g of Foods of Various Classes

<table>
<thead>
<tr>
<th>Essential Nutrient</th>
<th>Terrestrial Mammals (muscle)a</th>
<th>Terrestrial Mammals (organs)b</th>
<th>Shellfishc</th>
<th>Birdsd</th>
<th>Fisha</th>
<th>Plantsf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kcal)</td>
<td>119</td>
<td>195</td>
<td>74</td>
<td>215</td>
<td>166</td>
<td>132</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>2.8</td>
<td>10.0</td>
<td>.97</td>
<td>14.1</td>
<td>8.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>22.0</td>
<td>20.0</td>
<td>12.8</td>
<td>21.7</td>
<td>21.7</td>
<td>8.3</td>
</tr>
<tr>
<td>Carbs (g)</td>
<td>0</td>
<td>4.0</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
<td>14.8</td>
</tr>
<tr>
<td>Noncaloric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (mg)</td>
<td>.17</td>
<td>12.7</td>
<td>13.0</td>
<td>3.6</td>
<td>.17</td>
<td>32.5</td>
</tr>
<tr>
<td>Thiamin (mg)</td>
<td>.22</td>
<td>.16</td>
<td>.08</td>
<td>.19</td>
<td>.22</td>
<td>.13</td>
</tr>
<tr>
<td>Riboflavin (mg)</td>
<td>.26</td>
<td>2.4</td>
<td>.21</td>
<td>.20</td>
<td>.31</td>
<td>.19</td>
</tr>
<tr>
<td>Niacin (mg)</td>
<td>4.8</td>
<td>9.4</td>
<td>1.8</td>
<td>4.2</td>
<td>5.9</td>
<td>1.1</td>
</tr>
<tr>
<td>B-6 (mg)</td>
<td>.34</td>
<td>.50</td>
<td>.06</td>
<td>.53</td>
<td>.40</td>
<td>.07</td>
</tr>
<tr>
<td>B-12 (mg)</td>
<td>4.6</td>
<td>27.6</td>
<td>49.4</td>
<td>.65</td>
<td>6.6</td>
<td>0</td>
</tr>
<tr>
<td>A (IU)</td>
<td>0</td>
<td>9196g</td>
<td>300</td>
<td>118</td>
<td>322</td>
<td>138</td>
</tr>
<tr>
<td>Folate (mg)</td>
<td>2.4</td>
<td>105.0</td>
<td>16.0</td>
<td>21.0</td>
<td>16.7</td>
<td>2.4</td>
</tr>
<tr>
<td>D (mcg)</td>
<td>0</td>
<td>.75</td>
<td>4.0</td>
<td>.70</td>
<td>.25</td>
<td>2.2</td>
</tr>
<tr>
<td>E (mcg)</td>
<td>.20</td>
<td>1.2</td>
<td>1.0</td>
<td>.70</td>
<td>.25</td>
<td>2.2</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>9.5</td>
<td>10.8</td>
<td>46.0</td>
<td>22.5</td>
<td>145.7</td>
<td>110</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>3.4</td>
<td>4.1</td>
<td>14.0</td>
<td>5.4</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Potassium (mg)</td>
<td>338</td>
<td>313</td>
<td>314</td>
<td>288</td>
<td>416</td>
<td>387</td>
</tr>
</tbody>
</table>

a Based on average values of horse, bison, red deer, rabbit, wild boar, and reindeer.
b Based on average values of beef liver, brains, and kidneys.
c Based on the clam Lamellibranchia.
d Based on average values of grouse or partridge and duck.
e Based on average values of Atlantic salmon, sea trout, and sardines.
f Based on average values of over 200 edible plant foods found in the Mediterranean region.4

* 100 g of liver alone provides nearly 36,000 IU. A single daily serving of 35,000 to 50,000 IU may be lethal.33

* Egg yolks contain significant quantities of vitamin D; one egg yolk can supply a .60 mcg of vitamin D, almost as much as 100 g of beef liver.
health. This is in part because the human body rarely uses single essential nutrients in the performance of single tasks. In other words, a human body functioning at optimal condition requires the full suite of essential nutrients to be present. As a result, a diverse diet is more efficient than one based on a limited number of food types, assuming that the daily requirement of calories (energy) is also met.

Without question, extracting enough calories from the environment to sustain human life is a critical factor in long-term survival, so energy intake affects human health patterns and demographic trends. A person in a steady state of energy but at risk to health is defined as suffering from chronic energy deficiency. From a nutrition perspective, some dietary models focus on chronic energy deficiency in prehistory because they are based on net caloric return rates rather than the intake of all essential nutrients. The nutritional ecology approach suggests that human populations can maintain levels above chronic energy deficiency but exhibit higher infant mortality rates and shorter life expectancies than others who may consume fewer calories but eat a more balanced diet of essential nutrients.

The nutritional ecology perspective has important ramifications for the causal and chronological relationships among subsistence and demographics during the Paleolithic. For example, nutritional ecology interprets the consumption of an eclectic diet consisting of large and small terrestrial game, plant foods, fish, and shellfish as increased efficiency in essential nutrient intake that would increase overall human health and positively affect demographic trends. As a result, nutritional ecology suggests that increases in human population densities may be a result of changes in human diet rather than demographic pressure instigating dietary changes. Positive changes in Paleolithic demography may have been the result of foragers diversifying their diet at specific places during specific time periods.

OPERATIONALIZING THE MODEL

Is the nutritional ecology model testable against the archeological record? Yes, it is. Due to an incomplete archeological record and taphonomic concerns, any model that purports to explain Paleolithic subsistence patterns will run into problems with respect to equifinality and agreements among researchers on what constitutes adequate testing procedures. Nevertheless, the nutritional ecology model is testable through a variety of methods. One method is simply to show diachronic trends in the relative proportions of the five food types emphasized here through standard zoological statistical techniques such as NISP, MNE, MNI, MAU and Indices of Diversity.

The faunal remains of four of the food groups emphasized here are relatively sturdy and often are well preserved in archeological contexts, particularly caves and rockshelters. It has long been acknowledged that a preservation bias exists with respect to the recovery of plant remains. However, modern excavation techniques are beginning to show success in retrieving evidence of plant use during the Paleolithic in some environments. Because both plants and animals often have seasonally restricted availability, seasonality determinations must be made, especially in areas where caves and rockshelters provide the only subsistence evidence. This is a critical problem because these sites were often used during cold months for shelter or for special tasks throughout the year. The conclusion that their faunal remains represent the entire dietary repertoire may be erroneous.

Stable isotope analysis of skeletal remains used to interpret hominin di-
The nutritional ecology approach suggests that, on average, individual Neandertals in the southern latitudes were healthier and lived longer than their counterparts in the northern latitudes. This may help explain why it took Upper Paleolithic foragers 10,000 years to subsume, drive out, or replace the southern populations of Neandertals...
or in-situ mosaic evolutionary models. It only predicts health consequences based on diet choices made by hominids given particular circumstances in time and space; it makes no assumptions concerning directional trends in human evolution.

Diverse diets seem to have been a trademark of humans in lower and mid-latitudes during the Late Pleistocene. It is ironic that dietary diversity should be detected in the mid-Upper Paleolithic of central Europe. This was not a period of depressed large game populations; on the contrary it was the “Golden Age.” Binford and Flannery assumed that the terminal Pleistocene broadening of the diet was the result of constant population growth based on Upper Paleolithic hunting success, which ultimately led to the over-harvesting of large game. This supposedly led to technological innovations such as grinding stones, nets, and weirs, which lowered handling costs, thus making plants, small game, and fish more economical. However, it is becoming increasingly apparent that grinding stones should not be considered a requisite to the exploitation of nuts and seeds as food. Fine-grained recovery techniques, taphonomic studies, and biochemical analyses have shown that plants, small game, and fish were regularly exploited much earlier. Increasingly, archeologists are pushing the concept of a broad-spectrum adaptation further back in time.

It is our hope that nutritional ecology will assist in synthesizing research projects aimed at linking diet and Paleolithic adaptations into a more cohesive framework for understanding the importance of all essential nutrients to long-term human health patterns and their demographic consequences. From an evolutionary perspective, specific dietary changes may have allowed certain groups to out-compete rival foragers and perhaps nonhuman predators. This may have set in motion processes that would have profound effects on human history during the Holocene.

ACKNOWLEDGMENTS

An early version of this paper was presented in a symposium chaired by Kathryn Monigal at the Society for American Archaeology meetings, held in Denver in 2002. We express our thanks to Curtis Marean for encouragement, facilitation, and helpful comments on an early draft. Rebecca Rowley, Caroline Funk, Brian Hoffman, Wendy Dirks, James Burton, Richard Sherwood, and John Hawks all read earlier versions of this paper and offered thoughtful, constructive comments. J. Haws also expresses his gratitude to Margaret Schoeninger.

REFERENCES