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Abstract

A digital model of quantum field theory is presented which describes it as a collection of data-tables having the form {X 1, ... X n;

F1, ...F j<i, where n, j Î Z and i runs from 1 to infinity. The X 1, ... X n  are to be taken as n-tuples of numbers distributed over a

lattice.  They constitute the space  over which physics is to be represented  and define a natural  calculus  within whose terms that
physics can be expressed. An illustration of this model is given in the context of j4 theory. Its implications regarding renormaliza-

tion and Haag's Theorem are discussed.

Introduction.

We are accustomed to think of physics as playing out against the backdrop of a continuous manifold of points.
For  Newton  that  manifold  was  Euclidean  3-space  –  in  which  resided  the  stars,  planets,  and  other  objects  of
interest – along with a 1-dimensional continuum, time, with respect to which these objects moved and changed.
The ground-breaking work of Einstein and Minkowski replaced this picture with that of spacetime, a pseudo-
Riemannian 4-manifold. Einstein's subsequent demonstration that gravity could be understood as an expression
of  the  geometry of  this  manifold,  and  that  that  geometry is,  itself,  an  active  participant  in  physics,  can  only
have reinforced the conviction that such manifolds are, indeed, the proper venue for physics. And we are visual
creatures; our eyes and brains present us with a picture of the world that looks like a continuous manifold. So it
is, perhaps, inevitable that we would want to represent physics to ourselves in such a way. 

This  view has  not  escaped  criticism.  Kant  argued,  very  insightfully,  that  space  and  time,  rather  than
being  true  physical  primitives,  are  modes  of  perception  characteristic  of  the  human  mind;  they  are,  in  his
opinion, categories imposed by the mind upon reality in the act of experiencing it. (Although this idea tells us
quite a bit about what reality isn't, it does not have much to say about what reality is.) More recently there have
been attempts  made  to  accommodate physics within  various information-theoretic frameworks [1].  I  will  not
review these but will only call attention to a few ideas that are relevant to the subject under our consideration.
One of these is the Virtual World Simulation Hypothesis [2],  advanced by Bostrom. According to this notion
we  and  our  reality are  being simulated  by a  "computer" (or  some equivalent  form of  information-processing
system) in much the same way that 'Sims' are simulated in the eponymous game. Of course, our simulation is
far more complicated than that of the 'Sims' – so much so that we cannot even tell that we are 'Sims.' Bostrom's
idea raises a number of provocative questions. For one thing, we must wonder whether a 'Sim' could  be sen-
tient. Lacking any profound insight into the metaphysics of consciousness, we should probably just admit that
we don't know. At least, there is no very obvious reason why it couldn't be. For another thing, we must wonder
about the "computer" and the world it  is  imagined to exist  in.  Are these things real or just  useful fictions? If
real, what are they? For more immediate purposes, another question comes to mind – how could something like
a computer represent a universe?

The Universe, Analogue or Digital? 

Most digital  interpretations of physics assign the values of their physical variables to a discreet, denumerably
infinite, lattice of spacetime points. To represent a continuous manifold in this way would require À1 addresses
at which to place this information which is, of course, not possible. Indeed, we may state, as a simple principle
of digital physics:

The universe can be represented as an infinite, denumerable, sequence of symbols drawn from a finite list. 

That is to say, everything we could ever experience in, or want to know about reality, can be represented
as  discreet  bits  of  information.  It  is  not  necessary  to  propose  any  "computer,"  existing  in  a  separate  world,
doing  anything  resembling  calculations.  Nor  is  it  necessary  to  propose  any  separate  world.  Neither  will  we
propose any "time" different from the ordinary coordinate time that Einstein has already argued away as subjec-
tive. Specifically:

The universe can be represented as a collection of À0-infinite data-tables, each reading {X 1, ... X n; F1, ...F j<i

where n denotes the number of dimensions of the space in which these addresses are to be placed, j the number
of physical variables of interest, and i runs from 1 to ¥.
 

For  the  above  description  to  be  specific  there  must  exist  an  algorithm to  which  these  quantities  and
symbols  conform.  This  algorithm  should  be  a  thing  that  is  also  representable  in  a  digital  way.  A  "physical

variable  of  interest"  –  call  it  F1
| might be a real scalar function. It might be a real covarient 4 - vector Bi  (in

which case it would consist of four real numbers). It might be a complex scalar field, j, consisting (in effect) of
two real numbers. It might be an operator that takes states (which there must be ways of specifying) into other
states. It might be almost any kind of mathematical object and we will not try to be too specific here. That any
of the X i  or F j  might be infinite  poses a problem; it  is  unclear  how an information processing system could
represent this  situation.  We will  stipulate that  no coordinate address or physical variable can ever take on an
infinite value.

These  numbers  and  other  mathematical  objects,  X i  and  F j,  are  the  actual,  irreducible,  "stuff"  that
makes up physics – they are absolute and real. There is nothing arbitrary about this sequence of 1s and 0s and
other  useful  symbols.  It  comprises  the  information  that  is  our  world.  The  means  of  its  representation  may
appear arbitrary. But  it  is  real  all  the  same. This  view is  not  unlike  that  expressed by Kleinert  in  his  World-
Crystal model [3].

As mentioned, we take an Einsteinian approach to time. That is to say, time is merely another physical
coordinate. It does not "change" or "move" or do anything different from the theory's three spatial dimensions.
The past, present, and future simply are in this theory – no different from the situation that obtains in ordinary
relativistic  physics.  Those  numbers  that  constitute  the  data-table that  is  our  universe,  and  the  algorithm they
conform to, must be regarded as facts independent of space and time. In this sense the universe is best looked at
as an "already-calculated" mathematical structure.
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Regarding the Representability and Parsimony of Information.

While  Newton  could  express  physics  in  the  language  of  differential  equations,  we  enjoy  no  such  privilege.
Newton's mathematics exists only within a continuous manifold. We have to specify, explicitly, what is meant
by "derivative" or "integral" in terms limited to numerical operations such as addition and multiplication and
the  operations of  logical selection –  the  sorts  of  operations that  information processing systems are  suited  to

performing. I cannot ask a computer to differentiate the function a2.  The computer has no natural notion of a
function and no idea what I could possibly mean by "differentiate." I can, however, tell the computer to con-

struct a data-table consisting of 106  pairs of real numbers, {a, a times a} where a is between 0 and 1. Picking
out a particular value of a, a0, I can tell the computer to find the  a closest in value to a0, subtract a0  times a0

from that  a  times  itself,  then  divide  the  result  by the  difference  between  a  and  a0.  The  result  would  be  the

derivative in question to a high degree of accuracy. In this way differentiation becomes a representable process.
It  becomes  a  prescription  telling  an  information  processing  system  how  to  treat  a  defined  set  of  numerical
values. All the mathematical operations available to a proper digital theory must be specifiable in such a way.

One  should  ask what  else  needs  to  be  specified –  what  information has  the  world  to  consist  of  –  for
things to appear to us in the way that they do? And is it desirable that a theory require "more" information than
is needed to describe our world? In perceiving an image displayed on a computer screen, or printed on paper,
one is usually looking at a large collection of finely spaced dots with nothing in between them. But they appear
as continuous lines, letters, and shapes. The eye is not aware of the empty space between the many dots. And
there  is  no  reason  for  it  to  be  –  this  space  contains  nothing  relevant  or  necessary to  the  image  in  question.
Digital physics, for our purposes anyway, suggests that reality works in a like fashion. For it to work otherwise,
for it  to be as the continuum picture describes it,  burdens physics with an increased informational cost while
affording it nothing in terms of increased explanatory power. 
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Hypercubic Lattices and Isotropy.

When solving a partial differential equation over a Cartesian lattice with a constant spacing Ε it is convenient to
approximate the derivatives of interest as:

1)     ¶xi
f @xi] = H f @xi+1D - f @xi-1DL / 2 Ε ,

2)     ¶xi,xi
f @xi] = H f @xi+1D + f @xi-1D - 2 f @xiDL / Ε2, and so forth.

Some simple, and physically important, partial differential equations lend themselves to very straightfor-
ward solution over such a lattice. Consider a field, j@xiD, satisfying the Klein-Gordon equation (we work with

just two dimensions here, x and t):

3)     (á2 + m2) j@xiD = 0 .

Writing j@xiD = eiHE t i - k xiL, we find the dispersion relation:

4)     cosHΕ EL = cosHΕ kL - Ε2 m2/2 .

For  small  energies,  or  small  Ε , this  dispersion  relation  approximates  that  of  the  familiar  continuum
solutions. As k approaches Π/Ε this relation changes and the "energy" of this plane-wave solution diverges (if m
¹  0)  then  turns  downward  –  essentially,  the  solution  duplicates  itself  in  the  other  direction  as  k  exceeds  its
critical value. This phenomenon defines the so-called Brillouin zones for this lattice, given equation 3).  Thus
the  structure  of  the  lattice,  and  the  physical  nature  of  the  equation,  impose  a  kind  of  upper  limit  on  the
momenta allowed to  particles and  waves represented thereupon. When we consider the  same situation in  the
context  of  Minkowski  spacetime we  see  that  this  upper  limit  is  direction-dependent.  If  we  consider  a  plane-
wave propagating in the (1,1,1) spatial direction we find that the separation of lattice points (in that direction of

propagation) is increased by a factor of 31�2 relative to what it would be if the wave were propagating in the x, y,

or  z  directions.  Models  of  this  kind  do  not  respect  Lorentz  or  Poincaré  invariance;  one  frame,  moving,  or
angled, with respect to another will not, in most cases, seem to contain the same physics as would be observed
in the other since the lattice over which its physical observables are defined will differ in structure. This would,
if Ε were large enough, result in observable anisotropies in the cosmic-ray energy spectrum, as has been pointed
out by Savage, et. al. [4]. 

We will adopt the symbol Dxi
 to designate the process embodied in Eq 1), Dxi,xi

 to designate that of Eq

2), etc. This new D operator is linear (as is conventional differentiation). I.e. Dx H f + gL = Dx f + Dxg. Dx H f gL
will  not,  however, equal g Dx f + f Dxg,  under  most circumstances. As a matter of nomenclature, we call the

coordinate addresses of our lattice points X Μ@iD or, simply, X Μ. We will denote the lattice L.

 Having adopted a hypercubic lattice as our computational framework it is necessary to define a metric
upon it – although it is not quite correct to describe such a thing as a metric. A metric defines distance accord-

ing to ds2 = gij dxidx j. But infinitesimals cannot be employed here. We will, instead, consider gij to be a mathe-

matical object that applies only at the coordinate address where it is defined and gives us the physical distance

between  that  address  and  its  nearest  coordinate-neighbors  –  that  distance  to  be  calculated  as gij Dxi Dx j

where Dxi designates the coordinate distance between that address and the neighbor of interest. 
 This  "metric,"  gij,  raises  and  lowers  the  indecise  that  appear in  the  equations  that  constitute  physics.

Higher-order  derivatives  of  f may  be  obtained  by  simply  regarding  lower-order  derivatives  as  new  fields,

defined over the lattice points, and redifferentiating them in the manner already specified. This "metric" allows
for  the  definition  of  past  and  future  light-cones  throughout  the  lattice.  Also,  gij  permits  the  definition  of  an

operation analogous to Newtonian integration. If we consider a function, f , defined over a region  R, we may

consider its integral to be:

5)   Ù R
f  â V = ΕN  Ú

X ΜÎR
 É det gij @X iD É f @X iD where N  denotes the dimensionality of our space (here 4).

Were we to consider general relativity we would take gij to be another physical variable of interest. But we will

not  be doing that  in  this  article.  So,  since we are  employing a  hypercubic lattice,  we take gij  to  be the  usual

Minkowski metric Ηij.
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Coordinate Systems.

If the world consisted only of electromagnetic waves propagating within an empty background "spacetime," we

could call F1 by another name, AΜ (the 4-potential), and just worry about how to associate its values with those

of the coordinate addresses defined by our lattice. We require that such an electromagnetic wave, expressed in

Feynman gauge, satisfy gij Dij AΜ = 0. (In effect, this field's components satisfy 3) with m set to 0.) This gives

us a field that looks very much like a classical electromagnetic wave (as long as its wavelength is not so short
as to approach Ε ). 

Other  writers  have  noted  that  "time  is  defined  so  that  motion  appears simple  [5]."  We will  take  this
principle a step further: Spacetime will be defined so that  the motion of light appears simple. The points com-
prising our lattice are real, numerical, coordinate addresses. But there is no way for us to determine the actual
numbers used to designate them. Neither can we know the numerical values assigned to the physical fields of
interest – we can't know what system of units Nature employs. If we wish to do physics, we will have to invent
these things for ourselves.

While our theory does not yet provide for observers, we will  cheat a little and imagine that there are,
somehow, physicists inhabiting this  world. These physicists are very clever and will figure out that they, too,
can assign quartets of real numbers to the lattice points. Since we assume that they want to make their work as
easy as possible, we can imagine them, acting rather like an infinite team of surveyors, using light rays to map
out and assign to these various points (the only places where observations can be made) their own quartets of
coordinate addresses. Unlike the coordinate addresses of the lattice, these addresses are arbitrary; they are up to
the whims of the physicists. These physicists will, probably, want to demand of their coordinate system that gij

= Ηij; this is the just simplest way for them to do things. In effect, they will have defined new physical fields,

call them xΜ@iD, or F2  if you prefer, which depend on the X Μ@iD. Now, there are infinitely many ways in which
they can to do this. Suppose that a second group of physicists relabels our lattice points with a different coordi-

nate system, x
-Μ@iD,  which also has gij= Ηij. The overall transformation x

-Μ@iD  (® X Μ@iD)  ®  xΜ@iD  is  what functions

as  a  Lorentz (or  Poincaré)  transformation in  the  context  of  this  theory [6].  This  procedure makes sense  here
only because of our choice, m = 0; this implies that |E| = |k|, allowing us to define something like a "speed of
light."  But,  in  a  general  sense,  this  theory  is  not  Lorentz  invariant.  Having  specified  a  lattice  over  which  to
define the process of differentiation we have, in effect, defined an absolute rest-frame. Physics will not look the
same to observers moving relative to it. We will revisit this matter in greater detail below.
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Towards A Realistic Model of the Universe?

What should be taken as "functions of physical interest?" One might try to represent something quite simple –
maybe the non-relativistic Schrodinger equation or something from classical physics – over such a lattice, just
to see what happens. But this would lead to no useful conclusions. While we do not know what distance-scale
this theory operates over, it certainly falls far below anything that could be called non-quantum mechanical or
non-relativistic.  It  would  be  much  better  to  take  relativistic  quantum  field  theory  (QFT)  as  the  model.  One
could  try  to  be  realistic  and  take  the  Standard  Model  as  a  template.  One  could  be  ambitious  and  consider
something  more  speculative.  But  let  us  take  the  simplest  case  as  an  example.  We  will  consider  a  real,  self-
interacting, scalar field,  j.  While such a model does not describe actual physics, it  does contain many of the
elements  we  would  expect  to  find  in  a  theory that  might,  ultimately,  do  so.  The  Lagrangian for  this  field  is
written as:

6)   L[j] = 1
2

 ID
Μ j DΜ j - m0

2 j2 -
Λ0

4!
 j4M , where Λ0  is assumed to be positive (ruling out bound states) and

small (so that perturbation theory can be employed).

QFTs  can be represented in  a  number  of  different,  yet mathematically equivalent,  ways. The Heisen-
berg Picture, and the Interaction Picture that supervenes upon it, have the distinct advantage of avoiding the use
of functionals of j in their mathematics. The employment of such functionals is problematic since it is not clear

how we could confine j to a denumerably infinite domain of possibilities in any natural or convenient way. We

will, therefore, assume that our hypothetical information processing system utilizes something like the Interac-
tion Picture in doing its work.

Ignoring Λ0

4!
 j4, we would, at least in the continuum limit, have an easy problem to solve. Requiring that

j should extremize the action corresponding to L0 (by which is meant the above Lagrangian without the interac-

tion term) we would obtain (using standard normalization conventions):

7)   j@xD = 1

V
 Ú

k
 

1

2 Ωk

He-i k x ak + ei k x ak
ÖL    (where Ωk = k0 = k2 + m0

2 ) .

Were  we  only  solving  a  partial  differential  equation  the  ak  would  be  taken  as  complex  numbers.

Instead, we interpret j as an operator which acts upon a basis of states. We define its canonical field momen-

tum, Π@xD,  and demand that that satisfy the equal-time commutation relations @j@x, tD, Π@y, tDD = i ∆3@x - yD. In
this way we arrive at the commutation relations:

8)    @ak1
, ak2

] =  Aak1
Ö, ak2

Ö] = 0,    

       @ak1
, ak2

Ö] = ∆k1 k2
.

 
It will be noted that k  is treated as a discreet variable. This is necessary if we are to work within a picture of
physics as denumerable tables of information. We restrict k to a denumerable set and call that set K.

Solutions such as e-i k x  make sense in the continuum limit but can only be useful as a guide here. We
will still demand of j that it extremize L0  (with integration being understood in the sense of Eq 5)). Since L0

involves j[x] only to second order we should be able to write:

7')   j@xD = 1

V
Ú
kÎK

Hs@k, xD ak + s*@k, xD ak
ÖL .

But it would be incorrect to assume that these s@k, xD satisfy Eq 3). The Klein-Gordon equation derives from L0

through the classical procedure of Euler and Lagrange. This procedure employs integration by parts which does
not  work here.  Therefore Eq 4)  is  not  usable.  While  we cannot  exactly solve the  problem of extremizing L0

over our lattice, we can employ a simple trick to do something just as good. We know that, in the continuum

limit,  the  extremal  solutions  can  be  expressed  as  e±i k x.  We  know  that  they  always  satisfy H¶t jL2- H¶x jL2-

I¶y jM2
- H¶z jL2+ m0

2 j2 = 0. The foregoing terms are exactly those that appear in L0. It only remains to replace

the ¶s with Ds,  since these latter represent the values actually used in our calculations. Taking j[X Μ[i]] = exp[-

ä (Ωk X 0[i] - k jX j[i])] with (j = 1,2,3) we obtain the dispersion relation:

9)   sin2 [Ε Ωk] = Ú
i

sin2 AΕ ki] + Ε2m0
2 .

Accordingly, we set:

10)   j[X Μ[i]] = 1

V
Ú
kÎK

Hs@k, X Μ@iDD ak + s*@k, X Μ@iDD ak
ÖL with

11)   s@k, X Μ@iDD = 1

2 Ωk

exp[- ä (Ωk  X 0[i] - k jX j[i])] , V  being the volume of our 3-space, and Ωk  defined by

Eq 9) with k ÎK.

To confine k to a denumerable set of values we impose periodic boundary conditions on Xi @iD, restrict-

ing  the  coordinate addresses X1 @iD, X2 @iD,  and  X3 @iD  to  values  between L  and  -L,  and  reconfiguring gij  such

that it recognizes L and -L as synonymous. In effect, the three ends of the spatial part of our lattice are stitched

together producing a 3-torus.  And we require that j  be, likewise, periodic. Now Eq 9) makes no sense when

Ε2m0
2  approaches  unity  so  we  will,  instead,  take  this  to  be  a  small  quantity.  Effectively,  |k|  cuts  off  at  very

nearly Π � H2 ΕL (at which point Ωk  reaches its maximal value). This implies that K is not only denumerable, but

finite. It also exhibits anisotropy owing to the boudary conditions imposed on L. 
Because  K  is  finite  the  s@k, X Μ@iDD  and  s*@k, X Μ@iDD  do  not  constitute  a  complete,  orthonormal,  set  of

functions. The above-mentioned equal-time commutation relations will no longer give us Eqns 8) in any exact
sense. We must therefore postulate Eqns 8) to be a part of our algorithm; they are to be regarded as true and not
dependent on anything else. It will also be observed that j no longer strictly obeys the principle of microcausal-
ity – [j[X Μ[i]],  j[X Μ[j]]]  ¹ 0 for X Μ[i] and X Μ[j]  space-like separated (although it is very nearly satisfied for
separations significantly greater than Ε ).

The creation operators ak
Öconstruct, from an assumed vacuum state |0> (that satisfies ak|0> = 0 for all

k Î KL, a Fock space of multiparticle states. A vector in this space, here designated |Ψ>,  is to be regarded as a
possible state of the universe. It is this vector that describes the world that observers would see around them-
selves. The other variable of physical interest, j,  is not directly observable. Instead, it serves to define, and to
guide, the evolution of,  |Ψ>. (We assume <Ψ|Ψ>  = 1.)

By ignoring the Λ0

4!
 j4  term, one arrives at a theory of free scalar particles – a good thing since observa-

tion suggests that  free particles do exist  as legitimate building blocks of nature.  Taking account of Λ0

4!
 j4,  the

Interaction Picture regards the vector |Ψ> as a function of time (defined here as X 0[i]) which evolves according
to:

 

12)   ä DX 0 |ΨIX 0M> = HI  |ΨIX 0M>  (where HI  designates ÙV
Λ0

4!
 j4@X ΜD â3 X and time is represented by X 0).

So physics, as described by this model, consists of two data-tables defined in tandem with one another.

One of these is represented by {X 0, X 1, X 2,X 3; j <i  and the other by {X 0; È Ψ ><i where i runs from 1 to ¥.  j

represents an  operator  and  |Ψ>  represents a  vector in  the  Fock space constructed from |0> using its  creation

operators ak
Ö(k Î K). This way of doing things is general. (Had we chosen QED as our example we would have

ended  up  with  three  data-tables,  {X 0, X 1,  X 2,X 3;  Y <i  ,  {X 0, X 1,  X 2,X 3;  AΜ <i  ,  and  {X 0;  È Ψ ><i where  Y

denotes the Dirac electron/positron field, AΜ the photon field, and È Ψ > a vector in the Fock space constructed

from the vacuum using the creation operators defined by these two fields.)
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What should be taken as "functions of physical interest?" One might try to represent something quite simple –
maybe the non-relativistic Schrodinger equation or something from classical physics – over such a lattice, just
to see what happens. But this would lead to no useful conclusions. While we do not know what distance-scale
this theory operates over, it certainly falls far below anything that could be called non-quantum mechanical or
non-relativistic.  It  would  be  much  better  to  take  relativistic  quantum  field  theory  (QFT)  as  the  model.  One
could  try  to  be  realistic  and  take  the  Standard  Model  as  a  template.  One  could  be  ambitious  and  consider
something  more  speculative.  But  let  us  take  the  simplest  case  as  an  example.  We  will  consider  a  real,  self-
interacting, scalar field,  j.  While such a model does not describe actual physics, it  does contain many of the
elements  we  would  expect  to  find  in  a  theory that  might,  ultimately,  do  so.  The  Lagrangian for  this  field  is
written as:

6)   L[j] = 1
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Λ0

4!
 j4M , where Λ0  is assumed to be positive (ruling out bound states) and

small (so that perturbation theory can be employed).

QFTs  can be represented in  a  number  of  different,  yet mathematically equivalent,  ways. The Heisen-
berg Picture, and the Interaction Picture that supervenes upon it, have the distinct advantage of avoiding the use
of functionals of j in their mathematics. The employment of such functionals is problematic since it is not clear

how we could confine j to a denumerably infinite domain of possibilities in any natural or convenient way. We

will, therefore, assume that our hypothetical information processing system utilizes something like the Interac-
tion Picture in doing its work.

Ignoring Λ0

4!
 j4, we would, at least in the continuum limit, have an easy problem to solve. Requiring that

j should extremize the action corresponding to L0 (by which is meant the above Lagrangian without the interac-

tion term) we would obtain (using standard normalization conventions):

7)   j@xD = 1

V
 Ú

k
 

1

2 Ωk

He-i k x ak + ei k x ak
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Were  we  only  solving  a  partial  differential  equation  the  ak  would  be  taken  as  complex  numbers.

Instead, we interpret j as an operator which acts upon a basis of states. We define its canonical field momen-

tum, Π@xD,  and demand that that satisfy the equal-time commutation relations @j@x, tD, Π@y, tDD = i ∆3@x - yD. In
this way we arrive at the commutation relations:
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.

 
It will be noted that k  is treated as a discreet variable. This is necessary if we are to work within a picture of
physics as denumerable tables of information. We restrict k to a denumerable set and call that set K.

Solutions such as e-i k x  make sense in the continuum limit but can only be useful as a guide here. We
will still demand of j that it extremize L0  (with integration being understood in the sense of Eq 5)). Since L0

involves j[x] only to second order we should be able to write:

7')   j@xD = 1
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Hs@k, xD ak + s*@k, xD ak
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But it would be incorrect to assume that these s@k, xD satisfy Eq 3). The Klein-Gordon equation derives from L0

through the classical procedure of Euler and Lagrange. This procedure employs integration by parts which does
not  work here.  Therefore Eq 4)  is  not  usable.  While  we cannot  exactly solve the  problem of extremizing L0

over our lattice, we can employ a simple trick to do something just as good. We know that, in the continuum

limit,  the  extremal  solutions  can  be  expressed  as  e±i k x.  We  know  that  they  always  satisfy H¶t jL2- H¶x jL2-

I¶y jM2
- H¶z jL2+ m0

2 j2 = 0. The foregoing terms are exactly those that appear in L0. It only remains to replace

the ¶s with Ds,  since these latter represent the values actually used in our calculations. Taking j[X Μ[i]] = exp[-

ä (Ωk X 0[i] - k jX j[i])] with (j = 1,2,3) we obtain the dispersion relation:

9)   sin2 [Ε Ωk] = Ú
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Accordingly, we set:

10)   j[X Μ[i]] = 1
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ÖL with

11)   s@k, X Μ@iDD = 1
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exp[- ä (Ωk  X 0[i] - k jX j[i])] , V  being the volume of our 3-space, and Ωk  defined by

Eq 9) with k ÎK.

To confine k to a denumerable set of values we impose periodic boundary conditions on Xi @iD, restrict-

ing  the  coordinate addresses X1 @iD, X2 @iD,  and  X3 @iD  to  values  between L  and  -L,  and  reconfiguring gij  such

that it recognizes L and -L as synonymous. In effect, the three ends of the spatial part of our lattice are stitched

together producing a 3-torus.  And we require that j  be, likewise, periodic. Now Eq 9) makes no sense when

Ε2m0
2  approaches  unity  so  we  will,  instead,  take  this  to  be  a  small  quantity.  Effectively,  |k|  cuts  off  at  very

nearly Π � H2 ΕL (at which point Ωk  reaches its maximal value). This implies that K is not only denumerable, but

finite. It also exhibits anisotropy owing to the boudary conditions imposed on L. 
Because  K  is  finite  the  s@k, X Μ@iDD  and  s*@k, X Μ@iDD  do  not  constitute  a  complete,  orthonormal,  set  of

functions. The above-mentioned equal-time commutation relations will no longer give us Eqns 8) in any exact
sense. We must therefore postulate Eqns 8) to be a part of our algorithm; they are to be regarded as true and not
dependent on anything else. It will also be observed that j no longer strictly obeys the principle of microcausal-
ity – [j[X Μ[i]],  j[X Μ[j]]]  ¹ 0 for X Μ[i] and X Μ[j]  space-like separated (although it is very nearly satisfied for
separations significantly greater than Ε ).

The creation operators ak
Öconstruct, from an assumed vacuum state |0> (that satisfies ak|0> = 0 for all

k Î KL, a Fock space of multiparticle states. A vector in this space, here designated |Ψ>,  is to be regarded as a
possible state of the universe. It is this vector that describes the world that observers would see around them-
selves. The other variable of physical interest, j,  is not directly observable. Instead, it serves to define, and to
guide, the evolution of,  |Ψ>. (We assume <Ψ|Ψ>  = 1.)

By ignoring the Λ0

4!
 j4  term, one arrives at a theory of free scalar particles – a good thing since observa-

tion suggests that  free particles do exist  as legitimate building blocks of nature.  Taking account of Λ0

4!
 j4,  the

Interaction Picture regards the vector |Ψ> as a function of time (defined here as X 0[i]) which evolves according
to:

 

12)   ä DX 0 |ΨIX 0M> = HI  |ΨIX 0M>  (where HI  designates ÙV
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 j4@X ΜD â3 X and time is represented by X 0).

So physics, as described by this model, consists of two data-tables defined in tandem with one another.

One of these is represented by {X 0, X 1, X 2,X 3; j <i  and the other by {X 0; È Ψ ><i where i runs from 1 to ¥.  j

represents an  operator  and  |Ψ>  represents a  vector in  the  Fock space constructed from |0> using its  creation

operators ak
Ö(k Î K). This way of doing things is general. (Had we chosen QED as our example we would have

ended  up  with  three  data-tables,  {X 0, X 1,  X 2,X 3;  Y <i  ,  {X 0, X 1,  X 2,X 3;  AΜ <i  ,  and  {X 0;  È Ψ ><i where  Y

denotes the Dirac electron/positron field, AΜ the photon field, and È Ψ > a vector in the Fock space constructed

from the vacuum using the creation operators defined by these two fields.)
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What should be taken as "functions of physical interest?" One might try to represent something quite simple –
maybe the non-relativistic Schrodinger equation or something from classical physics – over such a lattice, just
to see what happens. But this would lead to no useful conclusions. While we do not know what distance-scale
this theory operates over, it certainly falls far below anything that could be called non-quantum mechanical or
non-relativistic.  It  would  be  much  better  to  take  relativistic  quantum  field  theory  (QFT)  as  the  model.  One
could  try  to  be  realistic  and  take  the  Standard  Model  as  a  template.  One  could  be  ambitious  and  consider
something  more  speculative.  But  let  us  take  the  simplest  case  as  an  example.  We  will  consider  a  real,  self-
interacting, scalar field,  j.  While such a model does not describe actual physics, it  does contain many of the
elements  we  would  expect  to  find  in  a  theory that  might,  ultimately,  do  so.  The  Lagrangian for  this  field  is
written as:

6)   L[j] = 1
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2 j2 -
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4!
 j4M , where Λ0  is assumed to be positive (ruling out bound states) and

small (so that perturbation theory can be employed).

QFTs  can be represented in  a  number  of  different,  yet mathematically equivalent,  ways. The Heisen-
berg Picture, and the Interaction Picture that supervenes upon it, have the distinct advantage of avoiding the use
of functionals of j in their mathematics. The employment of such functionals is problematic since it is not clear

how we could confine j to a denumerably infinite domain of possibilities in any natural or convenient way. We

will, therefore, assume that our hypothetical information processing system utilizes something like the Interac-
tion Picture in doing its work.

Ignoring Λ0

4!
 j4, we would, at least in the continuum limit, have an easy problem to solve. Requiring that

j should extremize the action corresponding to L0 (by which is meant the above Lagrangian without the interac-

tion term) we would obtain (using standard normalization conventions):
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He-i k x ak + ei k x ak
ÖL    (where Ωk = k0 = k2 + m0
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Were  we  only  solving  a  partial  differential  equation  the  ak  would  be  taken  as  complex  numbers.

Instead, we interpret j as an operator which acts upon a basis of states. We define its canonical field momen-

tum, Π@xD,  and demand that that satisfy the equal-time commutation relations @j@x, tD, Π@y, tDD = i ∆3@x - yD. In
this way we arrive at the commutation relations:
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It will be noted that k  is treated as a discreet variable. This is necessary if we are to work within a picture of
physics as denumerable tables of information. We restrict k to a denumerable set and call that set K.

Solutions such as e-i k x  make sense in the continuum limit but can only be useful as a guide here. We
will still demand of j that it extremize L0  (with integration being understood in the sense of Eq 5)). Since L0

involves j[x] only to second order we should be able to write:
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Hs@k, xD ak + s*@k, xD ak
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But it would be incorrect to assume that these s@k, xD satisfy Eq 3). The Klein-Gordon equation derives from L0

through the classical procedure of Euler and Lagrange. This procedure employs integration by parts which does
not  work here.  Therefore Eq 4)  is  not  usable.  While  we cannot  exactly solve the  problem of extremizing L0

over our lattice, we can employ a simple trick to do something just as good. We know that, in the continuum

limit,  the  extremal  solutions  can  be  expressed  as  e±i k x.  We  know  that  they  always  satisfy H¶t jL2- H¶x jL2-

I¶y jM2
- H¶z jL2+ m0

2 j2 = 0. The foregoing terms are exactly those that appear in L0. It only remains to replace

the ¶s with Ds,  since these latter represent the values actually used in our calculations. Taking j[X Μ[i]] = exp[-

ä (Ωk X 0[i] - k jX j[i])] with (j = 1,2,3) we obtain the dispersion relation:
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Accordingly, we set:
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exp[- ä (Ωk  X 0[i] - k jX j[i])] , V  being the volume of our 3-space, and Ωk  defined by

Eq 9) with k ÎK.

To confine k to a denumerable set of values we impose periodic boundary conditions on Xi @iD, restrict-

ing  the  coordinate addresses X1 @iD, X2 @iD,  and  X3 @iD  to  values  between L  and  -L,  and  reconfiguring gij  such

that it recognizes L and -L as synonymous. In effect, the three ends of the spatial part of our lattice are stitched

together producing a 3-torus.  And we require that j  be, likewise, periodic. Now Eq 9) makes no sense when

Ε2m0
2  approaches  unity  so  we  will,  instead,  take  this  to  be  a  small  quantity.  Effectively,  |k|  cuts  off  at  very

nearly Π � H2 ΕL (at which point Ωk  reaches its maximal value). This implies that K is not only denumerable, but

finite. It also exhibits anisotropy owing to the boudary conditions imposed on L. 
Because  K  is  finite  the  s@k, X Μ@iDD  and  s*@k, X Μ@iDD  do  not  constitute  a  complete,  orthonormal,  set  of

functions. The above-mentioned equal-time commutation relations will no longer give us Eqns 8) in any exact
sense. We must therefore postulate Eqns 8) to be a part of our algorithm; they are to be regarded as true and not
dependent on anything else. It will also be observed that j no longer strictly obeys the principle of microcausal-
ity – [j[X Μ[i]],  j[X Μ[j]]]  ¹ 0 for X Μ[i] and X Μ[j]  space-like separated (although it is very nearly satisfied for
separations significantly greater than Ε ).

The creation operators ak
Öconstruct, from an assumed vacuum state |0> (that satisfies ak|0> = 0 for all

k Î KL, a Fock space of multiparticle states. A vector in this space, here designated |Ψ>,  is to be regarded as a
possible state of the universe. It is this vector that describes the world that observers would see around them-
selves. The other variable of physical interest, j,  is not directly observable. Instead, it serves to define, and to
guide, the evolution of,  |Ψ>. (We assume <Ψ|Ψ>  = 1.)

By ignoring the Λ0

4!
 j4  term, one arrives at a theory of free scalar particles – a good thing since observa-

tion suggests that  free particles do exist  as legitimate building blocks of nature.  Taking account of Λ0

4!
 j4,  the

Interaction Picture regards the vector |Ψ> as a function of time (defined here as X 0[i]) which evolves according
to:

 

12)   ä DX 0 |ΨIX 0M> = HI  |ΨIX 0M>  (where HI  designates ÙV
Λ0

4!
 j4@X ΜD â3 X and time is represented by X 0).

So physics, as described by this model, consists of two data-tables defined in tandem with one another.

One of these is represented by {X 0, X 1, X 2,X 3; j <i  and the other by {X 0; È Ψ ><i where i runs from 1 to ¥.  j

represents an  operator  and  |Ψ>  represents a  vector in  the  Fock space constructed from |0> using its  creation

operators ak
Ö(k Î K). This way of doing things is general. (Had we chosen QED as our example we would have

ended  up  with  three  data-tables,  {X 0, X 1,  X 2,X 3;  Y <i  ,  {X 0, X 1,  X 2,X 3;  AΜ <i  ,  and  {X 0;  È Ψ ><i where  Y

denotes the Dirac electron/positron field, AΜ the photon field, and È Ψ > a vector in the Fock space constructed

from the vacuum using the creation operators defined by these two fields.)

Renormalization and Scattering.

The above scheme, as it applies to {X 0, X 1, X 2,X 3; j <i, provides a background of free particle states in terms

of which |Ψ>  is defined. The dependence of this vector on X 0  is governed by Eq 12), the solution of which is
described in standard QFT texts. Because Λ0 is small, Eq 12) can be solved using perturbation theory. Doing so

yields a series of terms, each corresponding to a Feynman diagram of j4 theory. (The fact that we are using DX 0

instead of ¶X 0  would not be expected to lead to very significant differences here.) These terms are simplified by

means of Wick's theorem. This theorem depends only on Eqns 8) and is as applicable here as it would be in the
continuum  picture.  The  resulting  contractions,  <0|T(j@xD,  j[y])|0>,  are  evaluated  by  means  of  the  contour

integral exp@-ä Ωk È t ÈD =
ä Ωk

Π Ù-¥

¥ exp@ä k0 tD
k0

2
- Ωk

2+ ä Η
 â k0 (Η ® +0) something like which ought to still work in our case.

(We have not restricted k0 to finite values. Essentially, we would replace the integral with a summation over k0.)

As Ε ® 0 those terms with internal loops give rise to integrals that are UV divergent over their internal
momenta –  something taken to indicate  trouble with the  theory at  very small  distance scales. No approxima-
tions are made in the course of deriving this result, and it is mathematically robust. Our theory would deliver a
similar  one  except  that  it  possesses a  natural  high-momentum cutoff  (L  »  Π/2Ε ) –  distances  cannot  be  arbi-
trarily small here. We would, rather, expect a result very much like that obtained by applying this cutoff to the
integrals  derived  in  the  continuum  limit.  Thus,  while  an  artifice  introduced  to  render  integrals  finite  in  the

continuum model, L becomes an advantageous result of the present one. Owing to the renormalizability of j4

theory  it  is  possible  to  subsume  the  contributions  from  these  loop  diagrams  into  redefined  values  for  the
observed mass, coupling constant, and wavefunction normalization of the theory. Specifically, if we had begun
by defining the Lagrangian as: 

6')   LR[j] = 1
2

 K f Imphys, Λphys, LM DΜ j DΜ j - gImphys, Λphys, LM j2 -
h Imphys,Λphys,LM

4!
 j4O

we would end up with a theory that consisted of particles with mass mphys interacting with a coupling constant

Λphys  only through terms that are finite. The exact numerical values of f,  g,  and h  depend upon the manner in

which the cutoff is performed [7]. Regardless of how it is performed, it should provide an realistic estimate of
what would obtain if the above theory were actually to be calculated out. So there ought to be a set of numbers
f, g, and h consistent with the world our observers experience. 

We can now return our attention to the invariance properties of this model and assume renormalization
to have been performed by choosing the required values for f, g, and h above. Any scattering event will corre-

spond  to  a  matrix  element  proportional  to Ú
X ΜÎL

 expAä Iâ kΜ
out  -  ÚkΜ

in)  X Μ]  so  kΜ  is  a  conserved  quantity  here

(with  sin2  [Ε  k0]  =  Ú
i

sin2 AΕ ki]  +  Ε2mphys
2  )  and  kiÎ  K.  But  kΜ  is  not  Lorentz  invariant  –  observers moving

relative to L, who perform a Lorentz transformation on kΜ, will find that their new vector no longer satisfies the
above  dispersion  relation.  This  poses  no  real  problem  as  the  scattering  processes  they  observe  are
"precalculated" in the rest-frame defined by L. And, since Lorentz transformations are linear, all observers will
have to agree that â kΜ  is conserved. It, actually, reduces to something of a nomenclatural issue. (What do the

moving observers want  to  call  kΜ?)  And  it  only becomes a  matter  of  concern when momenta approach |k|  »
Π/2Ε . For  smaller  momenta  (relative  to  L)  this  theory  is,  for  all  intents  and  purposes,  Lorentz  invariant.  An
important  exception  occurs  in  the  case  where  mphys  =  0.  Here  something  like  true  Lorentz  invariance  is

regained.  (These  massless  particles  can  be  considered  analogous  to  the  "photons"  used  by  our  hypothetical
physicists in the construction of their coordinate systems.) Still, the momenta allowed to these particles cuts off
at Π/2Ε [8].
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Haag's Theorem.

An  important  no-go  theorem,  due  to  R.  Haag [9],  casts  doubt  on  the  mathematical  consistency of  all  QFTs.
Adapted to our terminology it implies that, given a set of operators satisfying 8), which also possess a vacuum
state from which we can construct a Fock space, we can assemble infinitely many other such set of operators
(also satisfying 8)) for which no vacuum state, constructible from our original operators, can exist. These sets
of  operators  will  not  be  unitarily  equivalent  to  our  original  choice  and  the  physics  deriving  from  8)  must,
therefore, yield ambiguous results. Haag's argument centers on the infinitely many degrees of freedom assumed
in QFTs. After assuring us of the mathematical soundness of theories where the degrees of freedom are finite,
he  goes  on  to  state:  "If  we  pass  now  to  the  limit  N ® ¥  one  new  feature  appears.  A  possible  basis  vector
results from any distribution of integer numbers Νk  over the infinitely many oscillators. The "number' of these

possibilities is no longer countable. It is given by À0
À0 = À1."  He concludes: "The point is, however, that for

infinite N, (14) is no longer a consequence of (12). In other words, there will be different irreducible represen-
tations  of  (12)."  (By  (12)  Haag  means  our  commutation  relations  8).  By  (14)  he  means

ak|Ψ0 > = 0, defining the existence of a unique vacuum state.) But, in our theory,  K is finite; Haag's argument

cannot go forward. 
We have not, of course, proven that this theory is mathematically consistent. We have only shown that

it is not inconsistent by Haag's line of reasoning. And it is interesting to reflect that the thing that makes QFTs
inconsistent according to Haag's theorem is the same thing that makes them non-representable digitally.

Conclusion.

The example of a simple QFT has been realized over a hyperbubic lattice L. To do this in a way that is calcula-

ble  we  have  introduced  two  data-tables  –  {X 0, X 1,  X 2,X 3;  j <i  and  {X 0;  È Ψ ><i .  And  we  have  specified

algorithms to  which  these  data-tables must  conform (these  employing only simple logical operations and  the
notion of  differentiation implied by the  lattice).  It has  been shown that  the  structure  of this  lattice imposes a
momentum cutoff at, approximately, Π/2Ε . It is argued that this (naturally dictated) cutoff provides an effective
regularization, allowing this QFT to be renormalized with all (formerly) divergent Feynman diagrams absorbed
into the values mphys and Λphys. Infinities are never involved here.

Dirac's  Interaction  Picture  has  been  used  in  formulating  the  above  approach.  But  the  mathematical
integrity  of  this  approach,  and  that  of  QFT  generally,  is  called  into  question  by Haag's  theorem. In  order  to
make the Fock space in which È Ψ > is represented separable we have introduced periodic boundary conditions

on  L  and  j.  This  has  the  effect  of  rendering  K,  the  set  of  allowed momenta,  finite,  circumventing the  Haag
proof.

Now we are left with a curious-looking picture of physics. An observer moving very fast with respect to
the  rest-frame defined  by  L  will  see  an  anisotropically distributed  set  of  momenta  available  to  his  particles.
(Whatever "Lorentz invariance" he sees in this theory derives only from the (formal) Lorentz invariance of the
algorithm defining the data-tables.) But this need not be viewed as a problem. (Instead, it offers opportunities
for the experimental verification of our idea.) Since we see no obvious anisotropy in the momenta of particles
around  us,  or  in  our  accelerators, we  may assume that  the  rest-frame defined  by L is  somewhat  close to  the
cosmic rest-frame (i.e. to our rest-frame).

The subject of gauge invariance has not been discussed; in connection with j4  theory, it does not arise.

But all realistic QFTs seem to display this property in one form or another. So it should be commented upon.
Suppose that we consider QED. The values of Ai  and Y that appear in their relevant data-tables are fixed and

absolute –  this  theory does (and must)  operate within  one fixed choice of gauge. But  what  this  is  we cannot
ever determine. Really, it  makes no difference. Our observers may relabel Ai  and Y  using whatever choice of

gauge they desire and physics will still work just fine for them. This is in no way a consequence of our theory.
It is, rather, a consequence of the nature of their QFT. Why realistic QFTs  possess this property is an interest-
ing question, but one lying outside the scope of this article. It is better to be explored in work to follow where

gij is considered a function of physical interest, defined over L.
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