

School of Engineering

Discrete Structures CS 2212 (Fall 2020)

13 – Binary Relations

© 2020 Vanderbilt University (Waseem Abbas)

Relations

Relations and Orders

Binary relations can be used to formalize the notion of (partial) ordering.

What does it mean when items are **"ordered"**? Intuitively, we think that one item has to go before another.

Example:

loca Colta

Simply Grange

> Simply Cipple

1.

3.

4.

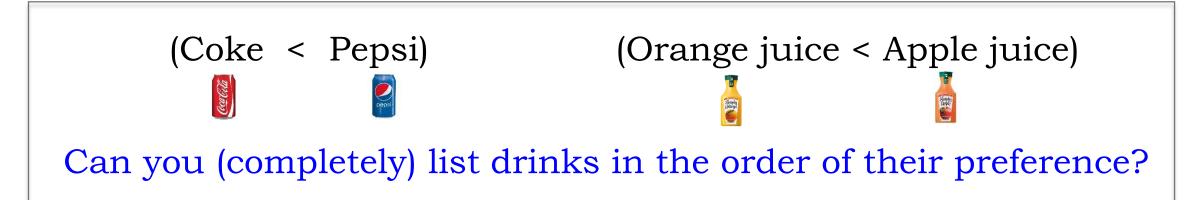
2. Pepsi

(Coke < Pepsi)

(Pepsi < Orange juice)

(Orange juice < Apple juice)

Relations and Orders



Sometimes, it is very difficult to establish a **totally ranked list** (a total order of elements), for instance, where notion of precedence between some but not all pairs is present.

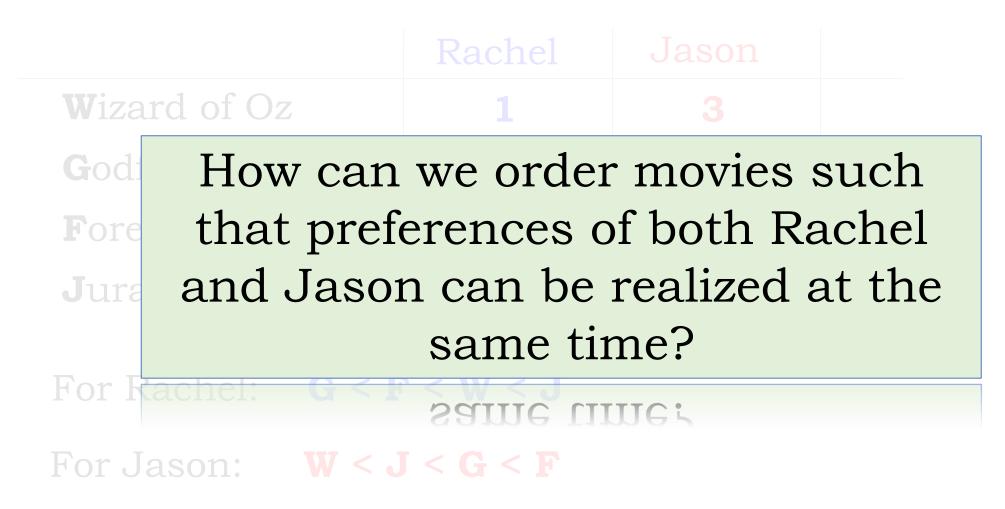
The notion of **partial order** is extremely useful here.

First, lets see what does it mean to **compare elements pairwise**.

List movies in the order of liking.

	Rachel	Jason		
Wizard of Oz	1	3		
Godfather	3	1		
F orest Gump	4	2		
J urassic Park	2	4		
Set of movies: { G , F , W , J }				
Rachel's ordering:	G < F < W	′ < J	" x < y " symbol means here that x is preferred over b, or x	
Jason's ordering:	W < J < G	· < F	must come before b.	

List movies in the order of your liking.



Instead of a totally ranked list, **compare pairwise elements** (movies).

Then, there will be some pairwise comparisons that will represent preferences of **both** Rachel and Jason.

For Rachel: $G < F < W < J$	For Jason: $W < J < G < F$
(G < F), $(G < W)$, $(G < J)$,	(W < J), $(W < G)$, $(W < F)$,
(F < W), $(F < J)$, $(W < J)$	(J < G), $(J < F)$, $(G < F)$

So, for both persons, we know (G < F) and (W < J).

So, instead of **"completely"** ordering the elements of a set, we have **"partially"** ordered them.

$\{ (G < F), (W < J) \}$

Note that its also a **relation** (as we have been studying)

So, instead of Completely ordering the Binary relations can be used to represent partial order.

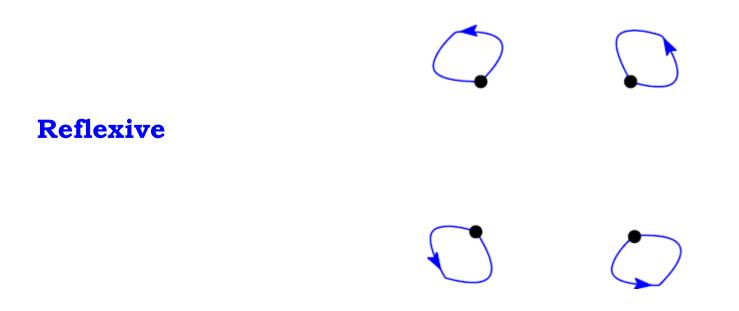
Note that its also a **relation** (as we have been studying)

Partial Order: A binary relation R, is referred to as a **partial order** if it meets the following criteria:

- 1. Reflexive
- 2. Antisymmetric
- 3. Transitive

Partial Order: A binary relation R, is referred to as a **partial order** if it meets the following criteria:

- 1. Reflexive
- 2. Antisymmetric
- 3. Transitive

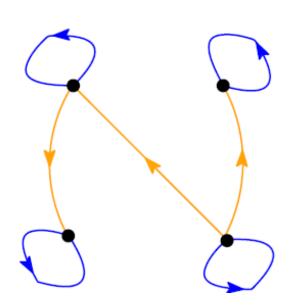


Partial Order: A binary relation R, is referred to as a **partial order** if it meets the following criteria:

- 1. Reflexive
- 2. Antisymmetric
- 3. Transitive

Reflexive

Antisymmetric



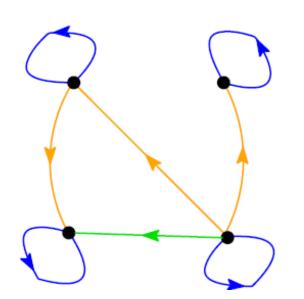
Partial Order: A binary relation R, is referred to as a **partial order** if it meets the following criteria:

- 1. Reflexive
- 2. Antisymmetric
- 3. Transitive

Reflexive

Antisymmetric

Transitive



Notation:

We use

a ≤ b to express **aRb**

noting that a partial order acts like an "ordering" operator (because "a" must come before "b").

Partial Order: A binary relation R, is referred to as a **partial order** if it meets the following criteria:

- 1. Reflexive
- 2. Antisymmetric
- 3. Transitive

Partially Ordered Set (POSET)

Partially Ordered Set: The **domain** along with a **partial order** defined on it is denoted (A, \leq) and is called a partially ordered set or poset.

Example: The \leq (*less than or equal to*) operator acting on the set of integers is a partial order, denoted by (\mathbb{Z} , \leq).

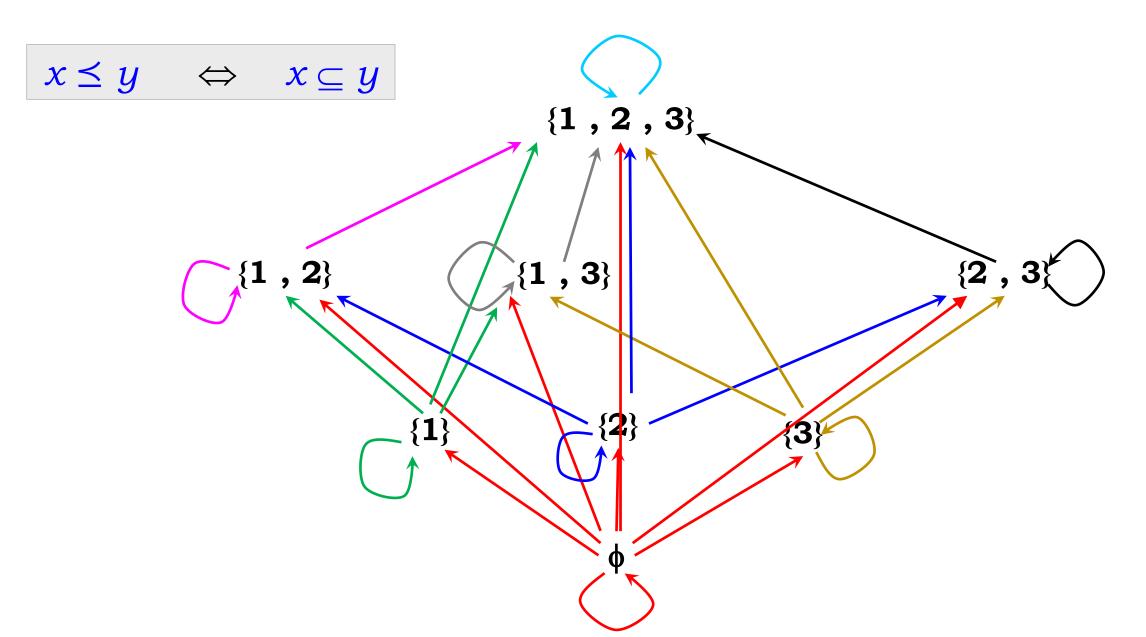
- The relation is **reflexive** $(x \le x)$
- The relation is anti-symmetric
 (if x ≤ y and y ≤ x then x = y)
- The relation is also **transitive** $(x \le y \text{ and } y \le z \text{ imply that } x \le z)$

Example:

Partial order defined on a power set.

 $X = \{ 1, 2, 3 \}$

 $P(X) = \{ \phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}$ **Partial order:**For all $x, y \in P(X)$, $x \leq y \iff x \subseteq y$



Partially Ordered Sets (POSETs)

Question: Is the following relation a **Partial Order** where the domain is the set of natural numbers and

 $x \leq y \iff x$ evenly divides y?

Answer: Yes, the above relation is a Partial Order.

- 1. (reflexive) \boldsymbol{x} evenly divides itself.
- 2. (anti-symmetric) If *x* evenly divides *y* and *y* evenly divides *x*, then *x* = *y*.
- (transitive) If *x* evenly divides *y* and *y* evenly divides *z*, then *x* evenly divides *z*.

Partially Ordered Sets (POSETs)

- Two elements of a partially ordered set, x and y, are said to be **comparable** if $x \leq y$ or $y \leq x$. Otherwise they are said to be **incomparable**.
- A POSET is a total order if every two elements in the domain are comparable. The partial order (Z, ≤) is an example of a total order.
- An element *x* is a **minimal element** in the POSET if there is no $y \neq x$ such that $y \leq x$.
- An element *x* is a **maximal element** in the POSET if there is no $y \neq x$ such that $x \leq y$.

Strict Order

A **strict order** acts similar to the < operator on the elements of its domain.

Strict Order: A relation R is a strict order if R is

- 1. Transitive
- 2. Anti-reflexive

Why haven't we mentioned anti-symmetry condition, although we do need it here?

(Because, transitive and anti-reflexive properties imply antisymmetry.) Can you show how?

Strict Order

Notation: The notation $\mathbf{a} \prec \mathbf{b}$ is used to express aRb and is read "a is less than b".

Total Order: A strict order where every pair of elements is comparable, that is for all pair of distinct elements x and y, either x < y, or y < x.

Example: The **real numbers along with the < relation** is a strict order because

- The relation is **transitive** since if a < b and b < c, then a < c.
- The relation is **anti-reflexive** because there is no real a such that a < a.

Strict Order – Some Terminology

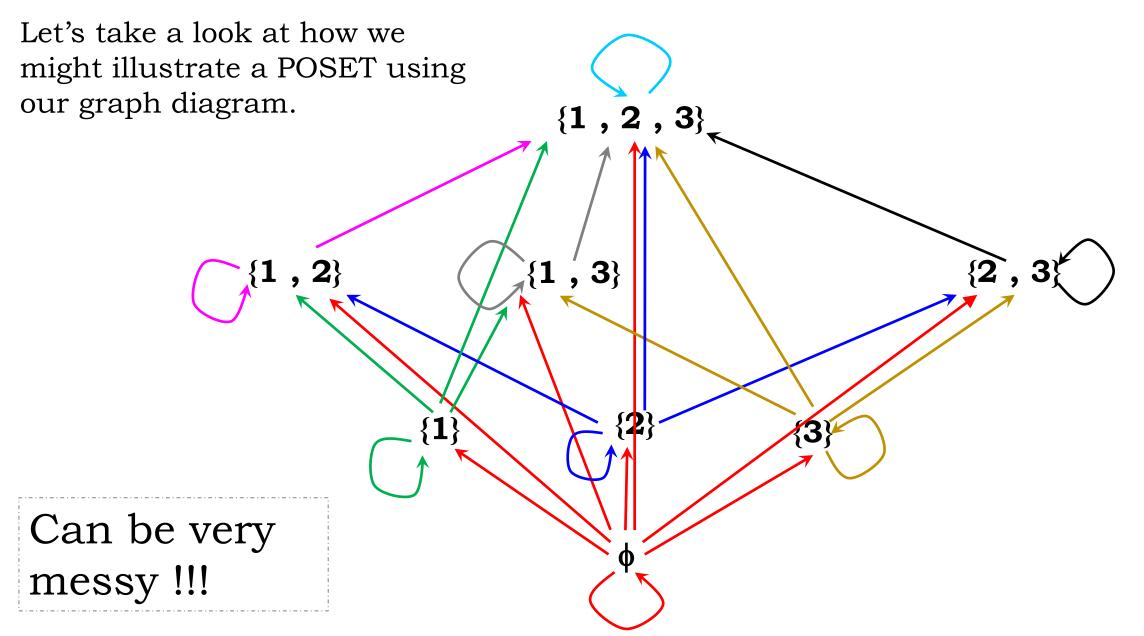
x < yIf We say that in terms of the order, x precedes y, or x is a **predecessor** of y, or *y* is a **successor** of *x*.

Strict Order – Some Terminology

If
$$\{z \mid x < z < y\} = \emptyset$$

then, we say that

x is an **immediate predecessor** of y, or y is an **immediate successor** of x



POSETs and Hasse Diagrams

A **Hasse diagram** is a graph representation of a POSET but is easier to read because

- it only lists immediate predecessor edges.
- edges are usually *oriented up* from *x* to *y* when *x* < *y*, so edge direction can be removed.

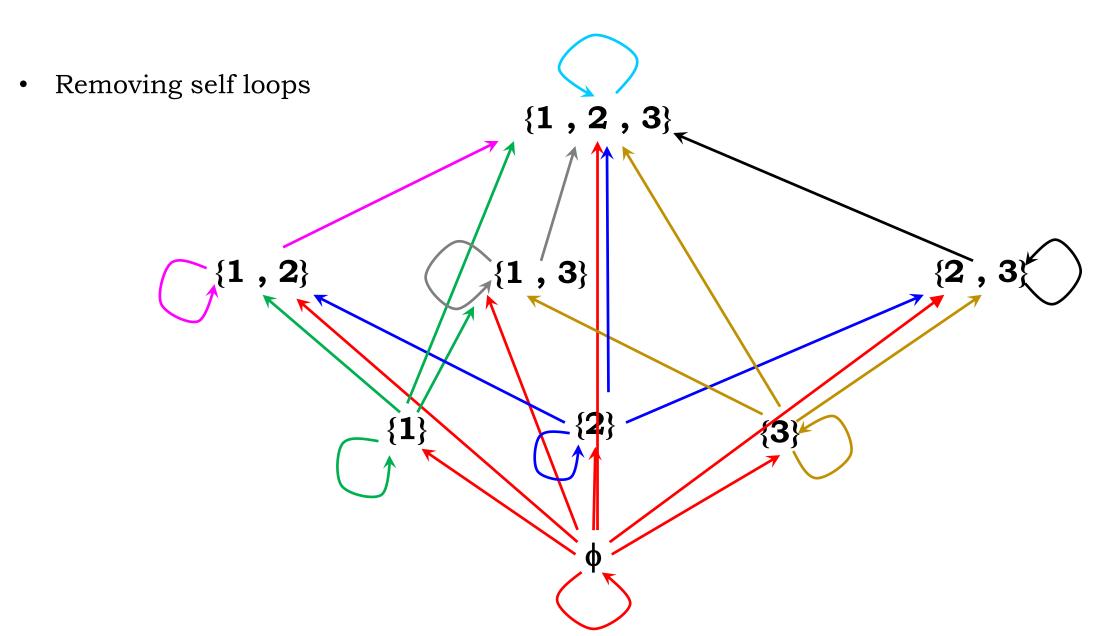
POSETs and Hasse Diagrams

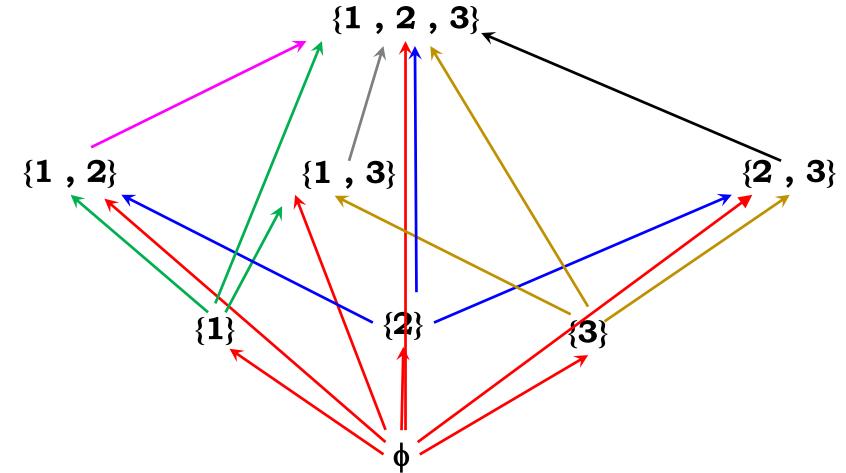
A **Hasse diagram** is a POSET diagram that...

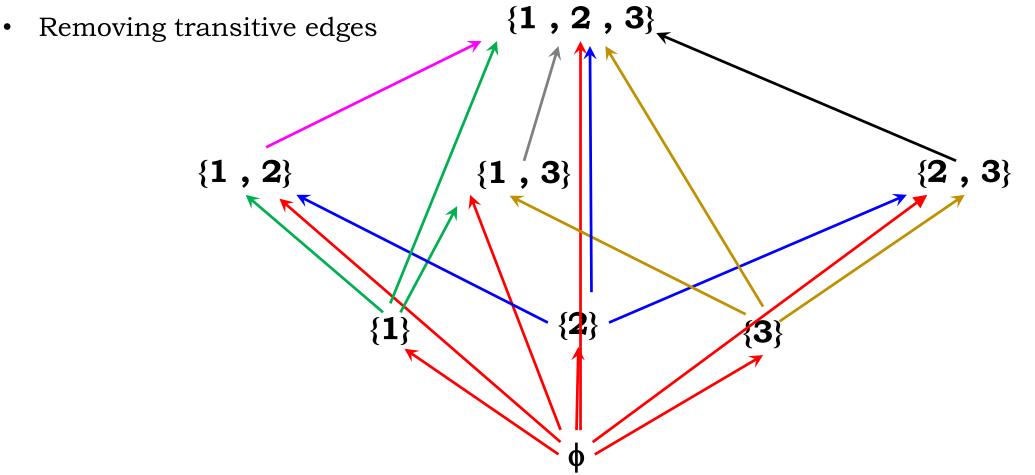
- 1. Removes all reflexive edges (self-loops).
- 2. Removes all transitive edges.

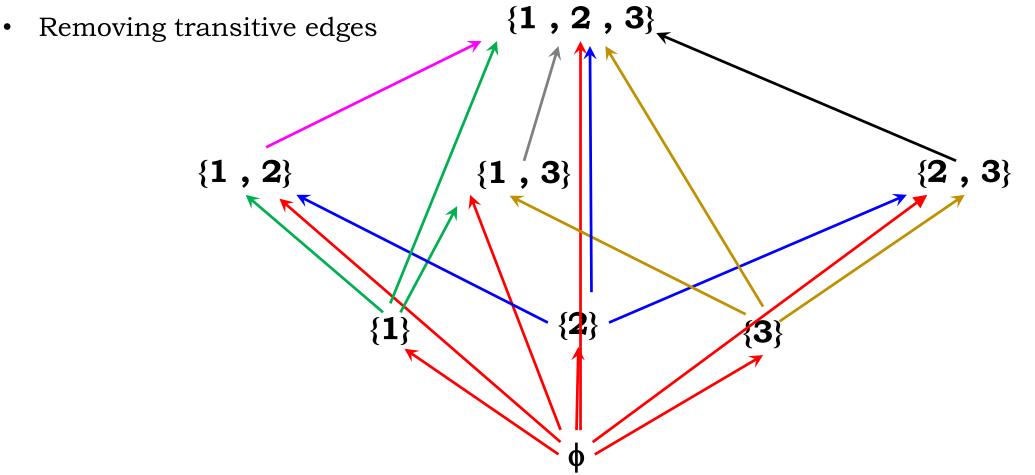
3. Removes directions on edges (they are implied).

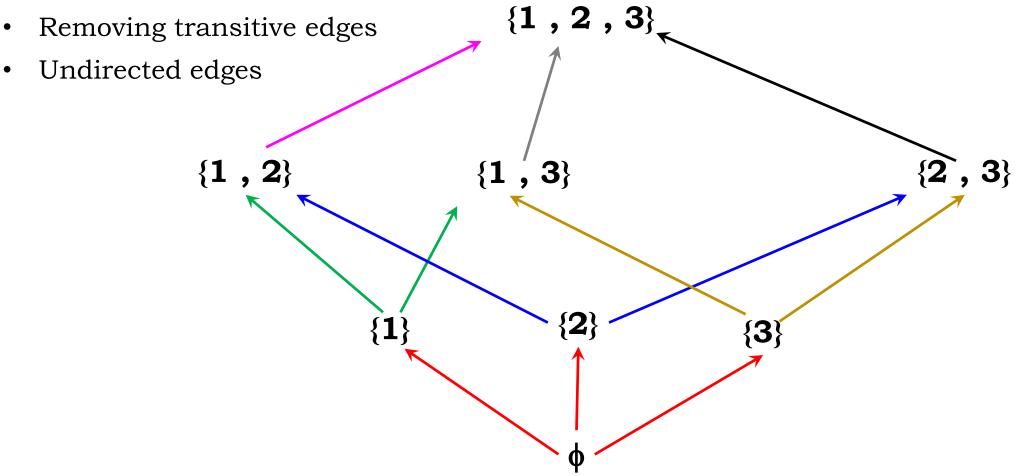
(If x < y, then x is drawn below y, and we understand that edges point upwards in the original graph)

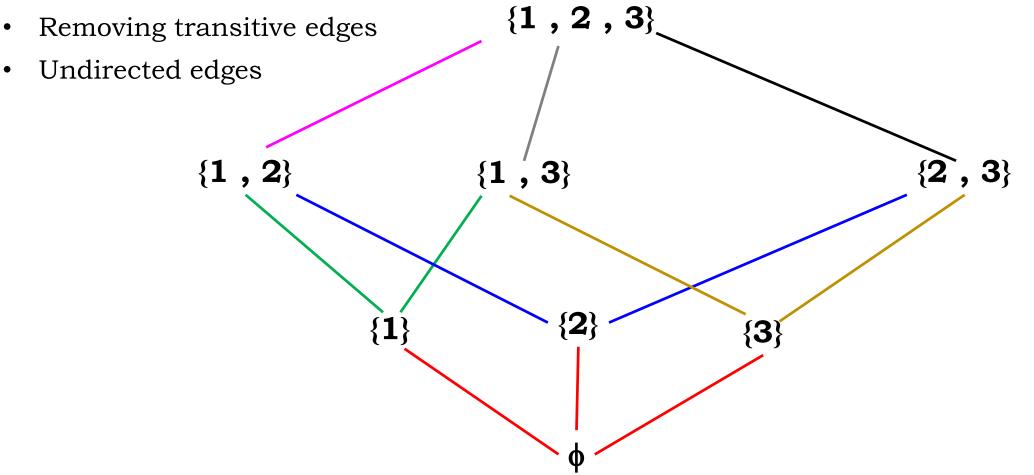






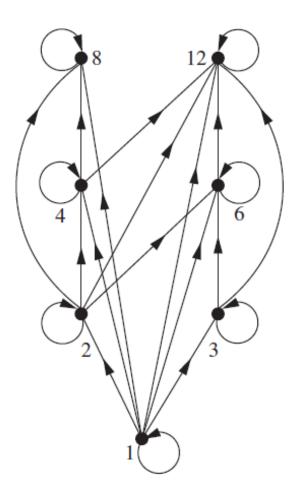






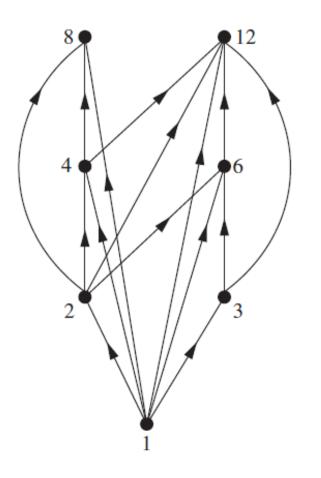
Hasse Diagram

Draw the Hasse diagram representing the partial ordering $\{(a,b) \mid a \text{ divides } b\}$ on $\{1, 2, 3, 4, 6, 8, 12\}$.



Hasse Diagram

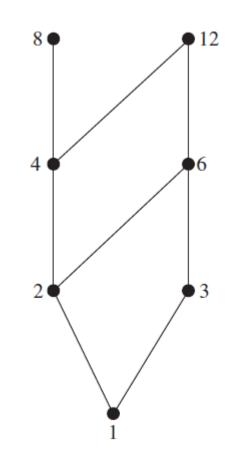
Draw the Hasse diagram representing the partial ordering $\{(a,b) \mid a \text{ divides } b\}$ on $\{1, 2, 3, 4, 6, 8, 12\}$.



Hasse Diagram

Draw the Hasse diagram representing the partial ordering $\{(a,b) \mid a \text{ divides } b\}$ on $\{1, 2, 3, 4, 6, 8, 12\}$.

- Removing self loops
- Removing edges implied by transitivity
- Arrange all edges to point upward and then make them undirected,



Hasse Diagram – Maximal and Minimal

Let S be a subset of a POSET called P.

 $x \in S$ is **minimal** element of S if there is no $y \neq x$ s.t. $y \leq x$ (x has no predecessors).

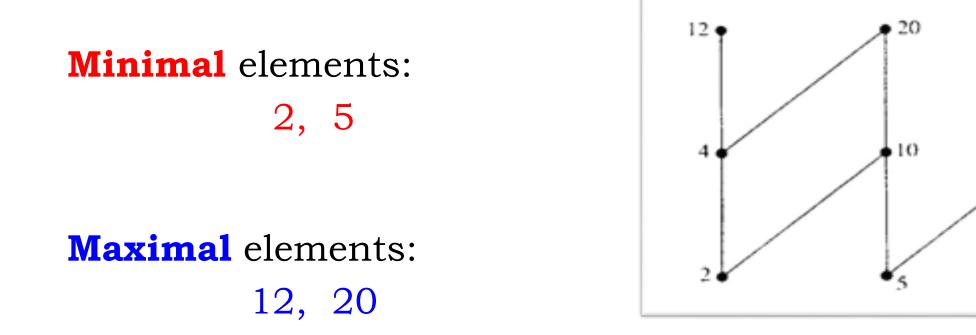
 $x \in S$ is a **maximal** element of S if there is no $y \neq x$ s.t. $x \leq y$ (*x* has no successors).

There can be **multiple** maximal or minimal elements in S.

Reminder: Some people use \leq for \leq when discussing relations.

Hasse Diagram – Maximal and Minimal

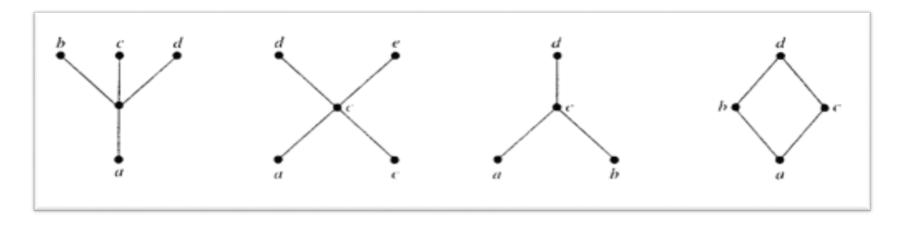
Example: Identify the **minimal** and **maximal** element(s).



Hasse Diagram – Greatest and Least

A maximal element $x \in S$ is the **greatest element** of S if x > y (a successor) for all $y \in S$.

A minimal element $x \in S$ is the **least element** of S if x < y (a predecessor) for all $y \in S$.



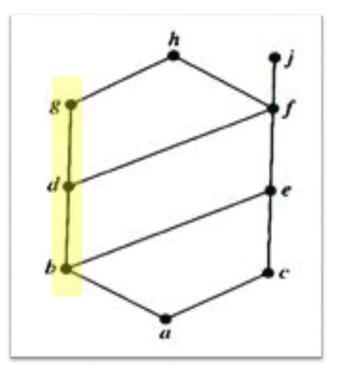
Greatest	None	None	đ	đ
Least	a	None	None	a

Hasse Diagram – Upper Bounds

Let (S, \leq) be a POSET and let A be a subset of S.

Upper bound of A: $u \in S$ s.t. $a \leq u$ for all $a \in A$.

Least upper bound of A: An upper bound of A that is a *predecessor of* <u>*all upper bounds*</u> of A. Denoted as lub(A).



Upper bounds of $\{b, d, g\}$: **g**, **h**

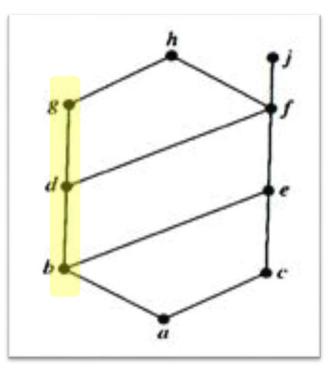
Lub of { b, d, g }: **g** (Why? Because g < h, i.e., g is a predecessor of h.)

Hasse Diagram – Lower Bounds

Let (S, \leq) be a POSET and let A be a subset of S.

```
Lower bound of A: l \in S s.t. l \leq a
for all a \in A.
```

Greatest lower bound of A: A lower bound of A that is a *successor of <u>all</u> <i>lower bounds* of A. Denoted as glb(A).



Lower bounds of $\{b, d, g\}$: **a**, **b**

Glb of { b, d, g }: **b** (Why? Because a < b, i.e., b is a successor of a.)

Equivalence: A relation R, is considered an **equivalence relation** if it is

- 1. Reflexive
- 2. Symmetric
- 3. Transitive

An equivalence relation can be thought of as a way to group elements together such that any two elements in the same group are **"equivalent"**.

To denote equivalence relation, the following notation is used: **a** ~ **b** (which is read as "a is equivalent to b")

Examples:

The relation \mathbb{R} over a set of students taking CS2212 such that

 $x \sim y \quad \leftrightarrow \quad x \text{ and } y \text{ have the same section.}$

The relation \mathbf{R} over a set of people such that

 $x \sim y \quad \leftrightarrow \quad x \text{ and } y \text{ have the same birthday.}$

Is the following an equivalence relation (RST) over the set of integers \mathbf{Z} ?

 $x \mathbf{R} y$ if and only if $x \leq y$ or x > y.

Yes

this relationship is

- reflexive,
- Symmetric, and
- transitive.

Is the following an equivalence relation (RST) over the set of integers \mathbf{Z} ?

x R y if and only if $|x - y| \le 2$.

No

- This relation is not transitive.
- Consider that (3, 5) and (5, 7) are in R but (3, 7) is not.

Equivalence Classes

If R is an equivalence relation over A, then for each $a \in A$ the **equivalence class** of a, denoted by **[a]**, is the set

 $[a] = \{ x | x R a \}.$

Consider students taking CS 2212, and $x \sim y \quad \leftrightarrow \quad x \text{ and } y \text{ have the same section.}$

Equivalence Classes

If R is an equivalence relation over A, then for each $a \in A$ the **equivalence class** of a, denoted by **[a]**, is the set

 $[a] = \{ x | x R a \}.$

Consider students taking CS 2212, and $x \sim y \quad \leftrightarrow \quad x \text{ and } y \text{ have the same section.}$ **Equivalence Classes:** {Students in Section 1} {Students in Section 4} {Students in Section 2} {Students in Section 5} {Students in Section 3}

Equivalence Classes

An equivalence class has important properties:
1. The equivalence classes over A form a partition of A.
2. For every pair a, b ∈ A we have either [a] = [b], or [a] ∩ [b] = Ø.

In other words, every element is in only one equivalence class.

Equivalence Relations and Equivalence Classes

Example: Define the relation, R on Z, so that $\langle x, y \rangle \in \mathbb{R}$ if and only if $x \mod 5 = y \mod 5$.

- Is this an equivalence relation? Yes. (R S T).
- **There are five equivalence classes** under R corresponding to the five possible values mod 5 {0,5,10...}
 - 1. $\{1, 6, 11...\}$
 - 2. {2,7,12...}
 - 3. {3,8,13...},

4. {4,9,14...}

Note how the equivalence classes form a partition of the relation.