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Chapter 5:

Relations



Relations and Orders

Binary relations can be used to formalize the notion of 

(partial) ordering.

Example:

What does it mean when items are “ordered”? Intuitively, 

we think that one item has to go before another. 

1.

2.

3.

4.

(Coke  <  Pepsi)

(Pepsi  <  Orange juice)

(Orange juice < Apple juice)



Relations and Orders

Can you (completely) list drinks in the order of their preference? 

(Orange juice < Apple juice)(Coke  <  Pepsi)

Sometimes, it is very difficult to establish a totally ranked list (a 

total order of elements), for instance, where notion of precedence 

between some but not all pairs is present.

The notion of partial order is extremely useful here.

First, lets see what does it mean to compare elements pairwise.



Partial Order

List movies in the order of liking.

Wizard of Oz

Godfather

Forest Gump

Jurassic Park

Rachel Jason

1

3

4

2

3

1

2

4

Rachel’s ordering:    G < F < W < J 

Jason’s ordering:     W < J < G < F 

“x < y” symbol 

means here that x is 

preferred over b, or x 

must come before b. 

Set of movies:    { G, F, W, J } 



Partial Order

List movies in the order of your liking.

Wizard of Oz

Godfather

Forest Gump

Jurassic Park

Rachel Jason

1

3

4

2

3

1

2

4

For Rachel:    G < F < W < J 

For Jason:     W < J < G < F 

How can we order movies such 

that preferences of both Rachel 

and Jason can be realized at the 

same time?



Partial Order

Instead of a totally ranked list, compare pairwise 
elements (movies). 

For Rachel:    G < F < W < J

(G < F) , (G < W) , (G < J) ,

(F < W) , (F < J) , (W < J) 

For Jason: W < J < G < F 

(W < J) , (W < G) , (W < F) ,

(J < G) , (J < F) , (G < F)

So, for both persons, we know (G < F) and (W < J).

Then, there will be some pairwise comparisons that will 

represent preferences of both Rachel and Jason. 



Partial Order

So, instead of “completely” ordering the 

elements of a set, we have “partially” ordered 

them.

{ (G < F) , (W < J) }

Note that its also a relation 

(as we have been studying)



Partial Order

So, instead of “completely” ordering the 

elements of a set, we have “partially” ordered 

them.

{ (G < F) , (W < J) }

Note that its also a relation 

(as we have been studying)

Binary relations can be used 

to represent partial order.



Partial Order

Partial Order: A binary relation R, is referred to as a 

partial order if it meets the following criteria:

1. Reflexive

2. Antisymmetric

3. Transitive
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Partial Order

Partial Order: A binary relation R, is referred to as a 

partial order if it meets the following criteria:

1. Reflexive

2. Antisymmetric

3. Transitive

Reflexive

Antisymmetric

Transitive



Partial Order

Notation: 

We use
a ⪯ b to express aRb

noting that a partial order acts like an “ordering” 
operator (because “a” must come before “b”). 

Partial Order: A binary relation R, is referred to as a 

partial order if it meets the following criteria:

1. Reflexive

2. Antisymmetric

3. Transitive



Partially Ordered Set (POSET)

Partially Ordered Set: The domain along with a partial 

order defined on it is denoted (A, ⪯) and is called a partially 

ordered set or poset.

Example: The ≤ (less than or equal to) operator acting on the 

set of integers is a partial order, denoted by (Z, ⪯).

• The relation is reflexive (x ≤ x)

• The relation is anti-symmetric

(if x ≤ y and y ≤ x then x = y)

• The relation is also transitive

(x ⪯ y and y ⪯ z imply that x ⪯ z)



Representing POSETs

Example: 

Partial order defined on a power set.

X = { 1, 2 , 3 }

P(X) = {  , {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3} } 

Partial order: 

For all x, y  P(X),

x ⪯ y  x  y

Domain



Representing POSETs



{1} {2} {3}

{1 , 2} {1 , 3} {2 , 3}

{1 , 2 , 3}

x ⪯ y  x  y



Partially Ordered Sets (POSETs)

Question: Is the following relation a Partial Order where 

the domain is the set of natural numbers and 

x ⪯ y  x evenly divides y ?

Answer: Yes, the above relation is a Partial Order.

1. (reflexive) x evenly divides itself.

2. (anti-symmetric) If x evenly divides y and y evenly 

divides x, then x = y.

3. (transitive) If x evenly divides y and y evenly divides z, 

then x evenly divides z.



Partially Ordered Sets (POSETs)

• Two elements of a partially ordered set, x and y, are said 

to be comparable if x ⪯ y or y ⪯ x. Otherwise they are 

said to be incomparable. 

• A POSET is a total order if every two elements in the 

domain are comparable. The partial order (Z,  ) is an 

example of a total order.

• An element x is a minimal element in the POSET if there 

is no y ≠ x such that y ⪯ x. 

• An element x is a maximal element in the POSET if 

there is no y ≠ x such that x ⪯ y.



Strict Order

Strict Order: A relation R is a strict order if R is

1. Transitive

2. Anti-reflexive

A strict order acts similar to the < operator on the elements 

of its domain.

Why haven’t we mentioned anti-symmetry condition, 

although we do need it here?

(Because, transitive and anti-reflexive properties imply anti-

symmetry.) 

Can you show how?



Strict Order

Notation: The notation a ≺ b is used to express aRb and is read 

"a is less than b". 

Example: The real numbers along with the < relation is a strict 

order because

• The relation is transitive since if a < b and b < c, then a < c. 

• The relation is anti-reflexive because there is no real a such 

that a < a.

Total Order: A strict order where every pair of elements is 

comparable, that is for all pair of distinct elements x and y, either 

x < y, or y < x. 



Strict Order – Some Terminology

If x < y
We say that in terms of the order,

x precedes y, or

x is a predecessor of y, or 

y is a successor of x.



Strict Order – Some Terminology

If {z | x < z < y } =  ,

then, we say that 

x is an immediate predecessor of y, or 

y is an immediate successor of x

({z | x < z < y } = , basically means that nothing comes 

between x and y).



Representing POSETs



{1} {2} {3}

{1 , 2} {1 , 3} {2 , 3}

{1 , 2 , 3}

Can be very 

messy !!!

Let’s take a look at how we 

might illustrate a POSET using 

our graph diagram.



POSETs and Hasse Diagrams

A Hasse diagram is a graph representation 

of a POSET but is easier to read because 

• it only lists immediate predecessor 

edges. 

• edges are usually oriented up from x to 

y when x < y, so edge direction can be 

removed.



POSETs and Hasse Diagrams

A Hasse diagram is a POSET diagram that…

1. Removes all reflexive edges (self-loops).

2. Removes all transitive edges.

3. Removes directions on edges (they are implied). 

(If x < y, then x is drawn below y, and we understand that edges point 

upwards in the original graph)



Representing POSETs



{1} {2} {3}

{1 , 2} {1 , 3} {2 , 3}

{1 , 2 , 3}
• Removing self loops
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Representing POSETs



{1} {2} {3}

{1 , 2} {1 , 3} {2 , 3}

{1 , 2 , 3}
• Removing self loops

• Removing transitive edges

• Undirected edges



Hasse Diagram

Draw the Hasse diagram representing the partial ordering 
{(a,b)| a divides b} on {1, 2, 3, 4, 6, 8, 12}.



Hasse Diagram

Draw the Hasse diagram representing the partial ordering 
{(a,b)| a divides b} on {1, 2, 3, 4, 6, 8, 12}.

• Removing self loops



Hasse Diagram

• Removing self loops

• Removing edges implied 

by transitivity

• Arrange all edges to point 

upward and then make 

them undirected,

Draw the Hasse diagram representing the partial ordering 
{(a,b)| a divides b} on {1, 2, 3, 4, 6, 8, 12}.



Hasse Diagram – Maximal and Minimal

Reminder: Some people use ≤ for ⪯ when discussing

relations.

Let S be a subset of a POSET called P. 

x  S is minimal element of S if there is no y ≠ x s.t. y ⪯ x

( x has no predecessors ). 

x  S is a maximal element of S if there is no y ≠ x s.t. x ⪯ y 

(x has no successors).

There can be multiple maximal or minimal elements in S.



Hasse Diagram – Maximal and Minimal

Example: Identify the minimal and maximal element(s).

Minimal elements:

2, 5

Maximal elements:

12, 20



Hasse Diagram – Greatest and Least

A minimal element x  S is the  least element of S  if   

x < y (a predecessor) for all y  S. 

A maximal element x  S is the greatest element of S  if 

x > y (a successor) for all y  S. 

Greatest None None d d

Least a None None a



Hasse Diagram – Upper Bounds

Upper bound of A: u  S s.t. a ⪯ u

for all a  A.

Let (S, ⪯) be a POSET and let A be a subset of S. 

Least upper bound of A: An upper 

bound of A that is a predecessor of 

all upper bounds of A. Denoted as 

lub(A).

Upper bounds of { b, d, g }:  g , h    

Lub of { b, d, g }:  g   ( Why? Because g < h, i.e., g is a predecessor of h. )



Hasse Diagram – Lower Bounds

Lower bound of A: l  S s.t. l ⪯ a 

for all a  A.

Let (S, ⪯) be a POSET and let A be a subset of S. 

Greatest lower bound of A: A lower 

bound of A that is a successor of all

lower bounds of A. Denoted as 

glb(A).

Lower bounds of { b, d, g }:  a , b    

Glb of { b, d, g }:  b   ( Why? Because a < b, i.e., b is a successor of a. )



Equivalence Relations (RST)

Equivalence: A relation R, is considered an equivalence 

relation if it is

1. Reflexive

2. Symmetric

3. Transitive

An equivalence relation can be thought of as a way to 

group elements together such that any two elements in 

the same group are “equivalent”.



Equivalence Relations (RST)

To denote equivalence relation, the following notation is used:

a ~ b (which is read as  "a is equivalent to b” )

Examples:

The relation R over a set of people such that 

x ~ y ↔ x and y have the same birthday.

The relation R over a set of students taking CS2212 

such that 

x ~ y ↔ x and y have the same section.



Equivalence Relations (RST)

Is the following an equivalence relation (RST) over 

the set of integers Z?

x R y if and only if    x ≤ y or x > y.

Yes 

this relationship is 

• reflexive, 

• Symmetric, and

• transitive.



Equivalence Relations (RST)

Is the following an equivalence relation (RST) over 

the set of integers Z?

x R y if and only if    |x – y| ≤ 2 .

No 

• This relation is not transitive. 

• Consider that (3, 5) and (5, 7) are in R but 

(3, 7) is not.



Equivalence Classes

If R is an equivalence relation over A, then for each 

a  A the equivalence class of a, denoted by [a], is 

the set 

[a] = { x | x R a }.

Consider students taking CS 2212, and 

x ~ y ↔ x and y have the same section.



Equivalence Classes

If R is an equivalence relation over A, then for each 

a  A the equivalence class of a, denoted by [a], is 

the set 

[a] = { x | x R a }.

Consider students taking CS 2212, and 

x ~ y ↔ x and y have the same section.

Equivalence Classes:

{Students in Section 1} {Students in Section 4}

{Students in Section 2} {Students in Section 5}

{Students in Section 3}



Equivalence Classes

An equivalence class has important properties:

1. The equivalence classes over A form a 

partition of A.

2. For every pair a, b  A we have 

either [a] = [b], or [a]  [b] = . 

In other words, every element is in 

only one equivalence class.



Equivalence Relations and Equivalence Classes

Example: Define the relation, R on Z, so that 〈x, y〉 ∈ R if and 

only if x mod 5 = y mod 5. 

• Is this an equivalence relation? Yes. (R S T).

• There are five equivalence classes under R corresponding 

to the five possible values mod 5 {0,5,10…}

1. {1,6,11…}

2. {2,7,12…}

3. {3,8,13…},

4. {4,9,14…}

Note how the equivalence 

classes form a partition of 

the relation.


