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Abstract: The phenomenon where an undesirable 
nonlinear effect gives significantly degraded system 
performance, and becomes the major drawback for optical 
communication systems is known as Four wave mixing 
(FWM). To reduce FWM crosstalk in optical 
communication systems, the use of unequally spaced 
channels has been proposed. One of the unequal bandwidth 
channel allocation technique is designed by using the 
concept of Golomb Ruler that allows the gradual 
computation of a channel allocation set to result in an 
optimal point where degradation caused by FWM is 
minimal. In this paper we will optimize the Golomb Ruler 
Sequence by computing hard Computing (Exhaust 
Algorithm and Search Algorithm) and Soft Computing 
(Genetic and Biogeography based Algorithm) Algorithms. 
The result of algorithms compared and observed that soft 
computing algorithms perform better than the hard 
computing algorithms. 

Keywords: Four wave Mixing (FWM), Optimal Golomb 
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I. INTRODUCTION 

Optical wavelength-division multiplexing (WDM) is a 

promising technique to utilize the ultra wide optical fiber 
bandwidth at low-loss region and transmit, in principle, 

more than 100 channels simultaneously [1], [2]. Among the 

fiber nonlinearities, which are a major problem in WDM 

systems, the FWM is the most serious one because it 

involves a lower optical input power than other 

nonlinearities [1]–[3]. Four-wave mixing (FWM) is defined 

as a nonlinear process in which three waves of frequencies 

fa, fb, and fc (c≠a,b) interact through the third-order electric 

susceptibility of the optical fiber [4] to generate a wave of  

frequency:   

 

  f abc = f a + f b -f c (1)               
 

As a result of this, three co-propagating waves give rise, 

by FWM, to nine new optical waves [2]. This process will 

take place for every possible choice of three channel waves 

in a WDM system, therefore, suppose if the system has only 

ten channels, hundreds of new frequencies are generated by 

FWM. The conventional WDM systems have channels that 

are usually assigned with centre frequencies (or wave- 

lengths) which are equally spaced from each other. As a 

result of this the FWM problem cannot be solved only by 

increasing channel spacing, which can only decrease the 
chance and magnitude of the spectral sidebands of unwanted 

FWM signals trying to enter the pre-assigned channels. 

Although severe crosstalk can be resulted since there is still 

very high probability that FWM signals may fall into the 

WDM channels. In order to reduce the four-wave mixing 

effect in WDM systems, many unequally spaced channel 

allocation methods [5] are proposed. However, an increase 

in the bandwidth requirement is observed as compared to 

equally spaced channel allocation. Using the concept of 

Optimal Golomb ruler (OGR) a bandwidth allocation 

algorithm is presented here to reduce the FWM effect 

resulting in the improvement of the performance of the 

WDM system without increasing any additional cost in 
terms of bandwidth. 

 

Golomb rulers represent a class of problems known as 

NP–complete [6]. Unlike the traveling salesman problem 

(TSP), which may be classified as a complete ordered set, 

the Golomb ruler may be classified as an incomplete 

ordered set. For higher order models, the exhaustive search 

[7], [8] of such NP–complete problems is impossible. As 

another mark is added to the ruler, the time required to 

search the permutations and to test the ruler becomes 

exponentially larger. Several different algorithms to tackle 
the Golomb ruler problem such as exact methods [7], [8], 

constraint programming [9], local searches [10] and 

exhaustive parallel search [11] have been studied. The 

success of soft computing algorithms such as Genetic 

Algorithms (GAs) [12]–[15] and Biogeography Based 

Optimization (BBO) [16]–[18] and Big Bang–Big Crunch 

(BB–BC) evolution theory [19], [20] in finding relatively 

good solutions to such NP–complete problems provides a 

good starting point for algorithms of finding OGR 

sequences. Hence, soft computing based algorithms seem to 

be very effective solutions for such problems. No doubt, 

these algorithms do not give the best/exact solutions but 
reasonably good solutions are available at given cost. This 

paper will introduce various hard computing and soft 

computing algorithms and their comparison. The remainder 

of this paper is organized as follows: Section II introduces 

the concept of Golomb rulers. Section III describes the 

various hard computing and soft computing algorithms. 

Section IV provides the comparison of these algorithms. 

Section V presents some concluding remarks.  

 

II. GOLOMB RULER BASED ALLOCATION 
The term ‘‘Golomb ruler’’ refers to a set of positive 

integer values, such that any two different pairs of numbers 
from the set have not the same difference. It is similar to a 
ruler constructed in a way that no two pairs of marks 
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measure the same distance. An example of the Golomb ruler 
is shown in Fig. 1.  An Optimal Golomb Ruler is the 
shortest ruler possible for a given number of marks [21]. 
Therefore applying OGR to the channel allocation problem, 
it is possible to achieve the smallest distinct number to be 
used for the channel allocation. Since the difference 
between any two numbers is distinct, the new FWM  
frequencies generated would not fall into the one already 
assigned for the carrier channels.   

 

 

Fig. 1. A Golomb ruler. 

 

An n-mark Golomb ruler is a set of n distinct non 

negative integers (a1, a2, .., an) called marks, such that the 

positive differences |ai-aj|, computed overall possible pairs 

of different i, j = 1,… n with i≠j are distinct. Let an be the 

largest integer in an n-mark Golomb ruler. Then an OGR 

with n marks (0,...., an) is an n-mark Golomb ruler if: 

 

1. There exists no other n-mark Golomb ruler having 
smaller largest mark an, and 

2. The ruler is written in a canonical form as the‘smaller’ of 

the equivalent rulers (0, a2, …, an) and(0,...an–a2, an), 

where smaller means the first differing entry is less than the 

corresponding entry in the other ruler. 

 

The unequal-spaced channel allocation design begins 

with the division of the available optical bandwidth into 

equal frequency slots of width Δf [21]. Let f0 be the center 

frequency of the first channel and fi = f0+ni Δf be the center 

frequency of the ith channel (or slot), where the integer ni 
represents the slot number of the ith channel and N is the 

total number of channels .In addition, mi = ni+1-ni is 

defined as the channel spacing (in integer) between the ith 

and (i+1)th channels for i ={1,2,3,.., N-1}. Therefore, the 

new frequencies fijk’s created by FWM in Eq.(1)[2]can 

equivalently be written in terms of slot number nijk so that 

 nijk = ni + nj -nk    (2) 

for i, j, k_[1, N] and k≠{i,j}. In other words, to ensure that 

no FWM signals can fall on the pre-assigned WDM 

channels, the channel-allocation problem can be treated as 

finding a set of distinct slot numbers so that nijk≠ {n1, n2, 

n3,…, nN}. To further formulate the allocation problem, we 
consider the physical system parameters. The slot width Δf 

should be large enough to accommodate the optical signal in 

a channel with minimum distortion, even with some 

instability in channel frequencies. On the other hand, to 

reduce unwanted spectral sidebands entering into a desired 

channel, the channel frequency-separation Δfc should also 

be large enough. For example, to have reasonable system 

performance, Forghieri [2] suggested the required minimum 

values of slot width (i.e., Δf ≥2R) and channel-to-channel 
separation (i.e., Δfc ≥10R) as an integer multiple of bit rate 

in order to avoid significant crosstalk created by FWM 

spectra and adjacent WDM channels, respectively. These 

two requirements impose a constraint that relates the 

minimum channel separation to the slot width (i.e., Δfc = 

nΔf) in terms of an integer multiple n. 

Constraint1: Since mi = ni+1-ni (3) denotes the integer 

channel spacing between the ith and(i+1)th channels, the 

inequality mi≥n must be satisfied for all i= {1, 2,3, .., N-1}. 

Furthermore, to minimize the total optical bandwidth 

occupied by the WDM channels, an additional constraint on 

the total number of slots is needed while solving the 
channel-allocation problem. 

Constraint2: The total number of slots 

 S =Σmi = nN    (4) must be as small as 

possible. A lower bound to the total optical bandwidth 

required Bun can be found just from the condition that the 

mi’s must be different from each other(and larger than n). It 

follows that [2] 

Bun ≥[1+((N/2)-1)/n]Beq  (5) where,  

Beq =(N-l) Δfc is the total optical bandwidth of a 

conventional WDM system with the channels equally 

spaced. Fig. 2  shows the bandwidth expansion factor, 
defined as Bun/Beq, versus the number N of channels in the 

WDM system for various values of the minimum separation 

parameter n. It can be observed that for n≥5 and up to 

10channels the lower bound is achievable. In general, for 

any value of N and n there are several optimum solutions. 
 

 
 

Fig.2. Bandwidth expansion factor (Bun/Beq) vs number of channels for 

various values of N = ΔFc/ΔF. 

 

III. ALGORITHMS TO GENERATE & OPTIMIZE THE GOLOMB 

RULER 

A. Hard Computing Algorithms 

The two hard computing algorithms to construct the 

Golomb ruler sequences are described here: 
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1) Exhaust Algorithm 

The generation procedure using Exhaust algorithm 

requires two parameters. First is the number of marks 

contained in the desired Golomb ruler and the second 

parameter sets an upper bound on the length of the Golomb 

Ruler. This procedure is recursive in nature. Here an 

existing N-mark Golomb ruler is taken and a new mark is 

appended to the right side of the ruler resulting in N+1 mark 

ruler. This procedure does not keep track of the mark 

position but it keeps a track of the spaces between the 

adjacent marks stored in arrays called spaces. These values 

represent the first row of the difference triangle for the ruler. 
The algorithm begins by initializing the first elements in the 

spaces to the distance. Then it proceeds to the next distance 

in the spaces and starting at a value of 1, increments this 

value until the distances measured by the first two entries 

are unique. Then it repeats this process for the next element 

and so on. If at any point the total distance measured by 

these elements in the spaces exceeds the maximum ruler 

length then the algorithm will back up one element and 

increment that element and add new distances from there. 

When the procedure places its last mark and finds a ruler of 

the desired length it prints this information and continues 

the search. For the ruler verification procedure, a checker is 
used to check the series of marks fulfils the requirement of 

the Golomb ruler. The checker consists of two nested loops 

which compute every possible distance measures by the first 

N-elements of the space array. It uses the distance computed 

as index into an array of Boolean values. If the array 

element indexed by the distance is already set true, then the 

distance being checked has already been measured by the 

set of marks and sequence is not a Golomb ruler. The 

procedure stops at this point, returning the result as false. If 

the distance array element is clear then the procedure sets 

that element to be true and goes on to process the next pair 
of marks. If there are no conflicts after all the distances have 

been computed, the checker returns a value of true. A 

Golomb ruler can be constructed by using the equations as 

follows; 

d1x=Mx+1-Mx    (5) 

d2x=d1x+d1x+1    (6) 
d3x=d2x+d2x+1-d1x+1   (7) 

The equation for higher order differences is simply 

extensions of third order difference equation. The first order 

differences are the distances measured between every pair of 

adjacent marks in the ruler. The second order differences are 

the distances measured between marks placed too apart on 

the ruler. Ruler with m marks will have m-1 first order 

differences, m-2 second order difference and so on up to 

single m-1 order difference. The sequences generated by 

this algorithm does not yield the optimum Golomb sequence 

as the sequences result in containing large value of marks 

than necessary. So another algorithm, i.e search algorithm is 
used to get the optimum result. 

 

 
Fig.3: Flowchart for exhaust algorithm 

 

2) Search Algorithm 

The search algorithm is used to generate optimal 

sequences for a given prime number P and minimum pulse 

separation n: 
 

N = P+1 and S = (n+(P-1)/2)P, 

 

Where N is the number of terms in the sequence and S is 

the maximum length of the slot vector 

 

1. If a prime number is denoted by P and minimum pulse 

separation n, the first delay vector(or channel spacing 

vector) m1 = [m0, m1,.., mP_1] = [n, n+1, y, n+P-1] is 

constructed.  

2. The jth delay vector mj =[l0, l1 ,…, lk,.., lP-1] for j 

={1, 2,3,.., P-1} are generated with lk = mj*k, where * 

denotes modulo-P-multiplication. 

3. The jth code word sj =[s0, s1, s2,.., sq,…, sP] with 

weight P+1 are created from mj, according to the rule 

sq = lq-1+sq-1 where q = {1,2, 3,.., P} and s0 = 0. 

4. Finally, find the code words sj’s with aperiodic 

correlation constraint one. 
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TABLE I Simulation results obtained from the search algorithm 

 

B. Soft Computing Algorithms 

The two soft computing algorithms to construct the 

Golomb ruler sequences are described here: 

1) Genetic Algorithm 

The general steps involved in a GA based optimization 

can be found in [22]. In order to apply GA based approach 

in optimizing the WDM channel allocation problem, we use 

binary encoding and generate an initial population of 

chromosomes by randomly assigning the channels to the 

slots. Bit 1 corresponds to the presence of a channel in that 

slot and 0 corresponding to the channel’s absence. Each 

chromosome has an associated cost function, assigning a 
relative merit to that chromosome. In our case, the cost 

function is decided by the average FWM power falling on 

the in-band channels in the system, assuming the channel 

allocation decided by the bit pattern in the corresponding 

chromosome. The next step is to rank chromosomes from 

best to worst. The ones having the low value of average 

FWM power are given priority since we aim at reducing the 

FWM power in the system falling on the channels. After 

this, the unacceptable chromosomes are discarded. We keep 

the top half and discard the bottom half. The next step, after 

ranking and discarding the chromosomes, is to pair the 

remaining chromosomes for mating. Once paired, new 
offspring are formed from pair-swapping genetic material. 

For each pair a random crossover point is selected. The bits 

to the right of the crossover point are swapped to form 

offspring. At this point, random mutation is introduced by 

altering a small percentage of bits in the whole population. 

We select a bit randomly out of whole population and invert 

it. Mutations facilitate the algorithm with the freedom of 

searching outside the current region of parameter space. 

After the mutations take place the cost associated with the 

offspring and mutated chromosomes is calculated, and the 

process is repeated until the stopping criterion is achieved. 
The stopping criterion is fixed as the maximum required 

average FWM power level in the system. 

The steps specific to the solution of channel allocation 

problem under consideration are summarized as follows. 

1. Generate randomly a population of unique 

individuals/chromosomes. 

2. Apply the cost function to each chromosome; this is 

defined as the average FWM power falling on the channels 

in the system. 

3. The chromosomes are ranked. A chromosome with high 

fitness corresponds to low level of average FWM power. 

4. The bottom half of chromosome are discarded. 

5. Crossover takes place to produce a new generation. 

6. Mutation takes place and changes one bit out of whole 

population. 
7. Step 2-6 are carried out till the desired solution is 

obtained. 

After applying the algorithm described above a bit 

pattern corresponding to the optimized channel allocation is 

obtained. Figure 4 shows the general Genetic Algorithm 

flowchart. 

 
Fig.4: Genetic Algorithm flowchart 

 

2) Biogeography based Optimization 

Biogeography Based Optimization is a population–based 

evolutionary algorithm (EA) developed for global 

optimization. It is based on the mathematics of 

biogeography. It is a new kind of optimization algorithm 

which is inspired by the science of Biogeography. It mimics 
the migration strategy of animals to solve the problem of 

optimization [23] – [28]. Biogeography is the study of the 

geographical distribution of biological organisms. 

Biogeography theory proposes that the number of species 

found on habitat is mainly determined by immigration and 

emigration. Immigration is the arrival of new species into a 

habitat, while emigration is the act of leaving one‘s native 

region. The science of biogeography can be traced to the 

work of nineteenth century naturalists such as Alfred 

Wallace [28] and Charles Darwin [29].  

In BBO, problem solutions are represented as islands and 

the sharing of features between solutions is represented as 
emigration and immigration. An island is any habitat that is 

geographically isolated from other habitats [30].  

The idea of BBO was first presented by Dan Simon in 

December 2008 and is an example of how a natural process 

can be modeled to solve general optimization problems [31]. 

This is similar to what has occurred in the past few decades 

with Genetic Algorithms (GAs), Artificial Neural Networks 

(ANNs), Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), and other areas of computer 

intelligence. Biogeography is nature‘s way of distributing 

species, and is analogous to general problem solving. 
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Suppose that there are some problems and that a certain 

number of candidate solutions are there. A good solution is 

analogous to an island with a high HSI (Habitat suitability 

index), and a poor solution is like an island with a low HSI.  

Features that correlate with HSI include factors such as 

distance to the nearest neighboring habitat, climate, rainfall, 
plant and animal diversity, diversity of topographic features, 

land area, human activity, and temperature [32]. The 

variables that characterize habitability are called suitability 

index variables (SIVs). High HSI solutions are more likely 

to share their features with other solutions, and HSI 

solutions are more likely to accept shared features from 

other solutions [33] – [35]. As with every other evolutionary 

algorithm, each solution might also have some probability 

of mutation, although mutation is not an essential feature of 

BBO the improvement of solutions is obtained by 

perturbing the solution after the migration operation [35].  

 BBO Algorithm to Generate Optimal Golomb Ruler 
Sequences  

The basic structure of BBO algorithm to generate OGR 

sequences is as follows:  

1. Initialize the BBO parameters: maximum species count 

i.e. population size Smax, the maximum migration rates E and 

I, the maximum mutation rate mmax, an elitism parameter 

and the number of iterations.  

2. Initialize the number of channels (or marks) ‗N‘ and the 

upper bound on the length of the ruler.  

3. Initialize a random set of habitats (integer population), 

each habitat corresponding to a potential solution to the 

given problem. The number of integers in each habitat being 

equal to the number of channels or mark input by the user.  

4. Check the golombness of each habitat. If it satisfies the 
conditions for Golomb Ruler sequence, retain that habitat; if 

it does not, delete that particular habitat from the population 

generated from the step 3.  

5. For each habitat, map the HSI (Total Bandwidth) to the 

number of species S, the immigration rate λ, and the 

emigration rate μ.  

6. Probabilistically use immigration and emigration to 

modify each non–elite habitat, then recompute each HSI.  

7. For each habitat, update the probability of its species 

count given by equation (8). Then, mutate each non–elite 

habitat based on its probability, check golombness of each 

habitat again and then recompute each HSI. 

 

 
 

where λs and μs are the immigration and emigration 

rates, when there are S species in the habitat.  

8. Is acceptable solution found? If yes then go to Step 10.  

9. Number of iterations over? If no then go to Step 3 for the 

next iteration.  

10. Stop 

 

IV. PERFORMANCE COMPARISON OF PROPOSED 

ALGORITHMS 

In this subsection, comparison of the results obtained by 

BBO and GA with EA and SA in terms of Ruler Length and 

Bandwidth is described. Table 2 illustrates the total 

bandwidth (BW) and length of ruler (RL) occupied by 

different sequences obtained by proposed algorithms for 
various channels ‘n’. It has been noted that the application 

of EQC and SA is limited to prime powers, so the total 

bandwidth and ruler length for EQC and SA are shown by a 

dash line in Table 2.  Comparing the simulation results of 

BBO and GA with EA and SA; it is observed that there is a 

significant improvement with respect to the length of the 

ruler and thus the total bandwidth occupied by the use of 

soft computing methods that is, the results gets better. As 

shown in Table 2, for smaller mark values upto 7 the ruler 

length and thus bandwidth occupied by BBO and GA is 

same. But for higher mark values, the ruler length and hence 
total bandwidth obtained by BBO algorithm slightly 

approaches to their optimal values as compared with GA. 

This is also graphically shown in Figure 5 and Figure 6 

respectively. Therefore, for most of the mark values, the 

computational cost (i.e. ruler length and total bandwidth) of 

BBO and GA will be same since it will be dominated by 

fitness function evaluation. 

 

 

Table 2: Comparison of Total Bandwidth and Ruler Length Obtained by 

Soft Computing Algorithm (BBO) with Known OGR, EA and SA, Where 

N Is The Number Of Unequal–Spaced WDM Channels 
 



IJRECE VOL. 2 ISSUE 2 APR-JUNE 2014                                                                                                               ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

                                                                                                   A UNIT OF I2OR                                                                           30 | P a g e  
   

V. CONCLUSION 

Generation of Optimal Golomb Ruler sequences using 

Hard Computing Algorithm is a high computational 

complexity problem. The purpose of soft computing is not 

necessarily to produce best results, but to produce the 

optimal results under the constraints of time and cost. This 
paper presents the application of Soft Computing Algorithm 

to solve Optimal Golomb Ruler problem. It has been 

observed that Soft Computing Algorithm produces Golomb 

Ruler sequences very efficiently. The performance is 

compared with the other existing classical approaches i.e. 

Extended Quadratic Congruence (EQC) and Search 

Algorithm (SA) in terms of the length of ruler and total 

bandwidth obtained by the sequences. The preliminary 

results indicate that Soft Computing Algorithm appear to be 

most efficient approach to such NP–complete problems. 
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