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Abstract

Blind deconvolution involves the estimation of a sharp signal or image given only a blurry
observation. Because this problem is fundamentally ill-posed, strong priors on both the
sharp image and blur kernel are required to regularize the solution space. While this
naturally leads to a standard MAP estimation framework, performance is compromised
by unknown trade-off parameter settings, optimization heuristics, and convergence issues
stemming from non-convexity and/or poor prior selections. To mitigate some of these
problems, a number of authors have recently proposed substituting a variational Bayesian
(VB) strategy that marginalizes over the high-dimensional image space leading to better
estimates of the blur kernel. However, the underlying cost function now involves both in-
tegrals with no closed-form solution and complex, function-valued arguments, thus losing
the transparency of MAP. Beyond standard Bayesian-inspired intuitions, it thus remains
unclear by exactly what mechanism these methods are able to operate, rendering un-
derstanding, improvements and extensions more difficult. To elucidate these issues, we
demonstrate that the VB methodology can be recast as an unconventional MAP problem
with a very particular penalty/prior that conjoins the image, blur kernel, and noise level in
a principled way. This unique penalty has a number of useful characteristics pertaining to
relative concavity, local minima avoidance, normalization, and scale-invariance that allow
us to rigorously explain the success of VB including its existing implementational heuristics
and approximations. It also provides strict criteria for learning the noise level and choosing
the optimal image prior that, perhaps counter-intuitively, need not reflect the statistics of
natural scenes. In so doing we challenge the prevailing notion of why VB is successful for
blind deconvolution while providing a transparent platform for introducing enhancements
and extensions. Moreover, the underlying insights carry over to a wide variety of other
bilinear models common in the machine learning literature such as independent component
analysis, dictionary learning/sparse coding, and non-negative matrix factorization.
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1. Introduction

Blind deconvolution problems involve the estimation of some latent sharp signal of interest
given only an observation that has been compromised by an unknown filtering process.
Although relevant algorithms and analysis apply in a general setting, this paper will focus
on the particular case of blind image deblurring, where an unknown convolution or blur
operator, as well as additive noise, corrupt the image capture of an underlying natural scene.
Such blurring is an undesirable consequence that often accompanies the image formation
process and may arise, for example, because of camera-shake during acquisition. Blind
image deconvolution or deblurring strategies aim to recover a sharp image from only a
blurry, compromised observation, a long-standing problem (Richardson, 1972; Lucy, 1974;
Kundur and Hatzinakos, 1996) that remains an active research topic (Fergus et al., 2006;
Shan et al., 2008; Levin et al., 2009; Cho and Lee, 2009; Krishnan et al., 2011). Moreover,
applications extend widely beyond standard photography, with astronomical, bio-imaging,
and other signal processing data eliciting particular interest (Zhu and Milanfar, 2013; Kenig
et al., 2010).

Assuming a convolutional blur model with additive noise (Fergus et al., 2006; Shan
et al., 2008), the low quality image observation process is commonly modeled as

y = k ∗ x + n, (1)

where k is the point spread function (PSF) or blur kernel, ∗ denotes the 2D convolution
operator, and n is a zero-mean Gaussian noise term (although as we shall see, these as-
sumptions about the noise distribution can easily be relaxed via the framework described
herein). The task of blind deconvolution is to estimate both the sharp image x and blur
kernel k given only the blurry observation y, where we will mostly be assuming that x and
y represent filtered (e.g., gradient domain) versions of the original pixel-domain images.
Because k is non-invertible, some (typically) high frequency information is lost during the
observation process, and thus even if k were known, the non-blind estimation of x is ill-
posed. However, in the blind case where k is also unknown, the difficulty is exacerbated
considerably, with many possible image/kernel pairs explaining the observed data equally
well. This is analogous to the estimation challenges associated with a wide variety of bilinear
models, where the observation model (1) is generalized to

y = H(k)x + n. (2)

Here y, x, and k can be arbitrary matrices or vectors, and k represents unknown parameters
embedded in the linear operator H(k). Note that (1) represents a special case of (2) when y
and x are vectorized images and H(k) is the Toeplitz convolution matrix associated with k.
Other important instances prevalent in the machine learning and signal processing litera-
ture include independent component analysis (ICA) (Hyvarinen and Oja, 2000), dictionary
learning for sparse coding (Mairal et al., 2010), and non-negative matrix factorization (Lee
and Seung, 2001).

To alleviate the intrinsic indeterminacy, prior assumptions must be adopted to constrain
the space of candidate solutions, which naturally suggests a Bayesian framework. In Sec-
tion 2, we briefly review the two most common classes of Bayesian algorithms for blind
deconvolution used in the literature, (i) Maximum a Posteriori (MAP) estimation and (ii)
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Variational Bayes (VB), and then later detail their fundamental limitations, which include
heuristic implementational requirements and complex cost functions that are difficult to dis-
entangle. Section 3 uses ideas from convex analysis to reformulate these Bayesian methods
promoting greater understanding and suggesting useful enhancements, such as rigorous cri-
teria for choosing appropriate image priors. Section 4 then situates our theoretical analysis
within the context of existing analytic studies of blind deconvolution, notably the seminal
work from Levin et al. (2009, 2011b), and discusses the relevance of natural image statistics.
Learning noise variances is later addressed in Section 5, while experiments are carried out
in Section 6 to provide corroborating empirical evidence for some of our theoretical claims.
Finally, concluding remarks are contained in Section 7. While nominally directed at the
challenges of blind deconvolution, we envision that the underlying principles analyses de-
veloped herein will nonetheless contribute to better understanding of generalized bilinear
models in broad application domains.

2. MAP versus VB

As mentioned above, to compensate for the ill-posedness of the blind deconvolution problem,
a strong prior is required for both the sharp image and kernel to regularize the solution space.
Recently, natural image statistics over image gradients have been invoked to design prior
(regularization) models (Roth and Black, 2009; Levin et al., 2007; Krishnan and Fergus,
2009; Cho et al., 2012), and MAP estimation using these priors has been proposed for blind
deconvolution (Shan et al., 2008; Krishnan et al., 2011). While some specifications may
differ, the basic idea is to find the mode (maximum) of

p(x,k|y) =
p(y|x,k)p(x)p(k)

p(y)
∝ p(y|x,k)p(x)p(k),

where x and y are now assumed to be vectorized gradient domain sharp and blurry im-
ages respectively, and k is the corresponding vectorized kernel.1 p(y|x,k) is a Gaussian
likelihood function with mean k ∗ x and covariance λI, and p(x) and p(k) are priors, with
the former often assumed to be sparsity-promoting consistent with estimates of natural
image statistics (Buccigrossi and Simoncelli, 1999; Levin et al., 2011b). After a −2 log
transformation, and ignoring constant factors, this is equivalent to computing

min
x,k
−2 log p(x,k|y) ≡ min

x,k

1

λ
‖k ∗ x− y‖22 + gx(x) + gk(k), (3)

where gx(x) is a penalty term over the desired image, typically of the form gx(x) =∑
i gx(xi), while gk(k) regularizes the blur kernel. Both penalties generally have embedded

parameters that must be balanced along with the unknown λ. It is also typical to assume
that

∑
i ki = 1, with ki ≥ 0 and we will adopt this assumption throughout; however, Sec-

tions 3.5 and 3.7 will discuss a type of scale invariance such that this assumption becomes
irrelevant in important cases.

Although straightforward, there are many problems with existing MAP approaches in-
cluding ineffective global minima, e.g., poor priors may lead to degenerate global solutions

1. Even in vectorized form, we will still use k ∗ x to denote the standard 2D convolution operator, where
the result is then subsequently vectorized.
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like the delta kernel (frequently called the no-blur solution), or many suboptimal local
minima and subsequent convergence issues. Therefore, the generation of useful solutions
requires a delicate balancing of various factors such as dynamic noise levels, trade-off pa-
rameter values, and other heuristic regularizers such as salient structure selection (Shan
et al., 2008; Cho and Lee, 2009; Krishnan et al., 2011) (we will discuss these issues more in
Section 3).

To mitigate some of these shortcomings of MAP, the influential work by Levin et al.
(2009) and others proposes to instead solve

max
k

p(k|y) ≡ min
k
−2 log p(y|k)p(k), (4)

where p(y|k) =
∫
p(x,y|k)dx. This technique is sometimes referred to as Type II estimation

in the statistics literature.2 Once k is estimated in this way, x can then be obtained via
conventional non-blind deconvolution techniques. One motivation for the Type II strategy
is based on the inherent asymmetry in the dimensionality of the image relative to the
kernel (Levin et al., 2009). By integrating out (or averaging over) the high-dimensional
image, the estimation process can then more accurately focus on the few remaining low-
dimensional parameters in k.

The challenge with (4) is that evaluation of p(y|k) requires a marginalization over x,
which is a computationally intractable integral given realistic image priors. Consequently
a variational Bayesian (VB) strategy is used to approximate the troublesome marginaliza-
tion (Levin et al., 2011a). A similar idea has also been explored by a number of other
authors (Miskin and MacKay, 2000; Fergus et al., 2006; Babacan et al., 2012). In brief, VB
provides a convenient way of computing a rigorous upper bound on − log p(y|k), which can
then be substituted into (4) for optimization purposes leading to an approximate Type II
estimator.

The VB methodology can be easily applied whenever the image prior p(x) is expressible
as a Gaussian scale mixture (GSM) (Palmer et al., 2006), meaning

p(x) = exp

[
−1

2
gx(x)

]
=
∏
i

exp

[
−1

2
gx(xi)

]
=
∏
i

∫
N (xi; 0, γi)p(γi)dγi, (5)

where each N (xi; 0, γi) represents a zero mean Gaussian with variance γi and prior distri-
bution p(γi). The role of this decomposition will become apparent below. Also, with some
abuse of notation, p(γi) may characterize a discrete distribution, in which case the integral
in (5) can be reduced to a summation. Note that all prior distributions expressible via (5)
will be supergaussian (Palmer et al., 2006), and therefore will to varying degrees favor a
sparse x (we will return to this issue in Sections 3 and 4).

Given this p(x), the negative log of p(y|k) can be upper bounded via

− log p(y|k) ≤ −
∫∫

q(x,γ) log
p(x,γ,y|k)

q(x,γ)
dxdγ︸ ︷︷ ︸

F [q(x,γ),k]

,

2. To be more specific, Type II estimation refers to the case where we optimize over one set of unknown
variables after marginalizing out another set, in our case the image x. In this context, standard MAP
over both x and k via (3) can be viewed as Type I.
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where F [q(x,γ),k] is called the free energy, q(x,γ) is an arbitrary distribution over x,
and γ = [γ1, γ2, . . .]

T , the vector of all the variances from (5). Equality is obtained when
q(x,γ) = p(x,γ|y,k). In fact, if we were able to iteratively minimize this F over q(x,γ)
and k (i.e., a form of coordinate descent), this would be exactly equivalent to the standard
expectation-maximization (EM) algorithm for minimizing − log p(y|k) with respect to k,
treating γ and x as hidden data and assuming p(k) is flat within the specified constraint
set mentioned previously (see Bishop 2006, Ch.9.4 for a detailed examination of this fact).
However, optimizing over q(x,γ) is intractable since p(x,γ|y,k) is generally not available
in closed-form. Likewise, there is no closed-form update for k, and hence no exact EM
solution is possible.

The contribution of VB theory is to show that if we restrict the form of q(x,γ) via
structural assumptions, the updates can now actually be computed, albeit approximately.
For this purpose the most common constraint is that q(x,γ) must be factorized, namely,
q(x,γ) = q(x)q(γ), sometimes called a mean-field approximation (Bishop, 2006, Ch.10.1).
With this approximation we are effectively utilizing the revised (and looser) upper bound

− log p(y|k) ≤ −
∫∫

q(x)q(γ) log
p(x,γ,y|k)

q(x)q(γ)
dxdγ, (6)

which may be iteratively minimized over q(x), q(γ), and k independently while holding the
other two fixed. In each case, closed-form updates are now possible, although because of the
factorial approximation, we are of course no longer guaranteed to minimize − log p(y|k).

Compared to the original Type II problem from (4), minimizing the bound from (6) is
considerably simplified because the problematic marginalization over x has been effectively
decoupled from γ. However, when solving for q(x) at each iteration, it can be shown that a
full covariance matrix of x conditioned on γ, denoted as C, must be computed. While this
is possible in closed form, it requires O(m3) operations, where m is the number of pixels
in the image. Because this is computationally impractical for reasonably-sized images, a
diagonal approximation to C must be adopted (Levin et al., 2011a). This assumption is
equivalent to incorporating an additional factorization into the VB process such that now
we are enforcing the constraint q(x,γ) =

∏
i q(xi)q(γi). This leads to the considerably

looser upper bound

− log p(y|k) ≤ −
∫∫ ∏

i

q(xi)q(γi) log
p(x,γ,y|k)∏
i q(xi)q(γi)

dxdγ.

In summary then, the full Type II approach can be approximated by minimizing the VB
upper bound via the optimization problem

min
q(x,γ),k

F [q(x,γ),k] , s.t. q(x,γ) =
∏
i

q(xi)q(γi). (7)

The requisite update rules are shown in Algorithm 1.3 Numerous methods fall within this
category with some implementational differences, and the estimation steps are equivalent

3. For simplicity we have ignored image boundary effects when presenting the computation for cj in Algo-
rithm 1. In fact, the complete expression for cj is described in Appendix A in the proof of Theorem 1.
Additionally, Algorithm 1 in its present form includes a modest differentiability assumption on gx for
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Algorithm 1 VB Blind Deblurring (Levin et al., 2011a; Palmer et al., 2006; Babacan et al.,
2012)

1: Input: blurry gradient domain image y, noise level reduction factor β (β > 1), mini-
mum noise level λ0, image prior p(x) = exp[−1

2gx(x)] =
∏
i exp[−1

2gx(xi)]
2: Initialize: blur kernel k, noise level λ
3: While stopping criteria is not satisfied, repeat

• Update sufficient statistics for q(γ) =
∏
i q(γi):

ωi , Eq(γi)[γ
−1
i ]← gx

′(σi)

2σi
,

with σ2
i , Eq(xi)[x

2
i ] = µ2

i + Cii.

• Update sufficient statistics for q(x) =
∏
i q(xi):

µ , Eq(x)[x]← A−1b, Cii , Varq(xi)[xi] ← A−1
ii ,

where A = HTH
λ + diag[ω], b = HTy

λ , H is the convolution matrix of k.

• Update k:

k← arg min
k≥0
‖y −Wk‖22 +

∑
j

cjk
2
j

where cj =
∑

i Ci+j,i+j and W is the convolution matrix of µ.

• Noise level reduction: If λ > λ0, then λ← λ/β.

4: Final Non-Blind Step: In original image domain, estimate sharp image using fixed
k from above

to simply inserting the kernel update rule and noise reduction heuristic from Levin et al.
(2011a) into the general VB sparse estimation framework from Palmer et al. (2006). Results
using this strategy for blind deblurring with different priors can be found in Babacan et al.
(2012). Note that the full distributions for each q(xi) and q(γi) are generally not needed;
only certain sufficient statistics are required (certain means and variances, see Algorithm 1),
analogous to standard EM. These can be efficiently computed using techniques from Palmer
et al. (2006) for any p(x) produced by (5). In the VB algorithm from Levin et al. (2011a),
the sufficient statistic for γ is computed using an alternative methodology which applies
only to finite Gaussian scale mixtures. However, the resulting updates are nonetheless
equivalent to Algorithm 1 as shown in the proof of Theorem 1 presented later.

updating the sufficient statistics of q(γi). Finally, while it is trivial to include multiple image filters in
this pipeline (Levin et al., 2011a; Babacan et al., 2012), we avoid including such additional notation to
simplify the exposition. Here we are already assuming that y and x represent blurry and sharp gradient
domain images, obtained by simple horizontal and vertical first-order difference filters (see Section 3.1).
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While possibly well-motivated in principle, the Type II approach relies on rather severe
factorial assumptions which may compromise the original high-level justifications. In fact,
at any minimizing solution denoted q∗(xi), q

∗(γi), ∀i,k∗, it is easily shown that the gap
between F and − log p(y|k∗) is given explicitly by

KL

(∏
i

q∗(xi)q
∗(γi)||p(x,γ|y,k∗)

)
, (8)

where KL(p1||p2) denotes the standard KL divergence between the distributions p1 and
p2. Because the posterior p(x,γ, |y,k) is generally highly coupled (non-factorial), this
divergence will typically be quite high, indicating that the associated approximation can be
poor. We therefore have no reason to believe that this k∗ is anywhere near the maximizer
of p(y|k), which was the ultimate goal and motivation of Type II to begin with.

Other outstanding issues persist as well. For example, the free energy cost function,
which involves both integration and function-valued arguments, is not nearly as transpar-
ent as the standard MAP estimation from (3). Moreover for practical use, VB depends
on an appropriate schedule for reducing the noise variance λ during each iteration (see Al-
gorithm 1), which implements a form of coarse-to-fine, multiresolution estimation scheme
(Levin et al., 2011b) while potentially improving the convergence rate (Levin et al., 2011a).

It therefore becomes difficult to rigorously explain exactly why VB has often been em-
pirically more successful than MAP in practice (see Babacan et al. 2012; Levin et al. 2011b,a
for such comparisons), nor how to decide which image priors operate best in the VB frame-
work.4 While Levin et al. have suggested that at a high level, marginalization over the
latent sharp image using natural-image-statistic-based priors is a good idea to overcome
some of the problems faced by MAP estimation (Levin et al., 2009, 2011b), this argument
only directly motivates substituting (4) for (3) rather than providing explicit rationaliza-
tion for (7). Thus, we intend to more meticulously investigate the exact mechanism by
which VB operates, explicitly accounting for all of the approximations and assumptions
involved by drawing on convex analysis and sparse estimation concepts from Palmer et al.
(2006); Wipf et al. (2011) (Section 4 will discuss direct comparisons with Levin et al. in
detail). This endeavor then naturally motivates extensions to the VB framework and a
simple prescription for choosing an appropriate image prior p(x). Overall, we hope that
we can further demystify VB providing an entry point for broader improvements such as
robust non-uniform blur and noise estimation.

Several surprising, possibly counterintuitive conclusions emerge from this investigation
which challenge some of the prevailing wisdom regarding why and how Bayesian algorithms
can be advantageous for blind deconvolution. These include:

• The optimal image prior for blind deconvolution purposes using VB or MAP is likely
not the one which most closely reflects natural images statistics. Rather, we argue
that it is the distribution that most significantly discriminates between blurry and
sharp images, meaning a prior such that, for some good sharp image estimate x̂, we

4. Note that, as discussed later, certain MAP algorithms can perform reasonably well when carefully bal-
anced with additional penalty factors and tuning parameters added to (3). However, in direct com-
parisons using the same basic probabilistic model, VB can perform substantially better, even achieving
state-of-the-art performance without additional tuning.
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have p(x̂)� p(k ∗ x̂). Natural image statistics typically fail in this regard for explicit
reasons, which apply to both MAP and VB, as discussed in Sections 3 and 4.

• The advantage of VB over MAP is not directly related to the dimensionality differences
between k and x and the conventional benefits of marginalization over the latter. In
fact, we prove in Section 3.2 that the underlying cost functions are formally equivalent
in ideal noiseless environments given the factorial assumptions required by practical
VB algorithms, and the same basic line of reasoning holds equally well in the noisy
case. Instead, there is an intrinsic mechanism built into VB that allows bad locally
minimizing solutions to be largely avoided even when using the highly non-convex,
discriminative priors needed to distinguish between blurry and sharp images. This
represents a new perspective on the relative advantages of VB.

• The VB algorithm can be reformulated in such a way that non-Gaussian noise models,
non-uniform blur operators, and other extensions are easily incorporated, circumvent-
ing one important perceived advantage of MAP. In fact, we have already obtained
practical success in more complex non-uniform and multi-image models using similar
principles (Zhang et al., 2013; Zhang and Wipf, 2013).

3. Analysis of Variational Bayes

Drawing on ideas from Palmer et al. (2006); Wipf et al. (2011), in this section we will refor-
mulate the VB methodology to elucidate its behavior. Simply put, we will demonstrate that
VB is actually equivalent to using an unconventional MAP estimation-like cost function but
with a particular penalty that links the image, blur kernel, and noise in a well-motivated
fashion. This procedure removes the ambiguity introduced by the VB approximation, the
subsequent diagonal covariance approximation, and the λ reduction heuristic that all con-
tribute still somewhat mysteriously to the effectiveness of VB. It will then allow us to
pinpoint the exact reasons why VB represents an improvement over conventional MAP es-
timations in the form of (3), and it provides us with a specific criteria for choosing the
image prior p(x).

3.1 Notation and Definitions

As mentioned above, and following many previous works (Fergus et al., 2006; Levin et al.,
2011a), we will henceforth work entirely in the derivative domain of images, with the excep-
tion of an implicit final non-blind deconvolution step once the kernel k has been estimated.
From a practical standpoint, these derivatives are computed by convolving the raw image
with standard first-order horizontal and vertical difference filters [1,−1] and [1,−1]T . Given
that convolution is a commutative operator, the blur kernel is unaltered. For latent sharp
image derivatives of size M×N and blur kernel of size P×Q, we denote the lexicographically
ordered vector of the sharp image derivatives, blurry image derivatives, and blur kernel as
x ∈ Rm, y ∈ Rn and k ∈ Rl respectively, with m , MN , n , (M − P + 1)(N − Q + 1),
and l , PQ. This assumes a single derivative filter. The extension to multiple filters, for
example one for each image dimension as described above, follows naturally. For simplicity
of notation however, we omit explicit referencing of multiple filters throughout this paper,
although all related analysis directly follow through.
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The likelihood model (1) can be rewritten as

y = Hx + n = Wk + n, (9)

where H ∈ Rn×m and W ∈ Rn×l are the Toeplitz convolution matrices constructed from
the blur kernel and sharp image respectively. We introduce a matrix Ī ∈ Rl×m, where the
j-th row of Ī is a binary vector with 1 indicating that the j-th element of k (i.e., kj) appears

in the corresponding column of H and 0 otherwise. We define ‖k̄‖2 ,
√∑

j k
2
j Īji, which

is equivalent to the norm of the i-th column of H. It can also be viewed as the effective
norm of k accounting for the boundary effects.5 The element-wise magnitude of x is given
by |x| , [|x1|, |x2|, . . .]T .

Finally we introduce the definition of relative concavity (Palmer, 2003) which will serve
subsequent analyses:

Definition 1 Let u be a strictly increasing function on [a, b]. The function ν is concave
relative to u on the interval [a, b] if and only if

ν(y) ≤ ν(x) +
ν ′(x)

u′(x)
[u(y)− u(x)] (10)

holds ∀x, y ∈ [a, b].

In the following, we will use ν ≺ u to denote that ν is concave relative to u on [0,∞).
This can be understood as a natural generalization of the traditional notion of a concavity, in
that a concave function is equivalently concave relative to a linear function per Definition 1.
In general, if ν ≺ u, then when ν and u are set to have the same functional value and the
same slope at any given point (i.e., by an affine transformation of u), then ν lies completely
under u.

It is well-known that functions concave in |x| favor sparsity (meaning a strong preference
for zero and relatively little distinction between nonzero values) (Rao et al., 2003; Wipf et al.,
2011). The notion of relative concavity induces an ordering for many of the common sparsity
promoting functions. Intuitively, a non-decreasing function ν of |xi| is more aggressive in
promoting sparsity than some u if it is concave relative to u. For example, consider the
class of `p functionals

∑
i |xi|p that are concave in |xi| whenever 0 < p ≤ 1. The smaller p,

the more a sparse x will be favored, with the extreme case p → 0 producing the `0 norm
(a count of the number of nonzero elements in x), which is the most aggressive penalty for
promoting sparsity. Meanwhile, using Definition 1 it is easy to verify that, as a function of
|x|, `p1 ≺ `p2 whenever p1 < p2.

5. Technically ‖k̄‖2 depends on i, the index of image pixels, but it only makes a difference near the image
boundaries. We prefer to avoid an explicit notational dependency on i to keep the presentation concise,
although the proofs in Appendix A do consider i-dependency when it is relevant. The subsequent analysis
will also omit this dependency keeping in mind that all of the results nonetheless carry through in the
general case. The same is true for the other quantities that depend on ‖k̄‖2, e.g., the ρ parameter defined
later in (12).

3603



Wipf and Zhang

3.2 Connecting VB with MAP

As mentioned previously, the VB algorithm of Levin et al. (2011a) can be efficiently imple-
mented using any image prior expressible in the form of (5). However, for our purposes we
require an alternative representation with roots in convex analysis. Based on Palmer et al.
(2006), it can be shown that any prior given by (5) can also be represented as a maximiza-
tion over scaled Gaussians with different variances leading to the alternative representation

p(xi) = exp

[
−1

2
gx(xi)

]
= max

γi≥0
N (xi; 0, γi) exp

[
−1

2
f(γi)

]
, (11)

where f(γi) is some non-negative energy function; the associated exponentiated factor is
sometimes treated as a hyperprior, although it will not generally integrate to one. This
f , which determines the form of gx in (5), will ultimately play a central role in how VB
penalizes images x as will be explored via the results of this section.

Theorem 1 Consider the objective function

L(x,k) ,
1

λ
‖y − k ∗ x‖22 +

∑
i

gVB(xi, ρ) +m log ‖k̄‖22, (12)

where

gVB(xi, ρ) , min
γi≥0

[
x2
i

γi
+ log(ρ+ γi) + f(γi)

]
, and ρ ,

λ

‖k̄‖22
. (13)

Algorithm 1 minimizing (7) is equivalent to coordinate descent minimization of (12) over
x, k, and the latent variables γ = [γ1, . . . , γm]T .

Proofs will be deferred to the Appendix A. This reformulation of VB closely resembles (3),
with a quadratic data fidelity term combined with additive image and kernel penalties. The
penalty on k in (12) is not unlike those incorporated into standard MAP schemes, meaning
gk(k) from (3). However, quite unlike MAP, for λ > 0 the penalty gVB on the image pixels
xi is dependent on both the noise level λ and the kernel k through the parameter ρ, the
ratio of the noise level to the squared kernel norm. The remainder of Section 3 will explore
the consequences of this crucial, yet previously unexamined distinction from typical MAP
formulations.

In contrast, with λ = 0, both MAP and VB possess a formally equivalent penalty on
each xi via the following corollary:

Corollary 1 If λ = 0, then gVB(xi, 0) = gx(xi) ≡ −2 log p(xi).

Therefore the underlying VB cost function is effectively no different than regular MAP from
(3) in the noiseless setting, a surprising conclusion that seems to counter much of the pre-
vailing understanding of VB deconvolution algorithms. So then what exactly is the true
advantage, if any, of VB over MAP? And is the advantage limited to cases when the noise
level is significant? The remainder of Section 3 will address these questions, demonstrating
that VB maintains a significant advantage over MAP, and that this advantage persists, per-
haps paradoxically, even when the noise level is small or zero. These conclusions ultimately
hinge on detailed properties of the image penalty gVB in the context of practical deblurring
pipelines. We will also examine the related issue of choosing the optimal image prior p(x),
which is equivalent to choosing the optimal f in (11).
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3.3 Evaluating the VB Image Penalty gVB

While in a few special cases gVB can be computed in closed-form for general ρ 6= 0 leading
to greater transparency, as we shall see below the VB algorithm and certain attendant
analyses can nevertheless be carried through even when closed-form solutions for gVB are
not possible. Importantly, we can assess properties that may potentially affect the sparsity
and quality of resulting solutions as λ and ‖k̄‖22 are varied.

A highly sparse prior, and therefore penalty function, is generally more effective in
differentiating sharp images with fine structures from blurry ones (details in Section 4).
Recall that concavity with respect to coefficient magnitudes is a signature property of such
sparse penalties (Rao et al., 2003; Wipf et al., 2011). A potential advantage of MAP is that
it is very straightforward to characterize the associated image penalty; namely, if gx from
(3) is a highly concave, nondecreasing function of each |xi|, then we may expect that sparse
image gradients will be heavily favored. And for two candidate image penalties gx

(1) and
gx

(2), if gx
(1) ≺ gx

(2), then we may expect the former to promote an even sparser solution
than the latter (provided we are not trapped at a bad local solution). Section 4 will argue
that gx

(1) will then lead to a better estimate of x and k.
In contrast, with VB it is completely unclear to what degree gVB favors sparse solutions,

except in the special case from the previous section when gVB is equal to the MAP penalty
gx. We now explicitly describe sufficient and necessary conditions for gVB to be a concave,
nondecreasing function of |xi|, which turn out to be much stricter than the conditions
required for MAP.

Theorem 2 The VB penalty gVB will be a concave, non-decreasing function of |xi| for any
ρ if and only if f from (11) is a concave, non-decreasing function on [0,∞). Moreover, at
least m−n elements of x will equal zero at any locally minimizing solution to (12) (however
typically many more will equal zero in practice).

Theorem 2 explicitly quantifies what class of image priors leads to a strong, sparsity-
promoting x penalty when fully propagated through the VB framework. Yet while this
attribute may anchor VB as a legitimate sparse estimator in the image (filter) domain
given an appropriate f , it does not explain precisely why VB often produces superior results
to MAP. In fact, the associated MAP penalty gx (when generated from the same f) will
actually promote sparse solutions under much weaker conditions as follows:

Corollary 2 The MAP penalty gx will be a concave, non-decreasing function of |xi| if and
only if ϑ(z) , log(z) + f(z) is a concave, non-decreasing function on [0,∞).

The extra log factor implies that f itself need not be concave to ensure that gx is concave.
For example, the selection f(z) = z − log(z) it not concave and yet the associated gx still
will be since now ϑ(z) = z, which is concave and non-decreasing as required by Corollary
2. The stronger proclivity for producing sparsity of MAP over VB is further quantified by
the following:

Corollary 3 Let f be a differentiable, non-decreasing function which induces the penalty
functions gx and gVB associated with MAP and VB respectively. As z →∞, then gVB(z)−
gx(z) → 0, and therefore gVB and gx penalize large magnitudes of x equally. In contrast,
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for any z,z′ ≥ 0, if z < z′ then gVB(z) − gx(z) ≥ gVB(z′) − gx(z′). Therefore, as z → 0,
gVB(z)−gx(z) is maximized, implying that the MAP penalty gx favors zero-valued coefficients
(sparsity) more heavily than gVB.

This result implies that for a broad class of image priors, VB actually leads to a weaker
enforcement of sparsity than the corresponding MAP estimator. This occurs because large
magnitudes of any xi are penalized nearly equivalently with VB and MAP, while small mag-
nitudes are penalized much more aggressively with MAP. Taken together then, Corollaries
2 and 3 superficially suggest that perhaps MAP should be preferred over VB to the extent
that we believe sparsity is important for distinguishing sharp and blurry images. However,
a closer investigation will reveal why this conclusion is premature.

For this purpose we will consider closely the simplest choice for f which satisfies the
conditions of Theorem 2, and a choice that has been advocated in the sparse estimation
literature in different contexts: namely, a constant value, f(γ) = b. This in turn implies
that the resulting prior p(xi) is a Jeffreys non-informative distribution on the coefficient
magnitudes |xi| after solving the maximization from (11), and is attractive in part because
there are no embedded hyperparameters (the constant b is irrelevant).6 This selection for
f leads to a particularly interesting closed-form penalty gVB as follows:

Theorem 3 In the special case where f(γi) = b, then

gVB(xi, ρ) ≡ 2|xi|

|xi|+
√
x2
i + 4ρ

+ log

(
2ρ+ x2

i + |xi|
√
x2
i + 4ρ

)
. (14)

Figures 1 (a) and (b) display 1D and 2D plots of this penalty function. It is worth
spending some time here to examine this particular selection for f (and therefore gVB) in
detail since it elucidates many of the mechanisms whereby VB, with all of its attendant
approximations and heuristics, can affect improvement over MAP regardless of the true
noise level.

In the limit as ρ→ 0, the first term in (14) converges to the indicator function I[xi 6= 0],
and thus when we sum over i we obtain the `0 norm of x, which represents a canonical
measure of sparsity, or a count of the nonzero elements in a vector.7 The second term
in (14), when we again sum over i, converges to

∑
i log |xi|, ignoring a constant factor.

Sometimes referred to as Gaussian entropy, this term can also be connected to the `0 norm
via the relations ‖x‖0 ≡ limp→0

∑
i |xi|p and limp→0

1
p

∑
i(|xi|p − 1) =

∑
i log |xi| (Wipf

et al., 2011). Thus the cumulative effect when ρ becomes small is an image prior that closely
mimics the highly non-convex (in |xi|) `0 norm which favors maximally sparse solutions. In
contrast, when ρ becomes large, it can be shown that both terms in (14), when combined
for all i, approach scaled versions of the convex `1 norm. Additionally, this scaling turns
out to be principled in the sense described in Wipf and Wu (2012); Zhang and Wipf (2013).

For intermediate values of ρ between these two extremes, we obtain a gVB that becomes
less concave with respect to each |xi| as ρ increases in the formal sense of relative concavity
discussed in Section 3.1. In particular, we have the following:

6. The Jeffreys prior is of the form p(x) ∝ 1/|x|, which represents an improper distribution that does not
integrate to one.

7. Although with ρ = 0, this term reduces to a constant, and therefore has no impact.
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Figure 1: (a) A 1D example of the coupled penalty gVB(x, ρ) (normalized) with different ρ
values assuming f is a constant. The `1 norm is included for comparison. (b) A
2D example surface plot of the coupled penalty function gVB(x, ρ); f is a constant.

Corollary 4 If f(γi) = b, then gρ1VB ≺ gρ2VB for ρ1 < ρ2.

Thus, as the noise level λ is increased, ρ increases and we have a penalty that behaves
more like a convex (less sparse) function, and so becomes less prone to local minima. In
contrast, as ‖k̄‖22 is increased, meaning that ρ is now reduced, the penalty actually becomes
more concave with respect to |xi|. This phenomena is in some ways similar to certain
homotopy continuation sparse estimation schemes (e.g., Chartrand and Yin 2008), where
heuristic hyperparameters are introduced to gradually introduce greater non-convexity into
canonical compressive sensing problems, but without any dependence on the noise or other
factors. The key difference here with VB however is that penalty shape modulation is
explicitly dictated by both the noise level λ and the kernel k in an integrated fashion. 8

To summarize then, the ratio ρ can be viewed as modulating a smooth transition of the
penalty function shape from something akin to the non-convex `0 norm to a properly-scaled
`1 norm. In contrast, conventional MAP-based penalties on x are independent from k or λ,
and thus retain a fixed shape. The crucial ramifications of this coupling and ρ-controlled
shape modification/augmentation exclusive to the VB framework will be addressed in the
following two subsections. Other choices for f , which exhibit a partially muted form of
this coupling, will be considered in Section 3.7, which will also address a desirable form of
invariance that only exists when f is a constant.

3.4 Noise Dependency Analysis

The success of practical VB blind deconvolution algorithms is heavily dependent on some
form of stagewise coarse-to-fine approach, whereby the kernel is repeatedly re-estimated at

8. After our original submission, a new MAP-related algorithm was published that applies a continuation
strategy, not unlike Chartrand and Yin (2008)), to blind deblurring and achieves very promising results
(Xu et al., 2013). However, unlike VB this algorithm requires two tuning parameters balancing kernel
and image penalties and a fixed, pre-defined schedule for modulating the image penalty shape.
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successively higher resolutions. At each stage, a lower resolution version is used to initial-
ize the estimate at the next higher resolution. One way to implement this approach is to
initially use large values of λ (regardless of the true noise level) such that only dominant,
primarily low-frequency image structures dictate the optimization (Levin et al., 2009). Dur-
ing subsequent iterations as the blur kernel begins to reflect the correct coarse shape, λ can
be gradually reduced to allow the recovery of more detailed, fine structures.

A highly sparse (concave) prior can ultimately be more effective in differentiating sharp
images and fine structures than a convex one. Detailed supported evidence for this claim
can be found in Fergus et al. (2006); Levin et al. (2007); Krishnan and Fergus (2009); Cho
et al. (2012), as well as in Section 4 below. However, if such a prior is applied at the initial
stages of estimation, the iterations are likely to become trapped at suboptimal local minima,
of which there will always be a combinatorial number. Moreover, in the early stages, the
effective noise level is actually high due to errors contained in the estimated blur kernel,
and exceedingly sparse image penalties are likely to produce unstable solutions.

Given the reformulation outlined above, we can now argue that VB implicitly avoids
these problems by beginning with a large λ (and therefore a large ρ), such that the penalty
function is initially nearly convex in |xi| (see Figure 1). In this situation, the data fidelity
term 1

λ ‖y − k ∗ x‖22 from (12) is de-emphasized because of the inverse dependency on λ,
and small edges and structures will be ignored. Hence an approximately convex penalty
is generally sufficient for resolving the remaining strong edges. As the iterations proceed
and fine structures need to be resolved, the penalty function is made less convex (more
concave) as λ is reduced, but the risk of local minima and instability is ameliorated by the
fact that we are likely to be already in the neighborhood of a desirable basin of attraction.
Additionally, the implicit noise level (or modeling error) is now substantially lower.

This kind of automatic ‘resolution’ adaptive penalty shaping is arguably superior to
conventional MAP approaches based on (3), where the concavity/shape of the induced sep-
arable penalty function is kept fixed regardless of the variation in the noise level or scale,
i.e., at different resolutions across the coarse-to-fine hierarchy. In general, it would seem
very unreasonable that the same penalty shape would be optimal across vastly different
noise scales. This advantage over MAP can be easily illustrated by simple head-to-head
comparisons where the underlying prior distributions are identical; Section 3.6 below con-
tains one such example. Additionally, this phenomena can be significantly enhanced by
automatically learning λ as discussed in Section 5.

3.5 Blur Dependency Analysis

There are many different viewpoints for understanding how the blur dependency of the VB
penalty gVB contributes to successful deblurring results. Here we consider potentially one
of the most transparent.

Because the blur kernel appears judiciously in all three terms in (12), with a slight repa-
rameterization and subsequent algebraic manipulation, we may consolidate terms leading
to the equivalent revised formulation of (12) given by

L(x̃, k̃) ,
1

λ

∥∥∥y − k̃ ∗ x̃
∥∥∥2

2
+
∑
i

gVB(x̃i, λ), s.t. ‖˜̄k‖2 = 1, (15)
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where x̃i , xi‖k̄‖2 for all i and, with slight abuse of notation, k̃ denotes a normalized kernel
such that the resulting convolution matrix H has columns of unit norm. In other words, if
x∗ and k∗ represent the optimal solution to (12), then x̃∗ = x∗‖k̄∗‖2 and k̃∗ = k∗/‖k̄∗‖2
are the optimal solution to (15), at least when gVB is given by (14). Hence we see that, once
the kernel operator is constrained to have unit `2 norm, no additional kernel penalization is
included whatsoever. Consequently then, to the extent VB is successful, we observe that an
additional kernel penalty, and any associated tuning parameter, is completely unnecessary.
Additionally, with the kernel fixed, solving for x̃ now represents a standardized sparse
estimation problem, with a quadratic data-fit term now characterized by a design matrix
H with consistent `2 normalized columns.

Note that essentially all previous blind deblurring algorithms assume what amounts
to an `1 normalized kernel satisfying

∑
i ki = 1 (since each element of the sum must be

positive, the corresponding convolution matrix H will have `1 normalized columns except
at the boundary). But in the context of a quadratic data fit term as used by deblurring
algorithms, this is unlikely to be optimal as it will apply some implicit pressure on the
estimated kernel towards the no-blur solution (k = δ), potentially counteracting, at least
in part, the push for sparse image estimates. This occurs because kernels near the delta
solution will increase the `2 column norms of H when the `1 norm is fixed, which then
allows for relatively smaller image coefficients x by virtue of the quadratic data term.
These smaller coefficients then reduce any non-decreasing penalty on the magnitudes of
x, reducing the overall cost function. Additionally, in much more complex non-uniform
deblurring environments, this undesirable effect is considerably more pronounced (Zhang
and Wipf, 2013).

In the context of VB however, this `1 normalization is implicitly switched to `2 normal-
ization via the mechanism outlined above leading to (15), and hence it is entirely inconse-
quential to VB. In contrast, MAP has no such agency, and therefore it is not surprising that
the majority of MAP algorithms explicitly include an additional `2 kernel penalty which
helps to counteract movement towards no-blur solutions. The disadvantage of course is that
an additional image-dependent tuning parameter is required as well to balance the resulting
contribution. We could, however, alternatively consider replacing the `1 norm constraint
in MAP with `2-norm constraints as in (15), although this complicates the optimization
process considerably, whereas VB handles this automatically.9

3.6 Illustrative Example using 1D Signals

Here we will briefly illustrate some of the distinctions between MAP and VB discussed thus
far where other confounding factors have been conveniently removed. For this purpose we
consider a simplified noiseless situation where the optimal λ value is zero, and we consider
the image prior produced when f(γ) = b as introduced in Section 3.3 (later Section 3.7 will

9. One potential way around these complications for MAP would be to replace the non-convex constraint

‖¯̃k‖2 = 1 with the convex quadratic one ‖¯̃k‖2 ≤ 1, ignoring boundary effects which would complicate
things dramatically by requiring m additional constraints, one for each element of x. While in uniform

blur models this could be effective since the optimal solution should satisfy ‖¯̃k‖2 = 1 anyway, in non-
uniform models this is unlikely the case, and such a substitution could still be difficult to implement and
could undermine performance. But the central point remains that VB handles all of these situations
naturally and seamlessly.
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argue that this selection is in some sense optimal). For MAP we also include the kernel
penalty m log ‖k̄‖22 from (12) which will facilitate more direct comparisons with VB below.
Given these assumptions, the associated MAP problem from (3) is easily shown to be

min
x,k

1

λ
‖y − k ∗ x‖22 +

∑
i

2 log |xi|+ 2m log ‖k̄‖2, (16)

where the image penalty is obtained by applying a −2 log transformation to (11) giving

−2 log

[
max
γi≥0
N (xi; 0, γi)

]
≡ 2 log |xi| . (17)

Irrelevant additive constants have been excluded. Conveniently, since∑
i

2 log |xi|+ 2m log ‖k̄‖2 =
∑
i

2 log
(
|xi| ‖k̄‖2

)
, (18)

we can reparameterize (16) using x̃ such that the kernel penalty is removed and the con-

straint ‖˜̄k‖2 = 1 is enforced just as with VB. Consequently, in the limit as λ→ 0, based on
the equivalency derived from Corollary 1, both VB and MAP are then effectively solving

min
x̃,k̃

∑
i

log |x̃i| , s.t. y = k̃ ∗ x̃, ‖˜̄k‖2 = 1. (19)

Moreover, given the arguments made in Section 3.3, the penalty on x̃ is more or less equiv-
alent to the `0 norm up to inconsequential scaling and translations. Thus, (19) effectively
reduces to

min
x̃,k̃
‖x̃‖0, s.t. y = k̃ ∗ x̃, ‖˜̄k‖2 = 1. (20)

Therefore at this simplified, stripped-down level both VB and MAP are merely minimizing
the `0 norm of x subject to the linear convolutional constraint. Of course we do not attempt
to solve (20) directly, which is a difficult combinatorial problem in nature. Instead for both
VB and MAP we begin with a large λ and gradually reduce it towards zero as part of
a multi-resolution approach designed to avoid bad local minima as described in Section
3.4. For this reduction schedule of λ we use β = 1.15 in Algorithm 1 (this value is taken
from Levin et al. 2011a).10 While equivalent when λ → 0, before λ becomes small the
VB and MAP cost functions will behave very differently, leading to a radically different
optimization trajectory terminating at different locally minimizing solutions to (20).

The superiority of the VB convergence path will now be demonstrated with a synthetic
1D signal composed of multiple spikes. This signal is convolved with two different blur
kernels, one uniform and one random, creating two different blurry observations. Refer to
Figure 2 (first row) for the ground-truth spike signal and associated blur kernels. We then
apply the MAP and VB blind deconvolution algorithms, with the same prior (f equals a
constant) and λ reduction schedule, to the blurry test signals and compare the quality of the

10. The corresponding MAP algorithm can be implemented by simply setting C to zero before the q(γi)
update in Algorithm 1, with guaranteed convergence to some local minima. For both MAP and VB, the
γ sufficient statistic update is simply ωi = σ−2

i whenever f is a constant.
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reconstructed blur kernels and signals. The recovery results are shown in Figure 2 (second
and third rows), where it is readily apparent that VB produces superior estimation quality
of both kernel and image. Additionally, the signal recovered by VB is considerably sparser
than MAP, indicating that it has done a better job of optimizing (20), consistent with our
previous analysis. This is not to say that MAP cannot potentially be effective with careful
tuning and initialization (perhaps coupled with additional regularization factors or clever
optimization schemes), only that VB is much more robust in its present form.

Note that this demonstrable advantage of VB is entirely based on an improved con-
vergence path, since VB and MAP possess an identical constellation of local minima once
λ = 0. Moreover, it is unrelated to any putative advantage of solving (4) over (3). We will
revisit this latter point in Section 4.
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Figure 2: 1D deblurring example using MAP and VB approaches assuming the same under-
lying image prior p(x). (a)-(b) results with a uniform blur kernel; (c)-(d) results
with a random blur kernel.

3.7 Other Choices for f

Because essentially any sparse prior on x can be expressed using the alternative variational
form from (11), choosing such a prior is tantamount to choosing f which then determines
gVB. Theorem 2 suggests that a concave, non-decreasing f is useful for favoring sparsity
(assumed to be in the gradient domain). Moreover, Theorem 3 and subsequent analyses
suggest that the simplifying choice where f(γ) = b possesses several attractive properties
regarding the relative concavity of the resulting gVB. But what about other selections for f
and therefore gVB?

While directly working with gVB can sometimes be limiting (except in certain special
cases like f(γ) = b from before), the variational form of (13) allows us to closely examine
the relative concavity of a useful proxy. Let

ψ(γi, ρ) , log(ρ+ γi) + f(γi). (21)

Then for fixed λ and k the VB estimation problem can equivalently be viewed as solving

min
x,γ≥0

1

λ
‖y − k ∗ x‖22 +

∑
i

[
x2
i

γi
+ ψ(γi, ρ)

]
. (22)
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It now becomes clear that the sparsity of x and γ are intimated related. More concretely,
assuming f is concave and non-decreasing (as motivated by Theorems 2 and 3), then there
is actually a one-to-one correspondence in that whenever xi = 0, the optimal γi equals zero
as well, and vice versa.11 Therefore we may instead examine the relative concavity of ψ for
different ρ values, which will directly determine the sparsity of γ and in turn, the sparsity
of x. This then motivates the following result:

Theorem 4 Let ρ1 < ρ2 and assume that f satisfies the conditions of Theorem 2. Then
ψρ1 ≺ ψρ2 if and only if f(γ) = aγ + b, with a ≥ 0.

Thus, although we have not been able to formally establish a relative concavity result
for all general gVB directly, Theorem 4 provides a nearly identical analog allowing us to
draw similar conclusions to those detailed in Sections 3.4 and 3.5 whenever a general affine
f is adopted. Perhaps more importantly, it also suggests that as f deviates from an affine
function, we may begin to lose some of the desirable effects regarding the described penalty
shape modulation.

While previously we closely scrutinized the special affine case where f(γ) = b, it still
remains to examine the more general affine form f(γ) = aγ + b, a > 0. In fact, it is not
difficult to show that as a is increased, the resulting penalty on x increasingly resembles an
`1 norm with lesser dependency on ρ, thus severely muting the effect of the shape modulation
that appears to be so effective (see arguments above and empirical results section below).
So there currently does not seem to be any advantage to choosing some a > 0 and we are
left, out of the multitude of potential image priors, with the conveniently simple choice
of f(γ) = b, where the value of b is inconsequential. Experimental results support this
conclusion: namely, as a is increased from zero performance gradually degrades (results not
shown for space considerations).

As a final justification for simply choosing f(γ) = b, there is a desirable form of invari-
ance that uniquely accompanies this selection.

Theorem 5 If x∗ and k∗ represent the optimal solution to (12) under the constraint∑
i ki = 1, then α−1x∗ and αk∗ will always represent the optimal solution under the modified

constraint
∑

i ki = α if and only if f(γ) = b. Additionally, minimizing (12) is equivalent to
minimizing (15) if and only if f(γ) = b.

This is unlike the myriad of MAP estimation techniques or VB with other choices of
f , where the exact calibration of the constraint can fundamentally alter the form of the
optimal solution beyond a mere rescaling. Moreover, if such a constraint on k is omitted
altogether, these other methods must then carefully tune associated trade-off parameters,
so in one way or another this lack of invariance will require additional tuning.

Interestingly, Babacan et al. (2012) experiments with a variety of VB algorithms using
different underlying image priors, and empirically find that f as a constant works best;

11. To see this first consider xi = 0. The x2i /γi term can be ignored and so the optimal γi need only
minimize log(ρ+ γi) + f(γi), which is concave and non-decreasing whenever f is. Therefore the optimal
γi is trivially zero. Conversely if γi = 0, then there is effectively an infinite penalty on xi, and so the
optimal xi must also be zero.
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however, no rigorous explanation is given for why this should be the case.12 Thus, our
results provide a powerful theoretical confirmation of this selection, along with a number of
useful attendant intuitions.

3.8 Analysis Summary

To summarize this section, we have shown that the shape of the effective VB image penalty
is explicitly controlled by the ratio of the noise variance to the squared kernel norm, and that
in many circumstances this leads to a desired mechanism for controlling relative concavity
and balancing sparsity, largely mitigating issues such as local minima that compromise the
convergence of more traditional MAP estimators. We have then demonstrated a unique
choice for the image prior (i.e., when f is constant) such that this mechanism is in some
sense optimal and scale-invariant. Of course we readily concede that different choices for
the image prior could still be useful when other factors are taken in to account. We also
emphasize that none of this is meant to suggest that real imaging data follows a Jeffreys
prior distribution (which is produced when f is constant). We will return to this topic in
Section 4 below. Overall, this perspective provides a much clearer picture of how VB is able
to operate effectively and how we might expect to optimize performance.

While space precludes a detailed treatment, many natural extensions to VB are sug-
gested by these developments. For example, in the original formation of VB given by (7) it
is not clear the best way to incorporate alternative noise models because the required inte-
grations are no longer tractable. However, when viewed alternatively using (12) it becomes
obvious that different data-fidelity terms can easily be substituted in place of the quadratic
likelihood factor. Likewise, given additional prior knowledge about the blur kernel, there is
no difficulty in substituting for the `2-norm on k or the uniform convolutional observation
model to reflect additional domain knowledge. Thus, the proposed reformulation allows VB
to inherit most of the transparent extensibility previously reserved for MAP.

We may also consider these ideas in the context of existing MAP algorithms, which
adopt various structure selection heuristics, implicitly or explicitly, to achieve satisfactory
performance (Shan et al., 2008; Cho and Lee, 2009; Xu and Jia, 2010). This can be viewed
as adding additional image penalty terms and trade-off parameters to (3). For example,
Shan et al. (2008) incorporates an extra local penalty on the latent image, such that the
gradients of small-scale structures in the recovered image are close to those in the blurry
image. Thus they will actually contribute less to the subsequent kernel estimation step,
allowing larger structures to be captured first. Similarly, a bilateral filtering step is used
for pruning out small scale structures in Cho and Lee (2009). Finally, Xu and Jia (2010)
develop an empirical structure selection metric designed such that small scale structures
can be pruned away by thresholding the corresponding response map, allowing subsequent
kernel estimation to be dominated by only large-scale structures.

12. Based on a strong simplifying assumption that the covariance C from Algorithm 1 is a constant, Babacan
et al. (2012) provides some preliminary discussion regarding possibly why VB may be advantageous over
MAP. However, when C is constant, the analysis easily reduces to a standard penalized regression
problem, and hence this material can already be found in the sparse estimation literature (e.g., see
Palmer et al. 2006; Wipf et al. 2011 and related references). Our key contribution is to explicitly account
for the actual dynamic nature of C and expose the true behavior of VB blind deblurring.
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Generally speaking, existing MAP strategies face a trade-off: either they must adopt
a highly sparse image prior needed for properly resolving fine structures (see Section 4)
and then deal with the attendant constellation of problematic local minima,13 or rely on a
more smooth image prior augmented with compensatory structure-selection measures such
as those described above to avoid bad global solutions. In contrast, we may interpret the
coupled penalty function intrinsic to VB as a principled alternative with a transparent, in-
tegrated functionality for estimation at different resolutions without any additional penalty
factors, trade-off parameters, or complexity.

4. Maximal Sparsity vs. Natural Image Statistics

Levin et al. (2009, 2011a,b), which represents the initial inspiration for our work, presents
a compelling and highly influential case that joint MAP estimation over x and k generally
favors a degenerate, no-blur solution, meaning that k will be a delta function, even when
the assumed image prior p(x) reflects the true underlying distribution of x, meaning p(x) =
ptrue(x), and p(k) is assumed flat in the feasible region.14 In turn, this is presented as a
primary argument for why MAP is inferior to VB. As this line of reasoning is considerably
different from that given in Section 3, here we will take a closer look at these orthogonal
perspectives in the hopes of providing a clarifying resolution.

To begin, it helps to revisit the formal analysis of MAP failure from Levin et al. (2011b),
where the following specialized scenario is presented. Assume that a blurry image y is
generated by y = k∗ ∗x∗, where ‖k∗‖2 � 1 and each true sharp image gradient x∗i is drawn
iid from the generalized Gaussian distribution ptrue(x

∗
i ) ∼ exp(−|x∗i |p), 0 < p ≤ 1. Now

consider the minimization problem

min
x,k

∑
i

|xi|p s.t. y = k ∗ x. (23)

Solving (23) is equivalent to MAP estimation over x and k under the true image prior
ptrue(x) and an implicitly assumed flat prior on k within the previously specified kernel
constraint set. In the limit as the image grows arbitrarily large, (Levin et al., 2011b, Claim
2) proves that the no-blur delta solution {x = y, k = δ} will be favored over the true solution
{x = x∗, k = k∗}. Intuitively, this occurs because the blurring operator k contributes two
opposing effects:

1. It reduces a measure of the image sparsity, which increases
∑

i |yi|p, and

2. It broadly reduces the overall image variance, which reduces
∑

i |yi|p.

Depending on the relative contributions, we may have the situation where the second effect
dominates such that

∑
i |yi|p may be less than

∑
i |x∗i |p, meaning the cost function value

13. Appropriate use of continuation methods such as the algorithm from Chartrand and Yin (2008) may
help in this regard.

14. Note that Levin et al. frequently use MAPx,k to refer to joint MAP estimation over both k and x (Type
I) while using MAPk for MAP estimation of k alone after x has been marginalized out (Type II). In this
terminology, MAPk then represents the inference ideal that VB purports to approximate, equivalent to
(4) herein.
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at the blurred image is actually lower than at the true, sharp image. Consequently, MAP
estimation may not be reliable.

Our conclusions then suggest a sort of paradox: in Section 3 we have argued that VB
is actually equivalent to an unconventional form of MAP estimation over x, but with an
intrinsic mechanism for avoiding bad local minima, increasing the chances that a good
global or near-global minima can be found. Moreover, at least in the noiseless case (λ→ 0),
any such minima will be exactly equivalent to the standard MAP solution by virtue of
Corollary 1. However, based on the noiseless analysis from Levin et al. above, any global
MAP solution is unlikely to involve the true sharp image when the true image statistics
are used for p(x), meaning that VB performance should be poor as well even at a global
solution. Thus how can we reconcile the positive performance of VB actually observed in
practice, and avoidance of degenerate no-blur solutions, with Levin et al.’s characterization
of the MAP cost function?

First, when analyzing MAP, Levin et al. consider only a flat prior on k within the
constraint set

∑
i ki = 1 and ki ≥ 0. However, MAP estimation may still avoid no-blur

solutions when equipped with an appropriate non-flat kernel prior and associated trade-
off parameter. Likewise under certain conditions described in Section 3.5, VB naturally
substitutes in a quadratic normalization constraint for k that we have argued disfavors no-
blur solutions automatically. Moreover, VB introduces this normalization in a convenient
form devoid of additional tuning parameters.

Secondly, the argument in Levin et al. breaks down when the true sharp image x∗ is
actually sparse in the canonical sense, meaning the distribution of each element includes a
delta function at zero, i.e.,

ptrue(x
∗
i ) = αδ(x∗i ) + (1− α)ρ(xi), (24)

where ρ is an arbitrary distribution and α ∈ [0, 1] is a constant. Clearly samples from (24)
will include some elements exactly equal to zero with probability at least α.

Lemma 1 Let x∗ be distributed iid with elements drawn from (24) and let y = k∗ ∗ x∗

for some non-negative kernel k∗. Then with probability approaching one as the image size
grows large

k∗,x∗ = arg min
k,x:y=k∗x

log ptrue(x
∗
i ) = arg min

k,x:y=k∗x
‖x‖0. (25)

The proof is straightforward and we do not reproduce it here. Regardless, this result
demonstrates that exactly sparse images can in fact be recovered using MAP or equivalently
the `0 norm, the latter of which is actually blind to the distribution of non-zero coefficients
ρ(xi). Intuitively, this occurs because these measures are entirely immune to changes in
variance and only sensitive to sparsity; hence any blurring operation will only increase either
penalty function in the feasible region. So immediately we may conclude that, assuming we
have some way of solving (25), we should not discount MAP or `0 minimization as a viable
means for recovering sparse images. And importantly, the exact distribution of nonzero
coefficients is irrelevant as long as some degree of sparsity exists.

Of course most practical images of interest are not exactly sparse. Rather, a commonly-
reported estimate of true image gradient statistics is the generalized Gaussian distribution
with p ≈ [0.5, 0.8], samples from which will have no exactly zero-valued elements (Bucci-
grossi and Simoncelli, 1999). In this regime then the original claim from Levin et al. will
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hold and MAP estimation seems to have been discredited. However, we would argue that
MAP can still be salvaged if we are willing to intentionally allow mismatch between the
true image prior and the image prior which forms the basis of our MAP estimator. More
specifically, we suggest replacing the true image statistics ptrue with the `0 norm. However,
solving (25) directly will obviously not be effective when there are no exactly zero-valued
coefficients.

Fortunately there is a simple way around this. In the regime where n ≈ m, meaning the
sharp and blurry images y and x are large relative to the size of k and therefore of nearly
equal dimension, the generalized Gaussian distribution with p ≈ [0.5, 0.8] is a compressible
distribution in the sense described in Cevher (2009). In words, this means that the sorted
magnitudes of samples from this distribution exhibit a power-law decay and hence can be
well-approximated by sparse signals. Consequently, there will exist some sparse x̂ with
‖x̂‖0 � m such that ‖y − k∗ ∗ x̂‖22 < ε for some small ε. In contrast, each element of
the blurry image y is a summation of many elements of x∗ via the blur operation, and
therefore, by central limit theorem arguments each element, while not exactly iid, will
approach samples from a Gaussian distribution (exactly so for large enough blur kernels),
which is not a compressible distribution. Therefore, if we solve a relaxed version of (25)
given by

min
x,k
‖x‖0, s.t. ‖y − k ∗ x‖22 < ε, (26)

with an appropriate choice for ε, then we are very likely to obtain the true blur kernel k∗,
and a close sparse approximation to x∗. Conversely it is very unlikely that the solution
will be x = y and k = δ. Therefore, just because x∗ may not be exactly sparse, we may
nonetheless locate a sparse approximation x̂ that is sufficiently reasonable such that the
unknown k∗ can still be estimated accurately, facilitating a later non-blind, image domain
estimation step.

Overall then, the success of the `0 norm penalty in the context of MAP estimation
speaks to the following point: it is more important that the assumed image prior p(x) =
exp[−1

2gx(x)] be maximally discriminative with respect to blurred and sharp images, as
opposed to accurately reflecting the statistics of real images. Mathematically, this implies
that it is much more important that we have p(k ∗ x∗) � p(x̂) for some x̂ such that
k ∗ x∗ ≈ k ∗ x̂, than we enforce p(x) = ptrue(x), even if ptrue(x) were known exactly. This
is because the sparsity/variance trade-off described above implies that it may often be the
case that ptrue(k ∗ x∗) > ptrue(x̂) leading to the no-blur solution.

Obviously from a practical standpoint solving (26) represents a difficult, combinatorial
optimization problem with numerous local minima. However, to the extent that the VB
image penalty gVB approximates the `0 norm, the VB cost (12) can be viewed as an approx-
imate Lagrangian form of (26), but augmented with an adaptive shape modulation that
helps to circumvent these local minima. Thus we can briefly summarize largely why VB
can be superior to MAP: VB allows us to use a near-optimal image penalty, one that is
maximally discriminative between blurry and sharp images, but with a reduced risk of get-
ting stuck in bad local minima during the optimization process. Overall, these conclusions
provide a more complete picture of the essential differences between MAP and VB.

Before proceeding to the next section, we emphasize that none of the arguments pre-
sented herein discredit the use of natural image statistics when directly solving (4). In fact
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Levin et al. (2011b) prove that when p(x) = ptrue(x), then in the limit as the image grows
large the MAP estimate for k, after marginalizing over x (Type II), will equal the true k∗.
But there is no inherent contradiction with our results, since it should now be readily appar-
ent that VB is fundamentally different than solving mink p(k|y), and therefore justification
for the latter cannot be directly transferred to justification for the former. This highlights
the importance of properly differentiating various forms of Bayesian inference, both in the
context of blind image deblurring and beyond to widespread application domains.

Natural image statistics are ideal in cases where y and x grow large and we are able
to integrate out the unknown x, benefiting from central limit arguments when estimating
k alone. However, when we jointly compute MAP estimates of both x and k (Type I)
as in (3), we enjoy no such asymptotic welfare since the number of unknowns increases
proportionally with the sample size. One of the insights of our paper is to show that, at
least in this regard, VB is on an exactly equal footing with Type I MAP, and thus we must
look for theoretical VB justification elsewhere, leading to the analysis of relative concavity,
local minima, invariance, maximal sparsity, etc. presented herein.

5. Learning λ

While existing VB blind deconvolution algorithms typically utilize some pre-assigned de-
creasing sequence for λ as described in Section 3.4 and noted in Algorithm 1, it is preferable
to have λ learned automatically from the data itself as is common in other applications of
VB. In the case of blind deblurring, we expect that such a learned λ, with an image-
dependent trajectory, may better modulate the penalty curvature discussed in Section 3.4.
In contrast, a fixed, pre-defined decreasing sequence is likely to be miscalibrated as it will
not reflect the current quality of image and kernel estimates during each iteration. Addi-
tionally, the alternative strategy of learning λ has the conceptual appeal of an integrated
cost function that is universally reduced even as λ is updated, unlike Algorithm 1 where
the λ reduction step may in fact increase the overall cost.

However, current VB deblurring papers either do not mention such a seemingly obvious
alternative (perhaps suggesting that the authors unsuccessfully tried such an approach)
or explicitly mention that learning λ is problematic but without concrete details. For
example, Levin et al. (2011b) observed that the noise level learning used in Fergus et al.
(2006) represents a source of problems as the optimization diverges when the estimated
noise level decreases too much. But there is no mention of why λ might decrease too much,
and further details or analyses are absent.

Interestingly, the perspective presented herein provides some direct insights into how λ
may be effectively learned. Consider minimization of the revised VB cost function (12) over
x, k, and now λ as well. Because x ∈ Rm and y ∈ Rn with m > n, for a fixed k there are
an infinite number of candidate solutions such that y = k ∗ x since the corresponding null-
space of the convolution matrix is of dimension m− n. Therefore there exist an infinite set
images x such that the term 1

λ ‖y − k ∗ x‖22 in the VB cost function (12) can be minimized
to exactly zero even in the limit as λ → 0. Included in this set are basic feasible solutions
(in the linear programming sense), each of which have at least m − n elements of x equal
to zero.
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A problem then arises because it can be shown that gVB(0, ρ) → −∞ as ρ → 0 for all
non-decreasing f .15 Consequently, we can always trivially drive the VB cost function (12)
to −∞ using any basic feasible solution combined with λ → 0, regardless of the quality of
the solution. Now because of the disparity in dimensionality mentioned above, there will
always be feasible solutions to y = k ∗ x with at least m − n or more elements of x equal
to zero. Thus, at any one of these solutions the VB cost function (12) can then be driven
to −∞ with λ → 0. Unless the true x actually has many exactly zero-valued elements,
this will represent a globally degenerate minimizing solution for a broad class of f . And
even for other choices for f , a slightly more subdued form of this same degeneracy will still
exist since the VB-specific regularization fundamentally favors λ being small: essentially
the log(γi + ρ) factor in (13) will always favor ρ, and therefore λ being small. The 1/λ
weighting of ‖y − k ∗ x‖22 is not sufficient for counteracting this effect given the multitude
of feasible solutions such that y = k ∗ x.

And even for other choices for f , a slightly more subdued form of this same degeneracy
will still persist since the existing VB-specific regularization fundamentally favors λ being
small: essentially the log(γi + ρ) factor in (13) will always favor ρ, and therefore λ being
small. The 1/λ weighting of ‖y − k ∗ x‖22 is not sufficient for counteracting this effect given
the multitude of feasible solutions such that y = k ∗ x.

However, these degeneracies can be circumvented with an additional penalty factor on
λ that is naturally motivated by this framework. Specifically, we propose to append the
penalty function

v(λ) = (n−m) log λ+
d

λ
(27)

to (12), where d is assumed to be a small positive constant. The first term in (27) directly
counteracts the degeneracy of basic feasible solutions by providing an equal and opposite
barrier to arbitrary solutions with λ → 0 and ‖x‖0 = m − n. Additionally, when f is a
constant as we have argued previously represents a well-motivated selection, then it can
be shown that this additional penalty represents a very principled approximation to what
the true λ penalty should be if the original VB formulation from (6) were not factorized
as in (7). Additionally, for other choices of f , (12) can be similarly modified to provide a
consistent estimator for λ in the sense described in Wipf and Wu (2012).

As justification for the second term in (27), note that this added factor is proportional
to 1/λ ‖y − k ∗ x‖22, but acts as an interpretable barrier preventing λ from ever going below
d/n, which remains a possibility even with the (n − m) log λ term in place. In fact it is
easily shown (see Appendix B) that any λ minimizing the cost function (12) augmented
with the penalty v(λ) must satisfy λ ≥ d/n, which can be viewed as a lower-bound on what
1/n ‖y − k ∗ x‖22 should be.16

In practice, we have found the fixed value d = n × 10−4 to be highly effective across a
wide range of images and testing scenarios, including all reported results in Section 6 and

15. Based on (13), it is clear that the optimizing γi value for computing gVB(0, ρ) will be γi = 0. When
ρ → 0, we then have log(γi + ρ) → −∞, and therefore gVB(0, ρ) → −∞. Graphically, Figure 1 (b) also
reveals this effect, showing that if we were to jointly minimize over both x and ρ, the {0, 0} solution is
heavily favored.

16. While it could be argued that setting d to a larger value could obviate the need for the (n −m) log λ
penalty altogether, we would lose considerable interpretability, connection with the original VB problem,
and from a practical standpoint, we would likely be saddled with a more sensitive tuning heuristic for d.
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Algorithm 2 VB Blind Deblurring with Jeffreys Prior and Learned λ (VB+).

1: Input: blurry image y, noise level estimation hyper-parameter d = n× 10−4

2: Initialize: blur kernel k, noise level λ
3: While stopping criteria is not satisfied, modify ωi and λ updates from Algorithm 1

with ωi ← σ−2
i ,∀i and λ← ‖y−µ∗k‖22+

∑
i(‖k̄‖22·Cii)+d
n

4: End

all of the real-world, more complex non-uniform deblurring experiments from Zhang and
Wipf (2013). Regardless, use of a single, fixed value is likely to be less burdensome than
producing an entire λ reduction schedule, which also requires a user-specified minimal λ
value anyway. Moreover, the VB update rules only require a slight modification to account
for this additional term while retaining existing convergence properties (see Appendix B for
the derivation). By estimating the noise level together with the image and kernel, we not
only make the deblurring algorithm more noise-aware and mostly parameter-free. But more
importantly, by initializing with a large value and allowing the iterations to learn the optimal
reduction schedule, it offers a natural coarse-to-fine process for blind deblurring, which has
been found as one of the crucial factors for blind deblurring algorithms as discussed above.
The experimental results from Section 6 support this conclusion.

6. Experimental Results

We emphasize that the primary purpose of this paper is the formal analysis of existing
VB blind deconvolution methodology, not the development and validation of an entirely
practical system per se. Some empirical support for recent VB algorithms, complementary
to our theoretical presentation, already exist (Babacan et al., 2012; Levin et al., 2011a;
Zhang et al., 2013; Zhang and Wipf, 2013). Nonetheless, motivated by our results herein,
we will briefly evaluate two simple refinements of Algorithm 1 that help corroborate some
of our analytical findings while demonstrating that an extremely simplified version of VB,
albeit with theoretically sound underpinnings, can outperform recent published state-of-the-
art MAP and VB algorithms with considerably more complexity and/or manual parameters.
In doing so, we hope to motivate the optimal usage of VB for more sophisticated and realistic
blind deblurring problems.

To this end we will (i) use an image prior obtained when f is flat (Jeffreys prior) as
motivated in Section 3 instead of a prior based on natural image statistics, and (ii) we will
learn the λ parameter automatically per the discussion in Section 5. The revised estimation
steps are summarized in Algorithm 2, which is obtained by adopting the basic procedure
from Algorithm 1 under the special case f(γ) = b and with the λ updates derived in
Appendix B. We will refer to this algorithm as VB+. Note that estimation is performed in
the gradient domain using the filters described in Section 3.1; however, the recovered kernel
is applied to a non-blind deconvolution step to obtain the final latent image estimate. This
filtering and final non-blind step, taken from Levin et al. (2011a), is standardized across all
algorithms compared in this section, with the exception of approach from Babacan et al.
(2012), which uses its own specially-tailored non-blind step.
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Given this variant of VB, we reproduce the experiments from Levin et al. (2011a) using
the useful benchmark test data from Levin et al. (2009).17 This consists of 4 base images of
size 255×255 and 8 different blurring effects, leading to a total of 32 blurry images. Ground
truth blur kernels were estimated by recording the trace of focal reference points on the
boundaries of the sharp images (see Levin et al. 2011b, Figure 7 and related text for details
of the experimental setup and data collection). The kernel sizes range from 13×13 to 27×27.
All evaluations are based on the SSD (Sum of Squared Difference) metric defined in Levin
et al. (2009), which quantifies the error between estimated and the ground-truth images.
To normalize for the fact that harder kernels give a larger image reconstruction error even
when the true kernel is known (because the corresponding non-blind deconvolution problem
is also harder), the SSD ratio between the image deconvolved with the estimated kernel and
the image deconvolved with the ground-truth kernel is used as the final evaluation measure.

We first compare VB+ as described in Algorithm 2 with the related variational Bayesian
methods from Fergus et al. (2006), Levin et al. (2011a), and Babacan et al. (2012), labeled
VB-Fergus, VB-Levin, and VB-Babacan respectively. For VB-Fergus and VB-Levin, results
directly accompany the Levin et al. data set; for VB-Babacan the results are produced using
a script provided directly from the first author’s website explicitly designed for producing
competitive results with the Levin et al. data (note that this code contains an additional
kernel penalty with added trade-off parameters set by the authors for working with this
data set). While all three existing VB algorithms can be effective in practice, they have not
been optimized with respect to the considerations provided herein. With VB-Fergus and
VB-Levin, the adopted image priors are loosely based on the statistics of natural scenes
and, as we have argued in Sections 3 and 4, may not be optimal. While VB-Babacan also
involves a prior with f flat like VB+, it adopts the fixed λ reduction schedule originally
from VB-Levin, and hence cannot exploit the full potential of VB.

The cumulative histogram of the SSD error ratios is shown in Figure 3(a) for all VB
methods. The height of the bar indicates the percentage of images having error ratio below
that level. High bars indicate better performance. As mentioned by Levin et al., the results
with error ratios above 2 may already have some visually implausible regions (Levin et al.,
2009). VB+ can achieve close to 90% success with error ratio below 2, significantly higher
than the others.

Regardless, all of the VB algorithms still exhibit reasonable performance, especially
given that they do not benefit from any additional prior information or regularization heuris-
tics that facilitate blur-adaptive structure selection (meaning the additional regularization
based on domain knowledge added to Equation 3 that boost typical MAP algorithms as
discussed previously). However, one curious phenomenon is that both VB-Fergus and VB-
Levin experience a relatively large drop-off in performance when the error ratio reduces from
1.5 to 1.1. While it is difficult to be absolutely certain, one very plausible explanation for
this decline relates to the prior selection employed by these algorithms. In both cases, the
prior is based on a finite mixture of zero mean Gaussians with different variances roughly
matched to natural image statistics. While such a prior does heavily favor approximately
sparse signals, it will never produce any exactly sparse estimates at any resolution of the
course-to-fine hierarchy, and hence, especially at high resolutions the penalty shape modu-

17. This data is available online at http://www.wisdom.weizmann.ac.il/~levina/papers/

LevinEtalCVPR09Data.rar
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lation effect of VB will be highly muted, as will be the beneficial sparsity/variance trade-off
that accompanies more strongly sparse priors. Thus these algorithms may not be optimal
for resolving extremely fine details, which is required for reliably producing image estimates
with low error ratios. In contrast, to achieve high error ratios only lower resolution features
need be resolved, and in this regime VB-Levin, which is also based directly on Algorithm
1, performs nearly as well as VB+. Also note that VB-Babacan performs relatively poorly
at the higher error ratios, which is likely attributable to the fact that local minima and
more catastrophic errors are a serious problem when using the highly non-convex Jeffreys
distribution without a proper schedule for reducing λ that is tuned to the image prior.

We next compare VB+ with several state-of-the-art MAP algorithms from Shan et al.
(2008), Xu and Jia (2010), and Cho and Lee (2009). Shan et al. (denoted MAP-Shan)
adopts an additional local smoothness prior designed to reduce ringing artifacts. Xu et al.
(MAP-Xu) includes two phases for kernel estimation and incorporates an explicit scheme for
edge structure selection. Finally, Cho et al. (MAP-Cho) is also a carefully-engineered MAP
approach coupled with structure selection and sharp edge prediction schemes, which help
the algorithm to avoid the degenerate delta solution. Recall that previously we have argued
that standard MAP algorithms may suffer from one of two problems: either the pixel-
wise image prior is highly sparse and convergence to sub-optimal local solutions becomes a
problem, or the prior is less sparse and global solutions do not sufficiently distinguish blurry
from sharp images. All of the MAP algorithms tested here can be viewed as addressing
this conundrum by including additional regularization schemes (priors) such that global or
near global minima favor sharp images even when the basic pixel-wise image prior is convex
(i.e., minimally sparse). This is a very different strategy than VB, which adopts a simpler
underlying model with no additional regularizers beyond the canonical pixel-wise sparse
prior. Figure 3(b) reveals that the simple VB strategy, when properly implemented, can
still outperform specially tuned MAP estimates. Note that the results of MAP-Cho are from
the data set accompanying Levin et al. (2011a) directly, while the results of MAP-Shan and
MAP-Xu are produced using the software provided by the authors, for which we adjust the
parameters carefully. For all algorithms we run every test image with the same parameters,
similar to Levin et al. (2009, 2011b). Overall, VB+ obtains the highest reported result of
any existing VB or MAP algorithm on this important benchmark.

7. Conclusion

This paper presents an insightful reformulation and subsequent analysis of MAP and VB
blind deconvolution algorithms revealing why practical success is possible and suggesting
valuable improvements for the latter. We summarize the contributions of this perspective
as follows:

• Levin et al. (2009, 2011b) have provided an interesting analysis of VB and related
MAP algorithms. We push the limits of understanding further, demonstrating that
rigorous evaluation of VB and its associated priors cannot be separated from imple-
mentation heuristics, and we have meticulously examined the interplay of the relevant
underlying algorithmic details employed by practical VB systems. Consequently, what
may initially appear to be a plausible rationale for achieving high performance may
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Figure 3: Evaluation of the restoration results: Cumulative histogram of the deconvolution
error ratio across 32 test examples. The height of the bar indicates the percentage
of images having error ratio below that level. High bars indicate better perfor-
mance. (a) comparison with several other VB algorithms. (b) comparison with
several state-of-the-art MAP algorithms.

have limited applicability given the assumptions required to implement scalable ver-
sions of VB.

• We have proven that in an ideal, noiseless setting, VB and MAP have an identical
underlying cost function once the requisite approximations are accounted for (and
they are intimately related even when noise is present). This is in direct contrast to
conventional assumptions explaining the presumed performance advantages of VB.

• We carefully examine the underlying VB objective function in a transparent form,
leading to principled criteria for choosing the optimal image prior. It is crucial to
emphasize that this image prior need not, and generally should not, reflect the most
accurate statistics of real imaging data. Instead, the preferred distribution is one
that is most likely to guide VB iterations to high quality global solutions by strongly
differentiating between blurry and sharp images. In this context, we have motivated a
unique selection, out of the infinite set of possible sparse image priors, that simultane-
ously allows for maximal discrimination between k∗x and x, displays a desirable form
of scale invariance, and leads to an intrinsic coupling between the blur kernel, noise
level, and image penalty such that bad local minima can largely be avoided. To the
best of our knowledge, this represents a completely new viewpoint for understanding
VB algorithms.

• The cause of failure when using standard MAP algorithms depends on the choice of
image prior. If −2 log p(x) is only marginally concave in |x|, or is tuned to natural
image statistics, then the problem is often that global or near-global solutions do
not properly differentiate blurry from sharp images. In contrast, if p(x) is highly
sparse, while global solutions may be optimally selective for sharp image gradients,
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convergence to bad local solutions is more-or-less inevitable. It is with the latter that
VB offers a compelling advantage.

• We have derived and analyzed a simple yet powerful extension of VB deconvolution
algorithms for learning the noise level.

• By reframing VB as a nearly parameter-free sparse regression problem in standard
form, we demonstrate that it is no longer difficult to enhance performance and gener-
ality by inheriting additional penalty functions (such as those from Shan et al. 2008)
or noise models (e.g., Laplacian, Poisson, etc.) commonly reserved for MAP. More-
over, we anticipate that these contributions will lead to a wider range of principled
VB applications, such as non-uniform deconvolution (Whyte et al., 2012; Zhu and
Milanfar, 2013) and multi-frame and video deblurring (Sroubek and Milanfar, 2012;
Takeda and Milanfar, 2011). Preliminary results show tremendous promise (Zhang
et al., 2013; Zhang and Wipf, 2013). Additionally, the analysis we conducted for
blind deconvolution may well be relevant to other related bilinear models like robust
dictionary learning in the presence of noise.

Overall, we hope that these observations will ensure that VB is not under-utilized in
blind deconvolution and related tasks. We conclude by mentioning that, given the new
perspective on VB provided herein, it may be possible to derive new blind deblurring algo-
rithms and penalty functions that deviate from the VB script but nonetheless adopt some
of its attractive properties. This is a direction of ongoing research.
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Appendix A. Proofs

This section provides proofs of various technical results described in this paper.

A.1 Proof of Theorem 1

We begin with the cost function

L(x,k,γ) ,
1

λ
‖y − k ∗ x‖22 +

∑
i

[
x2
i

γi
+ log(λ+ ‖k̄‖22γi) + f(γi)

]
, (28)

which is obtained starting with (12) and then simply removing the minimization over γ from
the definition of gVB in (13), plugging in the value of ρ, and simplifying. The basic strategy
here will be to use a majorization-minimization approach (Hunter and Lange, 2004) akin
to the concave-convex procedure (Yuille and Rangarajan, 2001) to derive coordinate-wise
updates that are guaranteed to reduce or leave unchanged L(x,k,γ), and then show that
these are in fact the same updates as Algorithm 1. In doing so we show that (12) is an
equally valid explanatory cost function with which to interpret VB.
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As an initial proposition, we may attempt to directly minimize L(x,k,γ) over x, k, and
γ independently, in each case while holding the other two variables fixed. Beginning with
x, we collect relevant terms and find that we must solve

min
x

1

λ
‖y − k ∗ x‖22 +

∑
i

x2
i

γi
, (29)

which has a convenient closed-form solution xopt given by

xopt =

[
1

λ
HTH + Γ−1

]−1 1

λ
HTy, (30)

where Γ , diag[γ] and H is the convolution matrix of the blur kernel defined in Section 3.1.
Next we consider updating γ, where the associated cost function conveniently decouples

so we may solve for each γi independently. For this purpose, we use the fact that

λ+ ‖k̄‖22γi = λγi

(
1

γi
+
‖k̄‖22
λ

)
(31)

to obtain the following minimization problem for each γi:

min
γi≥0

x2
i

γi
+ log γi + log

[
‖k̄‖22
λ

+ γ−1
i

]
+ f(γi), (32)

where γi-independent terms are omitted. Because no closed-form solution is available, we
instead use basic principles from convex analysis to form a strict upper bound that will
facilitate subsequent optimization. In particular, we use

zi
γi
− φ∗(zi) ≥ log

[
‖k̄‖22
λ

+ γ−1
i

]
, (33)

which holds for all zi ≥ 0, where φ∗ is the concave conjugate (Boyd and Vandenberghe,

2004) of the concave function φ(α) , log
[
‖k̄‖22
λ + α

]
. It can be shown that equality in (33)

is obtained using

zopt
i =

∂φ

∂α

∣∣∣∣
α=γ−1

i

=
1∑

j k
2
j Īji
λ + γ−1

i

,∀i, (34)

where we have used the fact that ‖k̄‖22 ,
∑

j k
2
j Īji is the squared norm of k reincorporating

the i-dependent image boundary conditions (see Section 3.1), which will become somewhat
relevant for a more comprehensive version of the proof. Plugging (33) into (32) we obtain
the revised problem

min
γi≥0

x2
i + zi
γi

+ log γi + f(γi). (35)

This sub-problem can be handled in multiple ways. First, if the underlying gx associated
with f (obtained from (11)) is differentiable, then (35) has a convenient closed-form solution
obtained as follows. After a exp[−1/2(·)] transformation (35) assumes the same variational
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form as the sparse prior given by (11) evaluated at the point
√
x2
i + zi, ignoring irrelevant

constants. Consequently, based on Palmer et al. (2006) we know that the optimizing γi is
given by

γopt
i =

2σ

gx′(σ)

∣∣∣∣
σ=
√
x2i+zi

, ∀i. (36)

This covers the vast majority of practical sparse priors (and all of those amenable to Al-
gorithm 1). Secondly, if for some reason gx is not differentiable at some point(s), then
(35) may still be solved numerically as a 1D optimization problem, or perhaps analytically
leveraging the structure of f . For example, if f is a non-decreasing function (as motivated
in Section 3.3), then gx will not be differentiable at zero. However, since γopt

i = 0 whenever
x2
i + zi = 0, so this does not pose a problem.

We now examine optimization over k. Isolating terms, this requires that we solve

min
k≥0

1

λ
‖y − k ∗ x‖22 +

∑
i

log

[
‖k̄‖22
λ

+ γ−1
i

]
. (37)

There is no closed-form solution; however, as before we may use strict upper bounds derived
from convex analysis for optimization purposes. Accounting again for the fact that ‖k̄‖22 ,∑

j k
2
j Īji actually depends on i, we choose(∑

j

k2
j Īji

)
vi − ϕ∗i (vi) ≥ log

[ 1

λ

(∑
j

k2
j Īji

)
+ γ−1

i

]
, (38)

which holds for all vi ≥ 0, where ϕ∗ is the concave conjugate of the concave function
ϕi(α) , log

[
α
λ + γ−1

i

]
. Similar to the γ updates from above, it can be shown that equality

in (38) is obtained with the minimizing vi given by

vopt
i =

∂ϕi
∂α

∣∣∣∣
α=

∑
j k

2
j Īji

=
zi
λ
, ∀i. (39)

Plugging (38) and (39) into (37) leads to the quadratic optimization problem

kopt = arg min
k≥0

1

λ
‖y−Wk‖22+

∑
i

zi
λ

∑
j

k2
j Īji

 = arg min
k≥0
‖y−Wk‖22+

∑
j

k2
j

(∑
i

ziĪji

)
,

(40)
where W is the convolution matrix constructed from the image x (see Section 3.1). As a
simple convex program, there exist many high-performance algorithms for solving (40).

To review, we would originally like to minimize L(x,k,γ) over x, k, and the latent
variables γ. To simplify the optimization we introduce additional latent variables z ,
[z1, . . . , zm]T and v , [v1, . . . , vm]T , such that, after combining terms from above we are
now equivalently minimizing

L(x,k,γ, z,v) ,
1

λ
‖y − k ∗ x‖22

+
∑
i

[
x2
i + zi
γi

+ log γi + f(γi)− φ∗(zi)
]

+
∑
i

∑
j

(
k2
j Īji
)
vi − ϕ∗i (vi)

 (41)
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over x, k, and the latent variables γ, z, and v. The associated coordinate descent updates
rules, meaning the cyclic iteration of (30), (34), (36), (39), and (40), are guaranteed to
reduce or leave unchanged L(x,k,γ) by standard properties of majorization-minimization
algorithms. And importantly, at least for our purposes, these updates are in one-to-one
correspondence with those from Algorithm 1, albeit with some inconsequential differences
in notation and statistical interpretation. Specifically, the γ update from (36) is equivalent
to the ω update in Algorithm 1, the x update from (30) is equivalent to the µ update,
the z update becomes equivalent to computing the diagonal of C, and finally the k update
from (40) is the same as that in Algorithm 1 but with the requisite boundary conditions
explicitly incorporated via Ī.

Note that the ω update from Algorithm 1 appears somewhat different from that orig-
inally presented in Levin et al. (2011a), which only considers the special case where the
assumed image prior is a finite Gaussian scale mixture given by

p(xi) =
∑
j

πj√
2πγ̄j

exp

[
−1

2

x2
i

γ̄j

]
, (42)

where πj ≥ 0 and
∑

j πj = 1. However, using Palmer et al. (2006) it is easily shown that

2σ

gx′(σ)
=
(
Ep(γ|xi=σ)[γ

−1]
)−1

=

∑
j

πj√
2πγ̄j

exp
[
−1

2
σ2

γ̄j

]
∑

j
πj√
2πγ̄j

exp
[
−1

2
σ2

γ̄j

]
1
γ̄j

(43)

such that formal equivalence with Levin et al. (2011a) is maintained.

In closing, we emphasize that the upper bounds utilized here were specifically chosen
so as to establish a connection with Algorithm 1. However, once we have motivated that
L(x,k,γ) is an equally valid cost function, other bounds can be used to potentially improve
the convergence rate or other properties of the algorithm. This is a direction of future
research. �

A.2 Proof of Corollary 1

Here we omit the pixel-wise subscript i for simplicity. Likewise for later proofs where appro-
priate. From the definition of gVB we know that gVB(x, 0) = minγ≥0

x2

γ +log(γ)+f(γ). After
a −2 log transformation of (11), and ignoring constant terms, we have gx(x) = −2 log p(x) =

minγ≥0
x2

γ + log(γ) + f(γ), and so it follows that gVB(x, 0) = gx(x). �

A.3 Proof of Theorem 2

We first assume that f is a concave, non-decreasing function and express gVB(x, ρ) as

gVB(x, ρ) , min
γ≥0

x2

γ
+ ψ(γ), (44)
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where ψ(γ) , log(ρ + γ) + f(γ) is also a concave, non-decreasing function of γ (because
log(ρ+ γ) is). Thus we can always express ψ(γ) as

ψ(γ) = min
z≥0

zγ − ψ∗(z), (45)

where ψ∗(z) is the concave conjugate (Boyd and Vandenberghe, 2004) of ψ(γ). Therefore,
it follows that

gVB(x, ρ) = min
γ,z≥0

x2

γ
+ zγ − ψ∗(z). (46)

Optimizing over γ for fixed x and z, the optimal solution is

γopt = z−1/2|x|. (47)

Plugging this result into (46) gives

gVB(x, ρ) = min
z≥0

x2

z−1/2|x|
+ zz−1/2|x| − ψ∗(z) = min

z≥0
2z1/2|x| − ψ∗(z). (48)

This implies that gVB(x, ρ) can be expressed as a minimum over upper-bounding hyperplanes
in |x|, with different z implying different slopes. Any function expressible in this form is
necessarily concave, and also non-decreasing since z ≥ 0 (Boyd and Vandenberghe, 2004).

Now in the other direction, assume that gVB(x, ρ) is a concave, non-decreasing function
of |x|. It then follows that

gVB(x, ρ) = min
z≥0

2z|x|+ h(z) (49)

for some function h. Using the fact that

2|x| = min
α≥0

x2

α
+ α (50)

and defining γ , αz−1, we can re-express gVB(x, ρ) as

gVB(x, ρ) = min
α,z≥0

z

[
x2

α
+ α

]
+ h(z) = min

α,z≥0

x2

αz−1
+ zα+ h(z)

= min
γ,z≥0

x2

γ
+ z2γ + h(z) = min

γ≥0

x2

γ
+ ϕ(γ), (51)

where ϕ(γ) , minz≥0 z
2γ + h(z) is necessarily a concave, non-decreasing function of γ by

construction and arguments made previously. This implies that ψ(γ) from (44) must be a
concave, non-decreasing function of γ for all ρ. Of course as ρ → ∞, log(z + ρ) becomes
arbitrarily flat, with derivative approaching zero for all γ. Consequently, the only way to
ensure that ψ(γ) is concave and non-decreasing for any ρ is to require that f is a concave,
non-decreasing function.

Finally, any locally minimizing solution xopt to (12) must necessarily be a local minimum
to

min
x

1

λ
‖y −Hx‖22 +

∑
i

gVB(xi, ρ). (52)
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If f is concave and non-decreasing, then so is gVB(xi, ρ) based on the arguments presented
above, and so (52) is a canonical sparse estimation problem with a separable concave in |x|
regularizer. Based on (Rao et al., 2003, Theorem 1), we may then conclude that m − n
elements of xopt will be zero at any local minimizer. �

A.4 Proof of Corollaries 2 and 3

For Corollary 2, the proof in both directions follows from similar arguments to those used
for proving Theorem 2. For Corollary 3, the proof follows from several modifications of the
proof of Theorem 2 from Zhang et al. (2013). We omit details for the sake of brevity. �

A.5 Proof of Theorem 3

For f(γ) = b, we have

gVB(x, ρ) ≡ min
γ≥0

x2

γ
+ log(ρ+ γ)︸ ︷︷ ︸

ϕ

(53)

since constant terms are irrelevant. We first calculate the optimal γ by differentiating ϕ
and equating terms to zero. Since

∂ϕ

∂γ
= −x

2

γ2
+

1

ρ+ γ
, (54)

it follows after some algebra that

γopt =
x2 + |x|

√
x2 + 4ρ

2
. (55)

Based on the unimodality of ϕ it follows that γopt represents the unique minimizer. Sub-
stituting (55) into (53) and omitting irrelevant constant factors, we have

gVB(x, ρ) ≡ 2|x|
|x|+

√
x2 + 4ρ

+ log
(
2ρ+ x2 + |x|

√
x2 + 4ρ

)
.

�

A.6 Proof of Corollary 4

Assuming f(γ) = b and ρ1 < ρ2, we want to show that gρ1VB ≺ gρ2VB. For this purpose it

is sufficient to show that
∂2gρVB(x)

∂x2
/
∂gρVB(x)
∂x is an increasing function of ρ, which represents

an equivalent condition for relatively concavity to one given by Definition 1, assuming the
requisite derivatives exist (Palmer, 2003).

Defining η , γ−1, we have

gρVB(x) = min
η≥0

ηx2 + log(ρ+ η−1) (56)
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where the optimal ηopt is given by the gradient of gρVB(x) with respect to x2, which follows

from basic concave duality theory. Let hρ(z) , gρVB(
√
z). Then ηopt = ∂hρ(z)

∂z . With z , x2,

we can readily compute the expression for
∂gρVB
∂x (x) via

∂gρVB(x)

∂x
=
∂hρ(z)

∂z

dz

dx
= 2x

∂hρ(z)

∂z
=
x

ρ

(√
1 +

4ρ

x2
− 1

)
. (57)

Using (57) it is also straightforward to derive
∂2gρVB(x)

∂x2
as

∂2gρVB(x)

∂x2
= 2

∂hρ(z)

∂z
− 4

x2
√

1 + 4ρ
x2

. (58)

We must then show that

∂2gρVB(x)/∂x2

∂gρVB(x)/∂x
=

1

x
−

4

x2
√

1+ 4ρ

x2

x
ρ

(√
1 + 4ρ

x2
− 1

) (59)

is an increasing function of ρ. By neglecting irrelevant additive and multiplicative factors
(and recall that x ≥ 0 from the definition of gρVB), this is equivalent to showing that

ξ(ρ) =
1

ρ

(√
1 +

4ρ

x2
− 1

)
(60)

is a decreasing function of ρ. It is easy to check that

ξ′(ρ) =

√
1 + 4ρ

x2
− 1− 2ρ

x2√
1 + 4ρ

x2

< 0. (61)

Therefore, ξ(ρ) is a decreasing function of ρ, implying that
∂2gρVB(x)

∂x2
/
∂gρVB(x)
∂x is an increasing

function of ρ, completing the proof. �

A.7 Proof of Theorem 4

For simplicity assume that f is twice differentiable. From the definition of relative concavity,

ψρ1 ≺ ψρ2 if and only if ∂2ψρ(γ)
∂γ2

/∂ψ
ρ(γ)
∂γ is an increasing function of ρ (Palmer, 2003). It is

easy to show that

ξ(ρ) ,
∂2ψρ(γ)

∂γ2
/
∂ψρ(γ)

∂γ
=
− 1

(γ+ρ)2
+ f ′′(γ)

1
γ+ρ + f ′(γ)

. (62)

To avoid notation clutter, we let ω , γ + ρ, so that the objective is then to prove that

ξ(ρ) =
− 1
ω2 + f ′′(γ)
1
ω + f ′(γ)

(63)
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is an increasing function of ρ, for all γ, ρ ≥ 0 if and only if f ′′(γ) = 0 and f ′(γ) ≥ 0, or
equivalently that f is affine with positive slope. For this purpose it suffices to examine
conditions whereby

ξ′(ρ) =
f ′′(γ)ω2 + 2f ′(γ)ω + 1

(f ′(γ)ω2 + ω)2 ≥ 0, ∀ρ, γ ≥ 0. (64)

First, assume f ′′(γ) = 0. We also have that f ′(γ) ≥ 0 by virtue of the Theorem
statement. Clearly (64) will always be true and so ξ(ρ) must be an increasing function of
ρ. In the other direction, assume that (64) is true for all ρ and γ. Because f is a concave
function, f ′′(γ) ≤ 0. Now consider the case where f ′′(γ) < 0. The denominator of (64) is
always non-negative and can be ignored. For the numerator, allow ρ to become arbitrarily
large while keeping γ fixed. The quadratic term will then dominate such that ξ′(γ) < 0,
violating our assumption that ξ′(ρ) ≥ 0. Therefore it must be that f ′′(γ) = 0.

To conclude, ψρ1 ≺ ψρ2 if and only if f ′′(γ) = 0 and f ′(γ) ≥ 0, which is equivalent to
the requirement that f(γ) = aγ + b with a ≥ 0. �

A.8 Proof of Theorem 5

Consider the VB cost function (12) with gVB defined via (13). Given an optimal solution
pair {x∗,k∗}, we equivalently want to prove that {α−1x∗, αk∗} is also always an optimal
solution pair if and only if f(γi) = b.

First we assume that f is a constant. It is easy to see that the value of the data fidelity
term in (12) is unchanged since

1

λ
‖y − k∗ ∗ x∗‖22 ≡

1

λ

∥∥∥∥y − αk∗ ∗ x∗

α

∥∥∥∥2

2

. (65)

For the penalty terms, after defining γ̄i , α2γi for each i and ρ∗ , λ/‖k̄∗‖22, we have

gVB

(
x∗i
α
,
ρ∗

α2

)
+ log

(
α2
∥∥k̄∗∥∥2

2

)
= min

γi≥0

x∗2i
α2γi

+ log

(
ρ∗

α2
+ γi

)
+ log

(
α2
∥∥k̄∗∥∥2

2

)
= min

γ̄i≥0

x∗2i
γ̄i

+ log

(
ρ∗

α2
+
γ̄i
α2

)
+ logα2 + log

∥∥k̄∗∥∥2

2

= min
γ̄i≥0

x∗2i
γ̄i

+ log(ρ∗ + γ̄i) + log ‖k̄∗‖22

≡ gVB(x∗i , ρ
∗) + log

(
‖k̄∗‖22

)
, (66)

Therefore, the rescaled solution pair {α−1x∗, αk∗} does not change the cost function value,
and must therefore also represent an optimal solution.

On the other hand, assume that {α−1x∗, αk∗} is an optimal solution for any α > 0,
from which it must follow that

gVB

(
x∗i
α
,
ρ

α2

)
+ log(α2‖k̄∗‖22) = gVB(x∗i , ρ) + log(‖k̄∗‖22)
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and therefore

min
γ̄i≥0

x∗2i
γ̄i

+ log(ρ+ γ̄i) + log ‖k̄‖22 + f
( γ̄i
α2

)
= min

γi≥0

x∗2i
γi

+ log(ρ+ γi) + log ‖k̄‖22 + f(γi). (67)

To satisfy the above equivalence for all possible x∗, k∗, and λ, f must be a constant (with
the exception of an irrelevant, zero-measure discontinuity at zero). The second part of the
theorem is likewise straightforward to show; however, we omit additional details. �

Appendix B. Noise Level Estimation

As introduced in Section 5, we would like to minimize the VB cost function (12) after the
inclusion of an additional λ-dependent penalty. This is tantamount to solving

min
λ≥0

1

λ

[
d+ ‖y − k ∗ x‖22

]
+ n log λ+

∑
i

log
(‖k̄‖22

λ
+ γ−1

i

)
,

where VB factors irrelevant to λ estimation have been omitted. We set d = n × 10−4 for
all simulations which leads to good performance. While there is no closed-form, minimizing
solution for λ, similar to the γ updates described in the proof of Theorem 1, we may utilize
a convenient upper bound for optimization purposes. Here we use

θ

λ
− φ∗(θ) ≥

∑
i

log

(
‖k̄‖22
λ

+ γ−1
i

)
(68)

where φ∗ is the concave conjugate of φ(θ) ,
∑

i log
(
θ‖k̄‖22 + γ−1

i

)
. Equality is obtained

with

θopt =
∂φ

∂θ

∣∣∣∣
θ=λ−1

=
∑
i

‖k̄‖22
‖k̄‖22
λ + γ−1

i

. (69)

To optimize over λ, we may iteratively solve

min
λ,θ≥0

1

λ

(
‖y − k ∗ x‖22 + d

)
+ n log λ+

1

λ
θ − φ∗(θ). (70)

For fixed θ, the minimizing λ is easily computed as

λopt =
‖y − k ∗ x‖22 + θ + d

n
, (71)

where λopt has a lower bound of d/n. Thus we may set d so as to reflect some expectation
regarding the minimal about of noise or modeling error. In practice, these updates can be
merged into Algorithm 1 without disrupting the convergence properties (see Algorithm 2).
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