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ABSTRACT-Computational approaches such as clustering 
has found a lot of use in the analysis of Gene Expression Data. 
In this work, we attempt to study and compare four Partition 
based clustering algorithms (K-means, SOM, SOTA, and QT 
Clustering) over two Gene Expression datasets. Proximity 
measures play a major role in cluster analysis. In this paper we 
also study four different proximity measures (Pearson’s 
correlation coefficient, Cosine similarity, Kendall tau rank 
correlation coefficient, and Spearman’s rank correlation 
coefficient). Our experimental analysis show that among all 
the algorithms Self-Organizing Tree (SOTA) Algorithm has 
performed consistently and among the proximity measures, 
Pearson’s Correlation Coefficient and Cosine Correlation has 
performed significantly well over the yeast dataset. We also 
test our results on the blood cancer data of Homo sapiens and 
found that highly enriched clusters contain genes responsible 
for blood cancer. 

 

Keywords: Partition based Clustering, Gene Expression 
Data, Proximity measures, p-value. 

 

1. INTRODUCTION 

Gene expression is a mechanism by which a gene 
expresses itself in the phenotype of an organism. The Gene 
Expression Data (GED) is the output of microarray 
experiments and is in the form of a matrix with rows 
corresponding to genes and columns representingdifferent 
samples. These matrices have to be further analyzed in order 
to extract information about underlying biological processes. 
Genes having similar patterns of expression can be grouped 
together with the premise that they have similar cellular 
function. This can be done by a process called clustering. 
Clustering [1] is a process of classifying data objects into 
disjoint groups such that the objects in the same group or class 
have high similarity to each other, while data objects 
belonging to different groups are dissimilar. These disjoint 
classes or groups are known as clusters. Gene Expression Data 
clusteringare typically of three types:(i) Gene-based clustering 
that considerssamples as features and genes as data objects, 
(ii) Sample based clustering that treats genes as features and 
samples as data objects and (iii) Subspace clustering which 
considers both genes and samples symmetrically [1]. Gene-
based clustering has many approaches and some of them are 
mentioned below. Partition based clustering algorithm 
constructs k partitions of data where each partition represents 

a cluster, i.e. it classifies the data into k groups such that each 
group contains at least one object and each object belongs to 
exactly one group [1]. Hierarchical clustering algorithm [1] 
generates a hierarchical series of nested clusters that can be 
represented by a tree called dendrogram. These types of 
algorithms are classified into two types: Agglomerative 
algorithms, which is a bottom-up approach and Divisive 
algorithms, which is also known as top-down approach. Graph 
theoretical approaches [1] are presented in terms of graphs. 
This type of clustering techniques converts the problems of 
dataset clustering into graph theoretical problems. Density-
based clustering algorithms use order preservation ranking and 
regulation information in order to identify relevant clusters in 
GED. It clusters GED with high accuracy and is also found to 
be robust to outliers [2]. Clustering can be considered the most 
important unsupervised learning since it deals with finding a 
structure in a collection of unlabeled data.  

For clustering algorithms, proximity measures play an 
important role. Choosing an appropriate proximity measure is 
of great importance to achieve satisfactory clustering results. 
Proximity measure, also called similarity measure is a method 
to compute similarity between data objects. In this work, we 
study four different proximity measures and compare among 
them. The four measures are as follows: Pearson’s correlation 
coefficient (PCC), Spearman’s rank correlation coefficient [1], 
Cosine similarity measure and Kendall’s tau rank correlation 
coefficient. PCC measures the similarity of the changes in the 
expression levels of two profiles (patterns). It measures the 
strength of linear relationship between two patterns [3]. 
Spearman’s correlation coefficient [1] measures the strength 
of the monotonic relationship between paired data. Cosine 
similarity measure [4] is a classic measure which computes the 
normalized dot product of two attributes. It gives the cosine of 
the angle between two attributes. Therefore, it is a measure of 
orientation and not magnitude. Kendall’s tau coefficient [5] 
measures the ordinal association between two measured 
quantities.  

In this paper, we will empirically study the performance of 
four partition based clustering algorithms using four proximity 
measures. From our study we will choose the best algorithm 
among them and use it for further analysis on human blood 
cancer data. We will finally try to predict genes responsible 
for blood cancer. 

Cancer is the growth of uncontrolled genes anywhere in 
the body. There are many different types of cancer. For 
example, Breast cancer, Lung cancer, Skin cancer, etc. Blood 
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cancer [6] is a type of cancer that is initiated in blood forming 
tissue such as bone marrow, or in the cells of the immune 
system. There are three categories of blood cancer: Leukemia, 
Lymphoma and Myeloma. Most of these cancers are initiated 
in the bone marrow. A stem cell transplant as a part of blood 
cancer treatment may be the only best chance for a cure. A 
Gene Biomarker (GB) [6] is a DNA (or RNA) sequence that 
shows normal biological processes, pathogenic processes and 
response to therapeutic intervention. A biomarker reflects the 
expression, function and the regulation of a gene. Therefore, it 
is a biological parameter. Biomarker measurements help in the 
development and evaluation of novel therapies by comparing 
clinical responses to the effects of interventions of molecular 
and clinical pathways. This helps researchers to understand the 
differences in clinical responses [7].  

 
The rest of the paper is as follows: In section 2, we discuss 

about the related work, i.e. the four algorithms that we have 
considered. Section 3 gives the results of our experimental 
analyses comparing the four algorithms and the four proximity 
measures. The subsections of section 3 give the descriptions of 
the datasets on which the analyses were carried out, as well as 
the results separately. Also in subsection 3.4 we mention the 
biomarkers detected from the human blood cancer dataset. 
Finally we conclude in section 4. 

 
 
2. RELATED WORK 
In this section, we discuss the four partition based 

algorithms: K-means algorithm, QT clustering, Self-
Organizing Map and Self-Organizing Tree Algorithm. As we 
mentioned in Section 1, partition based algorithms partition 
the dataset into k clusters such that  𝑘 ≤ 𝑛, where n is the total 
number of data objects.  

 
2.1 K-MEANS ALGORITHM 
K-means [8] is an algorithm that partitions an n-

dimensional dataset into k disjoint sets on the basis of a 
sample. The resultant clusters appear to be efficient in the 
sense of within-class variance. The concept of k-means 
generalizes the ordinary sample mean. This algorithm is fast 
and simple. The time complexity of k-means is O(l ∗ k ∗ n) 
where l is the number of iterations and k is the number of 
clusters.The main idea of K-means Algorithm is to define k-
centers, one for each cluster. These centers should be placed in 
an intelligent way because different locations compute 
different results. So, the better choice is to place them as much 
as possible far away from each other. The next step is to take 
each point belonging to a given data set and associate it to the 
nearest center. When no point is pending, the first step is 
completed and an early group age is done. At this point we 
need to re-calculate k new centroid as barycenter 
of the clusters resulting from the previous step. After we have 
these k new centroid, a new binding has to be 
done between the same data set points and the nearest 
new center. A loop has been generated. As a result of this loop 
we may  notice that the k centers change their location step by 
step until no more changes  are done or  in  other words 
centers do not move any more [8].  

 

Jiang et al. [1] states in their paper that K-means algorithm 
typically converges into small number of iterations. There are 
several drawbacks of this algorithm. First, k is unknown in 
advance and has to be specified by the user. To find the 
optimal number of clusters, users repeatedly run the algorithm 
with different k and compare the results. In this work, we have 
used 3 methods namely the elbow method, the gap static 
method and the average silhouette method to find the optimum 
number of k. Second, since k-means forces each gene into a 
cluster, as a result the algorithm may be sensitive to noise [1]. 

 
2.2 QT CLUSTERING 
The Quality Threshold cluster algorithm [9] was developed 

to find large clusters that have a quality guarantee. This 
algorithm requires specifying a threshold diameter and the 
minimum number of elements in each cluster.The algorithm 
works as follows: Starting with the first data object (gene), a 
candidate cluster is formed. The genes which have highest 
similarity to it, are added to the cluster, iteratively. Each 
iteration adds the gene that minimizes the increase in cluster 
diameter. The process continues until no further genes can be 
added to the cluster without surpassing the threshold diameter. 
A second cluster is formed by repeating the above process. 
The whole process is terminated when the largest remaining 
cluster has fewer than the prespecified minimum number of 
elements [9].This algorithm can be used to find cell-cycle 
regulated genes. Also it can initiate a cluster with a specific 
gene of interest, which is more effective than clustering the 
whole dataset and choosing the cluster that contains the 
specific gene. However, it has some drawbacks. First, it is 
computationally intensive and also time consuming. The 
computational time is increased due to increase in minimum 
cluster size, the number of genes on the selected gene list and 
also due to decrease in the minimum correlation. Second, QT 
Clustering is more expensive than the K-means algorithm. 
However, it overcomes the weaknesses of K-means, which 
means it doesn't require specifying the number of clusters [9]. 

 
2.3 SELF-ORGANIZING MAP 
The Self-Organizing Map (SOM) [10,11] was developed 

based on a single layered neural network by Kohonen.  In this 
process, the data objects (genes) that are presented at the input 
and output neurons are arranged in a simple neighborhood 
structure called lattice. The neurons are associated with a 
reference vector, and eachdata point is mapped to neurons 
with the closest reference vector. In the process of running the 
algorithm, the data objects act as training samples. After the 
training, clusters are identified by mapping all the data points 
to the output neurons [1]. SOM generates a map of high 
dimensional data set in 2D or 3D where the similar clusters are 
placed near to each other. The approach of SOM is more 
robust than k-means to the outliers. However, the users need 
to input the number of clusters and the grid structure of the 
neuron map. Furthermore, SOM is not effective in the case 
when data set contains irrelevant data points, such as genes 
with invariant patterns. In this case, SOM produces an output 
in which the majority of clusters are populated by this type of 
data [1]. 

 
2.4 SELF-ORGANIZING TREE ALGORITHM 
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The Self-Organizing Tree Algorithm (SOTA) [12] is a 
type of unsupervised, growing, self-organizing neural 
networkthat expands itself depending on the taxonomic 
relationship that exists among the sequences being classified. 
It was introduced mainly to construct phylogenetic trees from 
biological sequences, based on the principles of Kohonen's 
Self-Organizing Maps and on Fritzke's growing cell structure 
[12]. The initial system of SOTA consists of two external cells 
that are connected by an internal cell. These cells are 
initialized randomly with numbers ranging from 0 to 1. The 
size of each vector is same. On the basis of Kohonen's model, 
the input space is defined by the experimental input data, 
whereas the output space consists of a set of nodes, arranged 
according to certain topologies, usually two-dimensional 
grids. The algorithm maps the input space onto the smaller 
output space, which in result produces a reduction in the 
complexity of the analyzed data set. SOTA gives an output in 
the form of a binary tree topology, which in turn incorporates 
the principles of the growing cell structures algorithm of 
Fritzke. A series of nodes that are arranged in a binary tree are 
adapted to the characteristics of input data. The growing of the 
output nodes can be stopped at a desirable taxonomic level, or 
they can grow until every gene in the input data set is 
classified [13]. One of the advantages of SOTA is that its 
topology is a hierarchical tree. SOTA depends on the total size 
of the cells which implies the time complexity of SOTA to be 
a linear function. As a result, SOTA proves to be a promising 
algorithm for classification of large datasets.Herrero et al. [13] 
used SOTA to analyze gene expression data and the result 
obtained was similar to the results of hierarchical clustering 
with the robustness and accuracy of a neural network. 

 
3. RESULTS 
In this section, we will give the descriptions of the two 

datasets that we have used and all the different results starting 
from the optimal number of k. 

3.1 DATASET DESCRIPTION 
Table 1: Dataset description 
 DATASET-1 DATASET-2 

Organism Saccharomyces  
Cerevisiae 

Homo  Sapiens 

Data Details Yeast  Sporulation Blood Cancer 

Source http://anirbanmukhopadh
yay.50webs.com/data.ht

ml [14] 

Armstrong  
2002  V2 [15] 

#Genes 474 2194 

#Samples 7 72 

 
3.2  RESULTS FOR THE INPUT OF K-MEANS AND 

SOM 

As mentioned earlier in Section 2, we have found out the 
optimal number of k using Elbow method [16] that looks at 
the total Within-cluster Sum of Squares (WSS) as a function 
of the number of clusters, Average silhouette method [16] 
computes the average silhouette of observations for different 
values of k. The optimal number of clusters k is the one that 

maximizes the average silhouette over a range of possible 
values for k and Gap static method [16] that compares the total 
within intra-cluster variation for different values of k with 
their expected values under null reference distribution of the 
data. 

 

 
a 

 
b 

 
c 

Figure 1: Computation of optimal number of k using (a) 
Elbow method (b) Gap static method (c) Silhouette method 

 

 Elbow method: 5 clusters solution suggested. 

 Silhouette method: 2 clusters solution suggested. 

 Gap static method: 5 clusters solution suggested. 
According to these observations, it is possible to define 

k=5 as the optimal number of clusters in the data. 

For finding the number of neurons in case of Self-

Organizing Map, we have used the equation M = 5√N, where 
M is the number of neurons, which is an integer close to the 
result of the right hand side of the equation, and N is the 
number of observations.We found M=13.44 and approximated 
it to 13. 

 
3.3 RESULTS ON YEAST DATA 
We have run the four partition based algorithms with the 

four proximity measures on the yeast dataset, using the tool 
MeV [17]. Multiple Experiment Viewer [17] is a cloud-based 
application that supports analysis, visualization and 
stratification of large genomic data, particularly for RNASeq 
and microarray data. After that,we used the tool 
FuncAssociate [18] for generating the p-values of the genes of 
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the clusters. FuncAssociate [18] is a web-based tool to help 
researchers use Gene Ontology attributes to characterize large 
sets of genes derived from experiments. We have used 
ClusterJudge [19] to calculate z-scores for the yeast dataset. 
ClusterJudge [19] is a tool that is used to judge quality of 
clustering methods performed elsewhere on some entities 
using mutual information. This tool supports only yeast 
datasets. 

 
3.3.1 P-VALUE ANALYSIS 
P values measure probability of finding the number of 

genes involved in a given Gene Ontology (GO) term within a 

cluster [18]. A low p-value indicates that the genes belonging 
to the enriched functional categories are biologically 
significant in the corresponding clusters. We have referred to 
significantly enriched clusters as those, whose p-values are 
above 5% significance level. The percentage of significantly 
enriched clusters is calculated by the formula below: 

 
% ofsignificantlyenrichedclusters

=
No. ofclustersabove 5% significancelevel

Totalno. ofclusters
× 100% 

 

 
Table 2: Percentage of significantly enriched clusters 

 

ALGORITHMS PROXIMITY MEASURES PERCENTAGE OF 
SIGNIFICANT 

CLUSTERS 

K-Means Cosine Similarity 100% 

Kendall’s Tau coefficient 100% 

Pearson’s correlation coefficient 100% 

Spearman’s correlation coefficient 100% 

QT Cluster Cosine Similarity 100% 

Kendall’s Tau coefficient 100% 

Pearson’s correlation coefficient 100% 

Spearman’s correlation coefficient 100% 

Self-Organizing Map Cosine Similarity 92.3% 

Kendall’s Tau coefficient 92.3% 

Pearson’s correlation coefficient 92.3% 

Spearman’s correlation coefficient 92.3% 

SOTA Cosine Similarity 100% 

Kendall’s Tau coefficient 80% 

Pearson’s correlation coefficient 100% 

Spearman’s correlation coefficient 80% 

 
Table 3 gives the p-values of clusters obtained by K-means, QT clustering, SOM and SOTA  with Cosine Similarity, 

Kendall’s tau, Pearson’s coefficient and Spearman’s coefficient as the proximity measures, with p-value below 3 × e−10. To 
restrict the size of the article, we have mentioned only the highest two values of each cluster. 
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Table 3: P-values obtained by using K-means, QT clustering, SOM and SOTA with Cosine similarity, Kendall’s tau 
coefficient, Pearson’s correlation coefficient and spearman’s coefficient 

Algorithm Proximity 
Measures 

Clusters P value GO id GO Categories 

K-means 
Clustering 

Cosine 
Similarity 

C1 1.77E-16 GO:0006090 pyruvate metabolic process 

1.51E-15 GO:0046496 nicotinamide nucleotide metabolic process 

1.93E-15 GO:0019362 pyridine nucleotide metabolic process 

4.67E-15 GO:0006006 glucose metabolic process 

7.83E-15 GO:0046031 ADP metabolic process 

C2 

 

4.39E-50 GO:0002181 cytoplasmic translation 

7.12E-42 GO:0030529 intracellular ribonucleoprotein complex 

7.12E-42 GO:1990904 ribonucleoprotein complex 

C3 1.47E-29 GO:0051321 meiotic cell cycle 

2.32E-25 GO:0007131 reciprocal meiotic recombination 

2.32E-25 GO:0035825 reciprocal DNA recombination 

C4 

 

3.69E-42 GO:0048646 anatomical structure formation involved in 
morphogenesis 

4.16E-38 GO:0043934 Sporulation 

Kendall’s 
tau 

coefficient 

C1 5.62E-21 GO:0048646 anatomical structure formation involved in 
morphogenesis 

2.63E-18 GO:0043934 Sporulation 

9.74E-18 GO:1903046 meiotic cell cycle process 

C2 1.29E-15 GO:0006094 Gluconeogenesis 

1.29E-15 GO:0019319 hexose biosynthetic process 

1.75E-15 GO:0006006 glucose metabolic process 

2.77E-15 GO:0006090 pyruvate metabolic process 

3.26E-15 GO:0046364 monosaccharide biosynthetic process 

8.14E-14 GO:0046031 ADP metabolic process 

C3 1.25E-31 GO:1903046 meiotic cell cycle process 

2.00E-30 GO:0044702 single organism reproductive process 

C4 1.26E-35 GO:0002181 cytoplasmic translation 

7.89E-34 GO:0030529 intracellular ribonucleoprotein complex 

7.89E-34 GO:1990904 ribonucleoprotein complex 

C5 4.91E-16 GO:0010927 cellular component assembly involved in 
morphogenesis 

7.09E-16 GO:0030476 ascospore wall assembly 

7.09E-16 GO:0042244 spore wall assembly 

9.00E-16 GO:0071940 fungal-type cell wall assembly 

1.14E-15 GO:0070726 cell wall assembly 
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2.62E-15 GO:0048646 anatomical structure formation involved in 
morphogenesis 

8.81E-15 GO:0003006 developmental process involved in 
reproduction 

Pearson’s 
Correlation 
Coefficient 

C1 1.77E-16 GO:0006090 pyruvate metabolic process 

1.51E-15 GO:0046496 nicotinamide nucleotide metabolic process 

1.93E-15 GO:0019362 pyridine nucleotide metabolic process 

4.67E-15 GO:0006006 glucose metabolic process 

7.83E-15 GO:0046031 ADP metabolic process 

C2 4.39E-50 GO:0002181 cytoplasmic translation 

7.12E-42 GO:0030529 intracellular ribonucleoprotein complex 

7.12E-42 GO:1990904 ribonucleoprotein complex 

C3 1.47E-29 GO:0051321 meiotic cell cycle 

2.32E-25 GO:0007131 reciprocal meiotic recombination 

2.32E-25 GO:0035825 reciprocal DNA recombination 

C4 3.69E-42 GO:0048646 anatomical structure formation involved in 
morphogenesis 

4.16E-38 GO:0043934 Sporulation 

Spearman’s 
correlation 
coefficient 

C1 1.49E-35 GO:1903046 meiotic cell cycle process 

3.30E-34 GO:0044702 single organism reproductive process 

C2 9.63E-12 GO:0006090 pyruvate metabolic process 

1.67E-11 GO:0032787 monocarboxylic acid metabolic process 

2.67E-11 GO:0019752 carboxylic acid metabolic process 

7.25E-11 GO:0043436 oxoacid metabolic process 

7.67E-11 GO:0006082 organic acid metabolic process 

9.73E-11 GO:0006094 Gluconeogenesis 

9.73E-11 GO:0019319 hexose biosynthetic process 

C3 

 

2.59E-48 GO:0002181 cytoplasmic translation 

2.73E-39 GO:0005840 Ribosome 

3.05E-39 GO:0003735 structural constituent of ribosome 

5.63E-39 GO:0030529 intracellular ribonucleoprotein complex 

5.63E-39 GO:1990904 ribonucleoprotein complex 

9.06E-39 GO:0044445 cytosolic part 

C4 

 

1.85E-27 GO:0048646 anatomical structure formation involved in 
morphogenesis 

3.52E-25 GO:0003006 developmental process involved in 
reproduction 

QT 
Clustering 

Cosine 
Similarity 

C1 3.80E-55 GO:1903046 meiotic cell cycle process 

1.66E-52 GO:0044702 single organism reproductive process 
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C2 1.76E-46 GO:0002181 cytoplasmic translation 

1.68E-37 GO:0005840 Ribosome 

1.69E-37 GO:0003735 structural constituent of ribosome 

4.49E-37 GO:0044445 cytosolic part 

C3 8.09E-12 GO:0006094 Gluconeogenesis 

8.09E-12 GO:0019319 hexose biosynthetic process 

1.44E-11 GO:0046364 monosaccharide biosynthetic process 

Kendall’s 
tau  

C1 2.99E-56 GO:1903046 meiotic cell cycle process 

1.82E-53 GO:0044702 single organism reproductive process 

C2 8.79E-47 GO:0002181 cytoplasmic translation 

1.57E-37 GO:0044445 cytosolic part 

1.16E-36 GO:0003735 structural constituent of ribosome 

C3 5.48E-20 GO:0030684 Preribosome 

9.43E-17 GO:0022613 ribonucleoprotein complex biogenesis 

Pearson’s 
correlation 
coefficient 

C1 1.01E-51 GO:1903046 meiotic cell cycle process 

1.73E-49 GO:0044702 single organism reproductive process 

C2 2.34E-50 GO:0002181 cytoplasmic translation 

2.74E-41 GO:0005840 Ribosome 

3.46E-41 GO:0003735 structural constituent of ribosome 

4.59E-41 GO:0030529 intracellular ribonucleoprotein complex 

4.59E-41 GO:1990904 ribonucleoprotein complex 

C3 9.94E-12 GO:0006094 Gluconeogenesis 

9.94E-12 GO:0019319 hexose biosynthetic process 

1.52E-11 GO:0006090 pyruvate metabolic process 

1.77E-11 GO:0046364 monosaccharide biosynthetic process 

9.60E-11 GO:0046496 nicotinamide nucleotide metabolic process 

Spearman’s 
correlation 
coefficient 

C1 8.57E-56 GO:1903046 meiotic cell cycle process 

3.14E-53 GO:0044702 single organism reproductive process 

C2 4.81E-52 GO:0002181 cytoplasmic translation 

6.09E-43 GO:0005840 Ribosome 

8.55E-43 GO:0003735 structural constituent of ribosome 

C3 6.30E-13 GO:0006090 pyruvate metabolic process 

1.34E-11 GO:0006094 Gluconeogenesis 

1.34E-11 GO:0019319 hexose biosynthetic process 

1.62E-11 GO:0006006 glucose metabolic process 

2.39E-11 GO:0046364 monosaccharide biosynthetic process 

5.82E-11 GO:0046031 ADP metabolic process 



IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018                    ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 
 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR 1730 | P a g e  

8.23E-11 GO:0009135 purine nucleoside diphosphate metabolic 
process 

8.23E-11 GO:0009179 purine ribonucleosidediphosphate metabolic 
process 

8.23E-11 GO:0009185 ribonucleosidediphosphate metabolic process 

Self-
Organizing 

Map 

Cosine 
Similarity 

C1 1.00E-12 GO:0046031 ADP metabolic process 

1.37E-12 GO:0009135 purine nucleoside diphosphate metabolic 
process 

1.37E-12 GO:0009179 purine ribonucleosidediphosphate metabolic 
process 

1.37E-12 GO:0009185 ribonucleosidediphosphate metabolic process 

2.65E-12 GO:0046496 nicotinamide nucleotide metabolic process 

3.04E-12 GO:0019362 pyridine nucleotide metabolic process 

3.20E-12 GO:0009132 nucleoside diphosphate metabolic process 

6.91E-12 GO:0006006 glucose metabolic process 

8.78E-12 GO:0006090 pyruvate metabolic process 

1.38E-11 GO:0072524 pyridine-containing compound metabolic 
process 

1.73E-11 GO:0006733 oxidoreduction coenzyme metabolic process 

1.95E-11 GO:0006096 glycolytic process 

1.95E-11 GO:0006757 ATP generation from ADP 

2.82E-11 GO:0006732 coenzyme metabolic process 

3.68E-11 GO:0006165 nucleoside diphosphate phosphorylation 

3.72E-11 GO:0006163 purine nucleotide metabolic process 

C2 7.75E-20 GO:0002181 cytoplasmic translation 

4.56E-16 GO:0044445 cytosolic part 

9.24E-16 GO:0003735 structural constituent of ribosome 

C3 1.09E-31 GO:0002181 cytoplasmic translation 

8.45E-28 GO:0003735 structural constituent of ribosome 

C4 8.36E-23 GO:0030684 Preribosome 

8.50E-18 GO:0022613 ribonucleoprotein complex biogenesis 

C5 3.55E-24 GO:0048646 anatomical structure formation involved in 
morphogenesis 

2.58E-23 GO:0003006 developmental process involved in 
reproduction 

2.58E-23 GO:0043934 Sporulation 

C6 3.76E-13 GO:0048646 anatomical structure formation involved in 
morphogenesis 

1.02E-11 GO:0030154 cell differentiation 
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1.02E-11 GO:0030435 sporulation resulting in formation of a cellular 
spore 

1.12E-11 GO:0043934 Sporulation 

1.28E-11 GO:0005628 prospore membrane 

3.25E-11 GO:0044767 single-organism developmental process 

3.44E-11 GO:0032502 developmental process 

C7 4.49E-27 GO:0051321 meiotic cell cycle 

6.67E-23 GO:0007131 reciprocal meiotic recombination 

6.67E-23 GO:0035825 reciprocal DNA recombination 

Kendall’s 
tau 

C1 1.25E-13 GO:0046031 ADP metabolic process 

1.70E-13 GO:0009135 purine nucleoside diphosphate metabolic 
process 

1.70E-13 GO:0009179 purine ribonucleosidediphosphate metabolic 
process 

1.70E-13 GO:0009185 ribonucleosidediphosphate metabolic process 

4.01E-13 GO:0009132 nucleoside diphosphate metabolic process 

8.67E-13 GO:0006006 glucose metabolic process 

1.10E-12 GO:0006090 pyruvate metabolic process 

C2 

 

1.26E-30 GO:0002181 cytoplasmic translation 

1.64E-27 GO:0044445 cytosolic part 

4.69E-27 GO:0003735 structural constituent of ribosome 

8.62E-27 GO:0044391 ribosomal subunit 

C3 2.19E-24 GO:0002181 cytoplasmic translation 

4.96E-22 GO:0022625 cytosolic large ribosomal subunit 

8.87E-22 GO:0003735 structural constituent of ribosome 

C4 

 

8.01E-23 GO:0030684 Preribosome 

1.02E-20 GO:0022613 ribonucleoprotein complex biogenesis 

C5 9.47E-12 GO:0048646 anatomical structure formation involved in 
morphogenesis 

2.78E-11 GO:0030154 cell differentiation 

2.78E-11 GO:0030435 sporulation resulting in formation of a cellular 
spore 

3.01E-11 GO:0003006 developmental process involved in 
reproduction 

3.01E-11 GO:0043934 Sporulation 

4.13E-11 GO:1903046 meiotic cell cycle process 

C6 3.32E-12 GO:0048646 anatomical structure formation involved in 
morphogenesis 

6.88E-11 GO:0044702 single organism reproductive process 

C7 1.41E-27 GO:0051321 meiotic cell cycle 
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3.15E-27 GO:0007131 reciprocal meiotic recombination 

3.15E-27 GO:0035825 reciprocal DNA recombination 

1.04E-25 GO:0044702 single organism reproductive process 

1.08E-25 GO:1903046 meiotic cell cycle process 

Pearson’s 
correlation 
coefficient 

C1 4.01E-20 GO:0051321 meiotic cell cycle 

4.84E-17 GO:0007131 reciprocal meiotic recombination 

4.84E-17 GO:0035825 reciprocal DNA recombination 

C2 7.56E-11 GO:0007131 reciprocal meiotic recombination 

7.56E-11 GO:0035825 reciprocal DNA recombination 

1.35E-10 GO:0051321 meiotic cell cycle 

C3 5.00E-17 GO:0043934 Sporulation 

6.77E-16 GO:0048646 anatomical structure formation involved in 
morphogenesis 

C4 6.69E-19 GO:0048646 anatomical structure formation involved in 
morphogenesis 

1.34E-15 GO:0044767 single-organism developmental process 

1.46E-15 GO:0032502 developmental process 

2.26E-15 GO:0030154 cell differentiation 

2.26E-15 GO:0030435 sporulation resulting in formation of a cellular 
spore 

2.57E-15 GO:0003006 developmental process involved in 
reproduction 

2.57E-15 GO:0043934 Sporulation 

7.53E-15 GO:0030476 ascospore wall assembly 

7.53E-15 GO:0042244 spore wall assembly 

C5 

 

7.34E-24 GO:0030684 Preribosome 

1.41E-20 GO:0030529 intracellular ribonucleoprotein complex 

1.41E-20 GO:1990904 ribonucleoprotein complex 

C6 3.00E-39 GO:0002181 cytoplasmic translation 

3.03E-35 GO:0044445 cytosolic part 

C7 6.91E-12 GO:0006006 glucose metabolic process 

8.64E-11 GO:0046031 ADP metabolic process 

Spearman’s 
correlation 
coefficient 

C1 3.78E-11 GO:0046031 ADP metabolic process 

4.72E-11 GO:0009135 purine nucleoside diphosphate metabolic 
process 

4.72E-11 GO:0009179 purine ribonucleosidediphosphate metabolic 
process 

4.72E-11 GO:0009185 ribonucleosidediphosphate metabolic process 

8.76E-11 GO:0009132 nucleoside diphosphate metabolic process 
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1.53E-10 GO:0006006 glucose metabolic process 

1.83E-10 GO:0006090 pyruvate metabolic process 

C2 

 

3.93E-47 GO:0002181 cytoplasmic translation 

6.47E-39 GO:0003735 structural constituent of ribosome 

C3 4.33E-13 GO:0030684 Preribosome 

1.48E-10 GO:0022613 ribonucleoprotein complex biogenesis 

C4 3.96E-17 GO:0048646 anatomical structure formation involved in 
morphogenesis 

8.68E-17 GO:0030154 cell differentiation 

8.68E-17 GO:0030435 sporulation resulting in formation of a cellular 
spore 

9.71E-17 GO:0043934 Sporulation 

2.95E-15 GO:0003006 developmental process involved in 
reproduction 

3.68E-15 GO:0048869 cellular developmental process 

3.84E-15 GO:0030476 ascospore wall assembly 

3.84E-15 GO:0042244 spore wall assembly 

3.87E-15 GO:0044767 single-organism developmental process 

4.13E-15 GO:0032502 developmental process 

4.87E-15 GO:0071940 fungal-type cell wall assembly 

6.15E-15 GO:0070726 cell wall assembly 

C5 3.15E-27 GO:0007131 reciprocal meiotic recombination 

3.15E-27 GO:0035825 reciprocal DNA recombination 

6.62E-26 GO:0051321 meiotic cell cycle 

Self-
Organizing 

Tree 
Algorithm 

Cosine 
similarity 

C1 4.32E-28 GO:0051321 meiotic cell cycle 

1.11E-26 GO:0007131 reciprocal meiotic recombination 

1.11E-26 GO:0035825 reciprocal DNA recombination 

C2 

 

9.14E-42 GO:0048646 anatomical structure formation involved in 
morphogenesis 

9.17E-38 GO:0043934 Sporulation 

C3 

 

1.34E-16 GO:0006090 pyruvate metabolic process 

1.08E-15 GO:0046496 nicotinamide nucleotide metabolic process 

1.38E-15 GO:0019362 pyridine nucleotide metabolic process 

3.61E-15 GO:0006006 glucose metabolic process 

6.18E-15 GO:0046031 ADP metabolic process 

C4 

 

1.06E-50 GO:0002181 cytoplasmic translation 

2.15E-41 GO:0030529 intracellular ribonucleoprotein complex 

2.15E-41 GO:1990904 ribonucleoprotein complex 

Kendall’s C1 5.37E-61 GO:1903046 meiotic cell cycle process 
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tau 8.03E-57 GO:0044702 single organism reproductive process 

C2 2.80E-13 GO:0006006 glucose metabolic process 

5.26E-13 GO:0006094 Gluconeogenesis 

5.26E-13 GO:0019319 hexose biosynthetic process 

9.40E-13 GO:0046364 monosaccharide biosynthetic process 

1.57E-11 GO:0019318 hexose metabolic process 

5.94E-11 GO:0005996 monosaccharide metabolic process 

8.55E-11 GO:0046031 ADP metabolic process 

C3 

 

2.00E-47 GO:0002181 cytoplasmic translation 

5.71E-39 GO:0030529 intracellular ribonucleoprotein complex 

5.71E-39 GO:1990904 ribonucleoprotein complex 

Pearson’s 
correlation 
coefficient 

C1 4.32E-28 GO:0051321 meiotic cell cycle 

1.11E-26 GO:0007131 reciprocal meiotic recombination 

1.11E-26 GO:0035825 reciprocal DNA recombination 

C2 

 

9.14E-42 GO:0048646 anatomical structure formation involved in 
morphogenesis 

9.17E-38 GO:0043934 Sporulation 

C3 

 

1.34E-16 GO:0006090 pyruvate metabolic process 

1.08E-15 GO:0046496 nicotinamide nucleotide metabolic process 

1.38E-15 GO:0019362 pyridine nucleotide metabolic process 

3.61E-15 GO:0006006 glucose metabolic process 

6.18E-15 GO:0046031 ADP metabolic process 

C4 

 

1.06E-50 GO:0002181 cytoplasmic translation 

2.15E-41 GO:0030529 intracellular ribonucleoprotein complex 

2.15E-41 GO:1990904 ribonucleoprotein complex 

Spearman’s 
correlation 
coefficient 

C1 8.47E-62 GO:1903046 meiotic cell cycle process 

1.05E-57 GO:0044702 single organism reproductive process 

C2 4.39E-14 GO:0006006 glucose metabolic process 

1.21E-13 GO:0006094 Gluconeogenesis 

1.21E-13 GO:0019319 hexose biosynthetic process 

2.17E-13 GO:0046364 monosaccharide biosynthetic process 

C3 

 

2.00E-47 GO:0002181 cytoplasmic translation 

5.71E-39 GO:0030529 intracellular ribonucleoprotein complex 

5.71E-39 GO:1990904 ribonucleoprotein complex 

 
 
3.3.2 Z SCORE ANALYSIS 
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The Z score is a test of statistical significance that helps to decide whether or not to reject the null hypothesis. Z scores are 
measures of standard deviation [19]. Higher z-scores indicate that the clustering results are more significantly related to the gene 
function [19]. 

 

Z score Analysis 

  
K-
means 

QT 
Cluster SOM SOTA 

Pearson 30.3 30.8 22.5 32.21 

Spearman 27.2 29.4 19.1 31.55 

Cosine 28.8 30.8 22.5 32.13 

Kendall 
Tau 20.9 25.9 23.7 29.72 

 

 

 
3.4 RESULTS ON HUMAN BLOOD CANCER DATA 

From the above analysis over the yeast dataset in subsection 3.3, it is found that among all the algorithms Self-Organizing 
Tree Algorithm has performed consistently and among the proximity measures, Pearson’s Correlation Coefficient and Cosine 
Correlation has performed significantly well over its counterparts.. However, from literature survey, we have found that Pearson’s 
correlation coefficient has been widely used over gene expression data and has been proved to be better. Therefore, we run the 
SOTA using Pearson’s similarity measure over the cancer dataset of Homo sapiens and found that the significantly enriched 
clusters obtained from SOTA gave gene biomarkers (genes responsible for cancer). Table 4 reports the results of the significantly 
enriched clusters obtained by SOTA. 

 
Table 4: P values of the significant clusters obtained by SOTA using Pearson’s correlation coefficient over the cancer dataset.  

Clusters P-value GO numbers GO categories 

C1 2.13E-17 GO:0000786 Nucleosome 

4.59E-17 GO:0044815 DNA packaging complex 

4.46E-15 GO:0032993 protein-DNA complex 

C2 2.78E-14 GO:0007165 signal transduction 

3.53E-13 GO:0007166 cell surface receptor signaling pathway 

5.48E-12 GO:0050789 regulation of biological process 

3.65E-11 GO:0048583 regulation of response to stimulus 

1.23E-10 GO:0050794 regulation of cellular process 

1.50E-10 GO:0006928 movement of cell or subcellular 
component 

1.73E-10 GO:0065007 biological regulation 

2.37E-10 GO:0004672 protein kinase activity 

C3 1.40E-11 GO:0002376 immune system process 

1.60E-10 GO:0043299 leukocyte degranulation 

K-means
QT

Cluster
SOM SOTA

Pearson 30.3 30.8 22.5 32.21

Spearman 27.2 29.4 19.1 31.55

Cosine 28.8 30.8 22.5 32.13

Kendall Tau 20.9 25.9 23.7 29.72

0
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2.75E-10 GO:0045055 regulated secretory pathway 

C4 6.79E-11 GO:0032502 developmental process 

1.49E-10 GO:0048519 negative regulation of biological process 

2.30E-10 GO:0048856 anatomical structure development 

C5 2.68E-14 GO:0009605 response to external stimulus 

7.12E-13 GO:0009607 response to biotic stimulus 

7.98E-13 GO:0043207 response to external biotic stimulus 

7.36E-12 GO:0051704 multi-organism process 

2.27E-11 GO:0048583 regulation of response to stimulus 

2.68E-11 GO:0019221 cytokine-mediated signaling pathway 

6.70E-11 GO:0001775 cell activation 

2.02E-10 GO:0042127 regulation of cell proliferation 

 
3.5 BIOMARKER DETECTION 

The total number of clusters generated by the SOTA using Pearson’s correlation coefficient over the blood cancer dataset is 
11. Out of which 10 were significantly enriched clusters. As we have considered our p-value threshold for highly significant 
clusters as 3 × e−10 , we have got 5 clusters to be highly significant. We have constructed a network for the genes in each cluster 
using cytoscape 3.3.0 [20] and GeneMANIA plug in 3.4.1 [21]. From the constructed network with the help of Network Analyzer 
3.3.2 [20] we have computed the degree of each of the nodes. We then took the top 10 highest degree genes to determine whether 
they are biomarkers of blood cancer or not. The validations of the biomarkers are being done by the GeneCards [22] and depicted 
in Table 5.  

Table 5: The list of causal genes 

GENE NAME ENTREZ GENE ID DEGREE SOURCE 

APP 351 239 GeneCards 

TGFBR3 7049 214 GeneCards 

TCF4 6925 212 GeneCards 

CHEK1 1111 206 GeneCards 

ITGAM 3684 230 GeneCards 

CD14 929 100 GeneCards 

SERPINA1 5265 202 GeneCards 

S100A11 6282 133 GeneCards 

MUC1 4582 236 GeneCards 

ANXA3 306 225 GeneCards 

CXCL12 6387 217 GeneCards 

MMP9 4318 209 GeneCards 

BMP2 650 195 GeneCards 

ESR2 2100 8 GeneCards 

 
4. CONCLUSION AND FUTURE WORK 

From our experimental analysis over the yeast dataset, it is 
found that among all the algorithms Self-Organizing Tree  

 

Algorithm has performed consistently and among the 
proximity measures, Pearson’s Correlation Coefficient and 
Cosine Correlation has performed significantly well over its 
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counterparts.. However, from literature survey, we have found 
that Pearson’s correlation coefficient has been widely used 
over gene expression data and has been proved to be 
better.Therefore, we implement the SOTA using Pearson’s 
similarity measure over the cancer dataset of Homo sapiens 
and found that the significantly enriched clusters obtained 
from SOTA gave gene biomarkers (genes responsible for 
disease).It has been observed that clusters below 5% 
significance level did not generate any biomarkers.In the 
blood cancer dataset of homo sapiens it has been seen that 
from the significantly enriched clusters detected by SOTA, a 
total of 14 gene biomarkers were found. The biomarkers have 
been validated by gene cards and literature. In this work, we 
attempted to give a way to analyze clustering algorithms and 
how they can be used in the detection of causal genes which in 
return would help in predicting cancer in patients. This would 
help in timely detection, prognosis and treatment of 
cancer.Here, we have taken into account only four partition 
based algorithms and four proximity measures. However, 
there is possibility of getting better results if the study is 
conducted taking more clustering algorithms and proximity 
measures into account.  
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