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SHELL SHAPE DIFFERENCES BETWEEN TWO PANOPEA SPECIES AND 
PHENOTYPIC VARIATION AMONG P. GLOBOSA AT DIFFERENT SITES 

USING TWO GEOMETRIC MORPHOMETRICS APPROACHES

Ignacio Leyva-Valencia1, Sergio Ticul Álvarez-Castañeda1, Daniel B. Lluch-Cota1,  
Sergio González-Peláez1, Sergio Pérez-Valencia1, 4, Brent Vadopalas2,  

Saul Ramírez-Pérez3 & Pedro Cruz-Hernández1*

ABSTRACT

Most previous studies identifying Panopea generosa and P. globosa have used non-rigorous 
visual methods as well as older shell measurement techniques. Newer mathematical methods 
based on shell shape variation allow for more accurate identification of clam species, as well 
as modeling of phenotypic differences due to environmental effects in populations in different 
sites. Interspecific shell morphology for two Mexican geoduck clam species was analyzed 
from a total of five sites off both coasts of the Baja California peninsula. In addition, intraspe-
cific analyses of shell morphology were conducted for one of the species, P. globosa, at four 
sites along its reported distribution. Two approaches were employed for the analyses: a novel 
approach based on radiating lines to characterize shell outlines, and a more traditional ap-
proach using internal shell landmarks. In general, the novel approach afforded greater fidelity 
in distinguishing inter- and intraspecific variation. Our results from both methods agree with 
original species descriptions, and showed that Bahía Magdalena geoducks are P. globosa, 
thus revealing a wider distribution than previous reports for this species. The outline and 
internal scars were highly discriminant between the two species. Shell shape of P. generosa 
was also less variable than that of P. globosa. Intraspecific analyses of P. globosa shell shape 
suggest an adaptive or phenotypic response to environmental conditions at each site. Our 
results may also be indicative of reproductive isolation between Pacific P. globosa at Bahía 
Magdalena and conspecifics in the Gulf of California.
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INTRODUCTION

Mollusks of the genus Panopea include among 
the largest of all deep-burrowing bivalves, with 
congeners occurring worldwide in intertidal 
and subtidal regions in the Pacific and Atlantic 
Oceans, the Mediterranean Sea, as well as off 
the coasts of Australia and New Zealand (Yonge, 
1971). Two Panopea species, P. generosa 
(Gould, 1850) and P. globosa (Dall, 1898), com-
monly called the “geoduck clam”, occur in coastal 
waters of the Baja California Peninsula in both 
the Pacific Ocean and the Gulf of California.

Some authors report P. generosa distributions 
from south of Alaska to the Baja California pen-
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insula (Weymouth, 1921; Fitch, 1952; Moore, 
1968; Morris et al., 1980; Goodwin & Peace, 
1989; Coan et al., 2000), whereas others in-
clude Baja California Sur (SAGARPA, 2007) 
and Gulf of California (DFO, 2000; Moore, 
2001; Feldman et al., 2004; Demeré & Scott, 
2006) within its distribution range. In contrast, 
the distribution of P. globosa has been reported 
as limited to the northern Gulf of California 
(Keen, 1971; Coan et al., 2000; Aragón-Norie-
ga et al., 2007; Rocha-Olivares et al., 2010), 
although specimens were recently reported 
from the central eastern side of the Gulf of 
California off the mainland coast of Mexico 
near Guaymas, Sonora (Aragón-Noriega et 
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al., 2007), as well as the Pacific side of the Baja 
California peninsula in coastal waters of Bahía 
Magdalena (Fig. 1; González-Peláez, Centro de 
Investigaciones Biológicas del Noroeste, México 
2010, pers. comm.).

Misidentifcation of Panopea species, on the 
other hand, remains a problem since morpho-
metric plasticity is known to occur in the genus. 
For example, one case that is well documented is 
that of Panopea generosa, which had been mis-
takenly synonymized with the extinct P. abrupta 
for almost 25 years (Vadopalas et al., 2010).

Moreover, identification can be difficult be-
cause bivalve shell morphology is influenced 

by such environmental factors as temperature, 
tidal excursion, wave exposure, water currents 
and sediment type (Costa et al., 2008a). The 
marine environment along the peninsula and 
the Gulf of California is highly variable, with 
seasonal circulation patterns (Zaytsev et al., 
2003; Kessler, 2006; Lavín & Marinone, 2003) 
and differences in bathymetry (Bray, 1988; 
Lluch-Cota et al., 2007) that may influence 
regional morphological changes in metapopu-
lations (Helenes & Carreño, 1999; Bizzarro, 
2008; Álvarez et al., 2009).

The relationship between local environmental 
conditions and shell morphology in Panopea 

FIG. 1. Sampling sites of two Panopea species in northwest Mexico.
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are unknown. Given the propensity for vari-
ability in valve shape due to regional environ-
mental variation (Fyfe, 1984), characterizing 
the variation in shell morphology between and 
within Panopea species could allow for more 
accurate estimates of population distributions. 
Shell morphology and structural traits are the 
principal characters used in traditional taxon-
omy of bivalves, including Panopea generosa 
and P. globosa. The shell of adult P. generosa 
is heavy, ponderous, subquadrate, subequilat-
eral and the valves gape widely (Coan et al., 
2000; Vadopalas et al., 2010). By comparison, 
the shell of adult P. globosa is more inflated, 
expanded and rounded in the pedal region, 
with a narrower posterior end and non-parallel 
opposite margins (Dall, 1898). Fyfe (1984) 
described the shell morphology of P. generosa 
as highly variable and taxonomically difficult 
to identify using traditional morphometric data 
(length, depth, and width). Thus, morphological 
differences between congeners of Panopea 
and its conspecifics are often difficult to identify 
by inexperienced observers.

Because linear measurements can be fairly 
ambiguous (Zelditch et al., 2004), researchers 
have explored geometric methods as an alter-
native for quantifying and analyzing morpho-
logical variation. Some of the more promising 
methods include the use of points that fall at 
defined intervals along a curve between two 
distinct landmarks; Marko & Jackson (2001) 
termed these points semi-landmarks.

Geometric morphometrics in other taxa 
have been shown to be powerful tools for 
solving complex species-level identification 
problems (Matias et al., 2001; Gumiel et al., 
2003; Shipunov & Bateman, 2005). Relatively 
few studies have applied these techniques to 
mollusks. Some focused on general morphol-
ogy (Ubukata, 2003; Anderson & Roopnarine, 
2005; Carvajal et al., 2005, 2006; Roopnarine 

et al., 2008), while others used geometric 
morphometrics to compared external shapes 
among conspecific populations (Kwon et 
al.,1999; Costa et al., 2008b) or phenotypic 
stocks (Márquez et al., 2010).

To help resolve the difficulty in species 
identification, which is affected by shell shape 
variation, we used two methods of geometric 
morphometric analyses to characterize shell 
shape differences in Panopea spp. from five 
sites on the Baja California peninsula. The first 
method is Procrustes superimposition which, 
to our knowledge, has not yet been used with 
bivalves. This newer method involves generat-
ing radiating lines, which fan out from a centroid 
and is referred to herein as “Fan-Based.” The 
second method is based on anatomical land-
marks of the inner shell.

MATERIALS AND METHODS

Samples and Sites

For taxonomic identification, we used the 
original descriptions (Conrad, 1849; Gould, 
1850; Dall, 1898), recent identification keys 
(Keen et al., 1971; Coan et al., 2000) and the 
direct help of Paul Valentich-Scott (Curator of 
Malacology, Santa Barbara Museum of Natural 
History). Using SCUBA, divers collected adult 
P. generosa specimens from San Quintín 
(n = 30) and a total of 108 adult P. globosa 
specimens from San Felipe (n = 18), Puerto 
Peñasco (n = 30), Guaymas (n = 30) and Bahía 
Magdalena (n = 30; Table 1; Fig. 1).

Imaging and Measurement

The principles of the FB method are well de-
scribed elsewhere (e.g., Sheets et al., 2006a; 
Rohlf, 1990; Lawing & Polly, 2009). For this 

TABLE 1. Geoduck (Panopea spp.) sampling sites and number 
of specimens used for interspecific and intraspecific geometric 
morphometric analysis.

Locality Abbreviation Location Specimens

San Quintín SQ 30°23’N, 115°57’W 30
San Felipe SF 31°01’N, 114°49’W 18
Puerto Peñasco PP 31°18’N, 113°33’W 30
Guaymas GU 27°56’N, 110°51’W 30
Bahía Magdalena BM 24°39’N, 112°03’W 30
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method, the set of points was defined a priori by 
an arbitrary rule: rays at equal angular intervals 
were used as guides to digitize semi-land-
marks, with the points to be digitized located 
at the intersection of all radii of a circle and the 
outline curve (Sheets et al., 2006a; Rohlf, 1990; 
Lawing & Polly, 2009). As employed here, the 
FB method involved generating three anatomi-
cal landmarks and two-dimensional Cartesian 
coordinates of 48 semi-landmarks (Fig. 2a) 
using Makefan6 (Sheets et al., 2006b). We 
used these landmarks to align shapes via Pro-
crustes superimposition. We used anatomical 
scars for landmarks 1, 2, and 3 (Fig. 2a) (umbo, 
antero-ventral adductor muscle, and postero-
ventral pallial sinus) to determine centroid size, 
semi-landmarks 4 to 51 to analyze curves and 

shell shape variation (semi-landmarks 4–11 
and 45–51 to define the dorsal region; 12–20 
to define the posterior end; 21–33 to delineate 
the ventral region, and 34–44 to define the 
anterior end). We used marks 52 and 53 as 
a reference scale (tpsDig 2.12, Rohlf, 2008). 
We used Semiland v6 software (Sheets et al., 
2006b) to conduct FB analyses.

The ILB method analyzed the interior shape 
of each specimen using 11 landmarks (Fig. 
2b). We used landmarks 1–3 to analyze nymph 
shape; 4–6 to analyze pallial sinus depth; 
landmark 7 to characterize the antero-ventral 
adductor scar and landmarks 8–11 to define 
outline curves. As above, we used landmarks 
12 and 13 as a reference scale (Fig. 2b; tpsDig 
2.12, Rohlf, 2008). We translated the interior 

FIG. 2. Digitized landmarks and coordinates located for Panopea generosa (left) and P. globosa (right). 
Where (a) is the fan-based method showing the intercept between the valve contour and the drawing 
aligment fan (48 equal quadrants), and (b) is the internal scar method showing landmarks 1–3 which 
describe nymph shape while landmarks 4–6 describe the deep pallial sinus.
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landmark coordinates to align the centroids 
of each individual. To minimize least-squares 
differences between landmark alignments, we 
used CoordGen6f (Sheets et al., 2006b) to ro-
tate and scale centroid size to unity, producing 
Procrustes shape coordinates and consensus 
shapes for each group.

Analyses of Interspecific and Intraspecific Varia-
tion

To determine differences in outline (FB 
method) and internal landmarks (ILB method) 
between P. generosa and P. globosa, we used 
CVAGen6m (Sheets et al., 2006b) to perform 
canonical variates analysis and multivariate 
analysis of variance (CVA–MANOVA). To as-
sess within-group shape variation, we used 
PCAGen6n software (Sheets et al., 2006b) to 
perform principal component analysis (PCA). 
To determine which canonical variates (CV) 
were effective discriminators, we employed 
Bartlett’s test based on Wilk’s lambda (Λ), 
which is the within-groups sum of squares 
divided by the total sum of squares. A value of 
Λ near 0 (zero) indicates high discrimination 
between groups (Zelditch et al., 2004).

We assessed the statistical significance 
of shape differences using Goodall’s F-test. 
We calculated the full and partial Procrustes 
distances between means (DBM) of two 

groups and bootstrapped to estimate the 
variance of this distance using TwoGroup6A 
software (Sheets et al., 2006b). We employed 
Mahalanobis distances (Mahalanobis, 1936) 
to determine the probability that the distance 
between an individual and the mean of the 
group was larger than expected under the null 
model of random variation around the mean of 
each group (Zelditch et al., 2004).

To visualize the shapes, we used thin-plate 
splines of the first two principal components. 
Thin plate splines provide graphical representa-
tions of the deformation of a square grid based 
on the difference in position of individual land-
marks and displacement of the vectors relative 
to a grand mean consensus form (Bookstein, 
1991).

RESULTS

Interspecific Differences

Fan-Based Method: CVA-MANOVA analysis 
of the FB method revealed a single CV with sig-
nificant differences between species (Bartlett’s 
test, Wilk’s Λ = 0.0836; p < 0.01; Fig. 3a). Based 
on Mahalanobis distances, all specimens 
(Panopea generosa, n = 30 and P. globosa, n 
= 108) were correctly assigned to species. The 
partial Procrustes DBM between the two spe-

Group PC I (in %) PC II (in %) Overall (in %)

Outline
Interspecific P. generosa 52 19 71

P. globosa 36 30 66
Intraspecific SF 48 15 53

PP 35 22 57
GU 41 25 66
BM 43 28 71

Internal landmarks
Interspecific P. generosa 33 25 58

P. globosa 28 17 45
Intraspecific SF 34 14 48

PP 31 19 50
GU 35 16 51
BM 33 21 54

TABLE 2. Variance explained by the first two principal components between 
Panopea generosa and P. globosa and within P. globosa groups.
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FIG. 3. Plot of interspecific canonical analyses of sets of variables and thin-plate 
spline with vectors of outline (a) and internal scars (b), nymph and pallial sinus, 
oval and circle respectively. 
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cies was significant (DBM = 0.065, Goodall’s 
F-test with 900 bootstraps, F = 43.8, p = 0). The 
first two principal components (PC) accounted 
for 71% and 66% of the total variance in P. 
generosa and P. globosa, respectively (Table 
2). Note that the loadings of all other PCs were 
less than 1%; they are not shown in Table 2, as 
they contribute little to the variance. In contrast, 
PC1 and PC2 fan rays contribute to most of the 
variance for the two species.

Inner Landmark-Based Method: CVA-
MANOVA analysis of the ILB results revealed a 
single CV with significant differences between 
species (Bartlett’s test, Wilk’s Λ = 0.0987, p < 
0.01; Fig. 3b). All Panopea generosa and P. 
globosa specimens were correctly assigned to 
species based on Mahalanobis distances. The 
partial Procrustes DBM of internal landmarks 
was significant (DBM = 0.0982, Goodall’s F-test 
with 900 bootstraps, F = 32.72; p = 0). The 
first two PCs accounted for 58 and 45% of the 
total variance in P. generosa and P. globosa, 
respectively (Table 2).

When we compare the FB and ILB results, the 
thin plate splines of the first two PCs obtained 
by Procrustes superimposition of centroid size 
reveal easily perceivable shape differences in 
both the deformation grids and vector displace-
ment (Fig. 3a, b).

Intraspecific Differences

Fan-Based Method: Using the FB approach 
we observed three CVs of outline shape 
variation among P. globosa groups with CVA-
MANOVA (Fig. 4a). Axis 1 (Wilk’s Λ = 0.0159, 
p < 0.01) separated the Pacific group (Bahía 
Magdalena) from the Gulf of California groups 
(Guaymas, San Felipe, and Puerto Peñasco); 
Axis 2 (Wilk’s Λ = 0.0965, p < 0.01) separated 
the southern Gulf group (Guaymas) from the 
northern Gulf groups (San Felipe and Puerto 
Peñasco); Axis 3 (Wilk’s Λ = 0.3620, p < 0.01) 
placed San Felipe and Puerto Peñasco in the 
same group. Mahalanobis distances correctly 
assigned 100% of the specimens to the Bahía 
Magdalena and San Felipe groups. In contrast, 
correct allocation was slightly lower for the 
localities of Guaymas and Puerto Peñasco 
(93 and 97%, respectively). The first two PCs 
account for a high percentage of the total vari-
ance (58–71%) at all sites (Table 2). Goodall’s 
F-test values and the partial Procrustes DBM 
among P. globosa groups outlines were signifi-
cant (Table 3).

Inner Landmark-Based Method: When 
comparing shape variation among internal 
landmarks using the ILB approach in the same 
groups (Fig. 4b), we obtained two CVs: Axis 
1 (Wilk’s Λ = 0.0800, p < 0.01) discriminated 
the Pacific group (Bahía Magdalena) from the 
Gulf groups (Guaymas, San Felipe, and Puerto 
Peñasco), and Axis 2 (Wilk’s Λ = 0.3396, p < 

TABLE 3. Goodall’s F-test and distances between 
means (DBM) of outline and internal landmarks in 
Panopea globosa. BM = Bahía Magdalena; GU = 
Guaymas; SF = San Felipe; PP = Puerto Peñasco. 
All comparisons were significant (P < 0.01).

Comparison F   DBM

Outline
BM vs GU 16.08 0.0475
BM vs SF 6.25 0.0344
BM vs PP 25.45 0.0589
Gu vs SF 12.78 0.0440
Guvs PP 14.94 0.0411
SF vs PP 8.13 0.0342

Internal landmarks
BM vs GU 6.65 0.0540
BM vs SF 6.35 0.0612
BM vs PP 11.46 0.0702
GU vs SF 7.90 0.0636
GU vs PP 6.96 0.0517
SF vs PP 2.69 0.0366

TABLE 4. Intraspecific individual assigned with the 
Mahalanobis distance approach among groups 
of Panopea globosa. BM = Bahía Magdalena; 
GU = Guaymas; SF = San Felipe; PP = Puerto 
Peñasco.

BM GU BM GU

Outline
BM 30 0 0 0
GU 2 28 0 0
SF 0 0 18 0
PP 0 1 0 29

Internal landmarks
BM 28 1 0 1
GU 2 27 0 1
SF 0 1 10 7
PP 1 2 9 18
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FIG. 4. Intraspecific canonical analyses of sets of variables plot of shell shape 
variation of Panopea globosa collections in northwest Mexico. Outline (a), 
internal scars (b).
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0.01) included all Gulf groups. Group assign-
ment with Mahalanobis distances revealed 
some incorrect assignments of northern Gulf 
geoducks: 37% of Puerto Peñasco specimens 
were grouped incorrectly with San Felipe, 
while 45% of the samples of San Felipe were 
incorrectly grouped with Puerto Peñasco. 
In contrast, > 90% of Bahía Magdalena and 
Guaymas specimens were correctly assigned 
(Table 4).

With these landmarks, the first two PCs ac-
counted for 50–54% of the total variance (Table 
2). Goodall’s F-test values and DBM were also 
significant (Table 3). Thin plate splines revealed 
the greatest differences in vector length and 
displacement of landmarks 4–7 and 10 be-
tween Pacific P. globosa and the three Gulf 
groups (Fig. 4b).

DISCUSSION

In this study we used two methods to ana-
lyze interspecific and intraspecific phenotypic 
variation: a new proposed FB method, for ex-
ternal contours of the shell, as well as the 
more traditional ILB method for mapping the 
interior of the shells for geometric morphology 
analyses to determine interspecific shell shape 
differences in Mexican geoducks. Our results 
clearly delimited two groups that correspond 
to the two species, Panopea generosa and P. 
globosa, in agreement with the original descrip-
tions (Gould, 1850; Dall, 1898). The specimens 
from Bahía Magdalena (Pacific coast) grouped 
with P. globosa, corroborating the traditional 
taxonomical procedure. The results indicate a 
much wider distribution for P. globosa than only 
the northern Gulf of California as previously re-
ported (Coan et al., 2000; Briggs, 1974; Brusca, 
1980; Hastings, 2000; Calderón-Aguilera et al., 
2010; Rocha-Olivares et al., 2010).

Interspecific Shell Shape Variation

Prior studies using traditional morphometric 
analyses have shown notable shape differ-
ences between Panopea generosa and P. glo-
bosa (Rocha-Olivares et al., 2010). Using three 
linear measurements, these authors found 
that P. generosa had a more homogeneous 
shell length compared to P. globosa and they 
successfully discriminated the two species. 
The present study corroborates this finding 
and increases the resolution of inter-specific 
morphological shell variation.

The ILB method has been used to determine 
shell shape variation in other bivalves. For 
example, Innes & Bates (1999) determined 
contour differences between Mytilus edulis 
and M. trossulus (Wilk’s Λ = 0.625), whereas 
Roopnarine & Vermeij (2000) reported Wilk’s 
Λ = 0.25 for internal shape variation between 
Chione cancellata and C. elevata. In contrast, in 
our study Bartlett’s test was highly discriminant 
between the two Panopea species (Wilk’s Λ 
= 0.08 and 0.09 for FB and ILB, respectively).

The consensus outline shape of Panopea 
globosa is more inflated, with a narrower pos-
terior end compared to P. generosa. The umbo 
in P. globosa is near the posterior end, while 
more centrally located in P. generosa. The off-
center placement of the umbo in P. globosa 
may be related to an anatomical adaptation 
which aids in maintaining valve gape due the 
more inflated shell; Savazzi (1987) discusses 
the hypothesized relationship between shell 
inflation and umbo displacement, and Ubukata 
(2003) observed in pteroids a tendency of shell 
extension in the antero-ventral direction.

In our study, variation in the inner shell in-
dicates that Panopea globosa has a shorter 
nymph and smaller ligament (landmarks 1–3), 
but a deeper pallial sinus than P. generosa (land-
marks 4–6). Stanley (1970, 1979) and Lockwood 
(2004) describe the pallial sinus as the space 
where siphonate bivalves contract the siphon. 
Kondo (1987) suggested that the ratio of pallial 
sinus depth to shell length is closely correlated 
to the maximum burrowing depth. Although we 
found a deeper pallial sinus in P. globosa than 
in P. generosa, we did not measure syphon 
length or burrowing depth thus we are unable 
to corroborate Kondo´s hypothesis.

The FB and ILB methods showed that the first 
two PCs in Panopea generosa accounted for 
more variability in shell shape than in P. globosa 
(Table 2). To fully corroborate these results in 
a future study, it will be necessary to examine 
specimens of P. generosa from other sites.

Panopea globosa Intraspecific Shell Shape 
Variation

Both the FB and ILB methods revealed that 
P. globosa of Bahía Magdalena are morpho-
logically distinct from the three other localities 
of the Gulf of California. Nevertheless, the FB 
method more clearly distinguished three dif-
ferent groups, while the more traditional ILB 
method exhibited lower fidelity since it was only 
able to distinguish two groups.
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comm.; San Felipe, Puerto Peñasco 10–25 
m, Rocha-Olivares et al., 2010). In addition, 
primary productivity is lower in Guaymas since 
there are essentially no currents most of the 
year (Lluch-Cota & Arias, 2000; Green et al., 
2005).

The novel FB method of contours was found 
to have higher resolution than the traditional 
ILB method for distinguishing intraspecific phe-
notypic differences among the three Panopea 
globosa groupings: (1) Bahía Magdalena; (2) 
San Felipe-Puerto Peñasco; and (3) Guaymas. 
Geometric morphometric analyses suggest the 
possibility of geographic and breeding isolation 
between P. globosa of Bahía Magdalena in the 
Pacific and their conspecifics from the Gulf of 
California. Genetic studies are underway to un-
derstand the evolutionary history of P. generosa 
and P. globosa and the genetic relationships 
among populations of P. globosa.
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Our results suggest a shell shape adapta-
tion or phenotypic response to environmental 
conditions at each site. The intraspecific CVA 
analyses reveal significant differences among 
Panopea globosa sites, where Pacific P. glo-
bosa (Bahía Magdalena) have more elongated 
shells but a shorter pallial sinus than those in 
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our analyses revealed that Guaymas geoducks 
are smaller and have a more inflated shell 
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from San Felipe and Puerto Peñasco. Rocha-
Olivares et al. (2010) also reported similar size 
differences between P. globosa from the upper 
and middle Gulf.

Shape differences might also be explained by 
genetic differences, as observed in pectinids 
from the Pacific and Gulf sides of the Baja 
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