

15th Annual Heart Rhythm Symposium: Rhythms of the Heartland

Management of PVCs From the Healthy to CHF Clinic

Daniel H. Cooper, M.D. Washington University School of Medicine February 2018

-lot a the Gar

Objectives

- To understand the range of symptoms and presentations of patients with frequent PVCs
- To illustrate the importance of defining prognosis in these patients
- To outline the therapeutic options to suppress or eliminate ventricular ectopy
- To illustrate the role of ablative therapy in PVC management

Washington University in St. Louis

Which of these statements are TRUE?

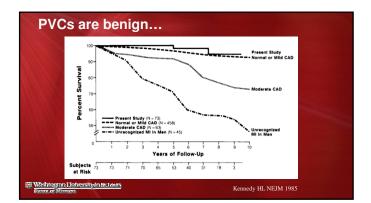
- A) "PVCs are benign..."
- B) "PVCs are a sign of underlying heart disease..."

- C) "PVCs can lead to heart failure...."
- D) "PVCs can be life threatening...
- E) All of the Above
- Washington University in ScLouts

"True" statements

- "PVCs are benign..."
- "PVCs are a sign of underlying heart disease..."
- "PVCs can lead to heart failure"
- "PVCs can be life threatening..."

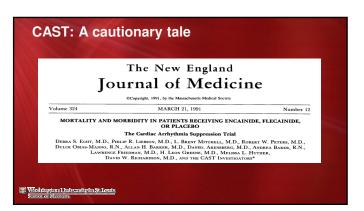
Washington University in St. Louis

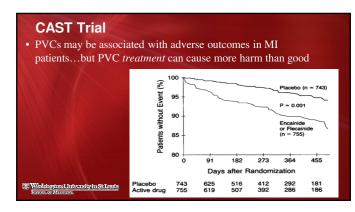

History

- "...Occasional pulse irregularities did not predict an adverse outcome."
- "However, frequent irregularities(1 in 10 beats) was associated with an ominous prognosis...often resulting in death within one year." -Chinese Physician Pien Ts'Io ~ 600 BC

Washington University in St. Louis

1 hour (9–10 a.m.) 3 hours (9 a.m12 noon) 6 hours (9 a.m3 p.m.) 8 hours (9 a.m5 p.m.) 12 hours (9 a.m9 p.m.)	0 85 78 74 72	≥ 1 15 22	>5	No. of PVC >10	s >50	>100	> 500
3 hours (9 a.m12 noon) 6 hours (9 a.m3 p.m.) 8 hours (9 a.m5 p.m.)	85 78 74	15			> 50	>100	>500
3 hours (9 a.m12 noon) 6 hours (9 a.m3 p.m.) 8 hours (9 a.m5 p.m.)	78 74		3				
6 hours (9 a.m3 p.m.) 8 hours (9 a.m5 p.m.)	74	22		2	1	0	0
8 hours (9 a.m5 p.m.)			9	5	2	0	0
		26	14	8	3	1	0
12 hours (9 a.m9 p.m.)	12	28	15	10	3	2	0
	64	36	22	15	5	3	0
24 hours	61	39	25	20	9	4	1
61 Average Num	40	o 0	47 47 17	3			


fore Than	a Given Nu	e on the Prob mber of Premu Subjects with N	ature Ventr	icular Com
Age (years)	n	>0	No. of PVC >50	s >100
10-29	6	16.7	0	0
30-39	11	18.2	0	0
40-49	29	27.6	3.5	0
50 - 59	39	51.3	12.8	5.1
60-69	12	58.3	25.0	16.7



...except when they are not benign.

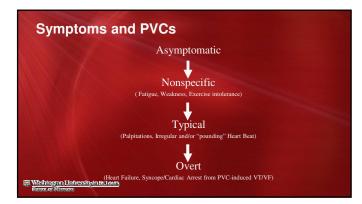
- In pts with prior infarction, frequent or complex PVCs are associated with increased mortality » Hallstrom AP et al. JACC 1992; 20: 259-64
 » Ruberman W et al. NEJM 1977; 297: 750-7
- · Hypertension is associated with frequency and/or complexity of **PVCs**
 - » Abdalla IS et al. Am J Cardiol 1987; 60: 1036-42.
 » Simpson RJ et al. Am Heart J 2002; 143: 535-40
 » Bikkina M et al. Ann Intern Med 1992; 117: 990-6
- In pts with LVH, frequent PVCs are associated with increased mortality

Bikkina M et al. JACC 1993; 22: 1111-16 Washington University in Sci outs

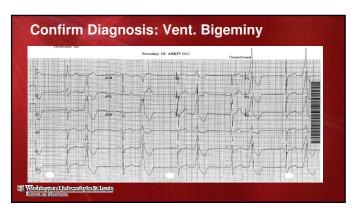
PVCs and "Normal" hearts

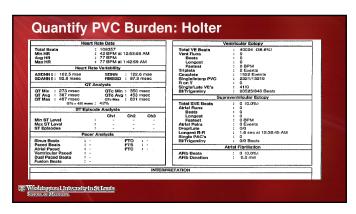
Benign Prognosis

- Circulation 1971; 44: 617-25
 Chest 1973; 64: 564-9
 Cardiology 1983; 70 (Suppl 1): 82-7
 Eur Heart J 1983; 4: 338-46
 Am J Cardial 1992; 70: 748-51


- Jpn Circ J 1994; 58: 190-8 N Eng J Med 1985; 312:193-7 J Intern Med 1999; 246: 363-72
- J Am Coll Cardiol 2001; 38: 364-70 Heart 2009; 95: 1230-7
- Wishington University in Scionis

Adverse Outcomes


- ✓ Am Heart J 1981; 101: 135-42
- Am J Cardiol 1987; 60: 1036-42
- Eur Heart J 1991; 12: 597-601 Ann Intern Med 1992; 117: 990-6
- ✓ J Cardiol 2010; 56: 23-6
- Am J Cardiol 2011; 107: 151-5


Approach: General Principles

- Assess for symptoms and triggers
- Confirm PVC diagnosis (12 lead PLEASE!)
- Quantify PVC burden (HOLTER)
- Temporal correlation: Arrhythmia→Symptoms
- Assess for presence of structural heart disease
- Counsel patient on likely prognosis
- Decide if treatment necessary
- · Determine reasonable level of aggression for treatment
- Wishington University in Sci outs

- Indate	In Jun	- Anti-	Juliph	-4-
	in the	under -	inter -	al.
$\langle \cdot \rangle$	i i Ma	I I I	i in the	
			A d X	
- Andrew A			1 1 AA	- <u>'</u> f
**************************************				T
m change		V		
``~`Y,``!`?``	H. HIVAT	To rala-	TATINA	
n appropriate			TTT I	î Vî
"mann	mar h			
	MANNAF-	-man Ma		~Ya
" martiner of the	- JA JAK	- for the Ar		
* alantar	And	-handally -	-tripply -	-44

3

Holter Monitor	 Basis Howthm: Sizus. Bars 40 to 100/m. Awaraga 70/m. WVGs mostly in the form of bigening -form the propulsion - for computer/salver/NV tank. Total find to the scanned. Bars PACs. Mo ST C wave change. Activity Log - No correlationship.

Symptoms and Arrhythmia

- *Temporal* relationship between PVCs and symptoms helps dictate management
- 12 lead ECG may be insufficient
- · Continuous Monitoring
 - 24-72 hour HOLTER Monitor
 If symptoms are *frequent*
 - 30 day Event Recorder
 - If symptoms are less frequent
- Implantable loop recorder (ILR)
 Rare, but significant events
- Wishington University in Scionis

Noninvasive imaging

- Transthoracic Echocardiography
 - Assess ventricular function
 - Rule out valvular heart disease
 Other: HCM, infiltrative CM
- Exercise treadmill test
 - Especially, if exercise-induced
 - Elevated heart rate often suppresses "benign" PVCs
 - PVCs may be more prevalent during recovery
 - Dynamic ST changes or exercise induced multifocal PVCs or NSVT may indicate ischemic heart disease
- Echo or nuclear imaging can be combined with exercise in patients with higher suspicion of CAD

Washington University in St. Louis

Noninvasive imaging

- Other:
- Cardiac CT
- Cardiac MRI
- Positron-emision Tomography
- Reserved when suspicion of specific, less common disorders is
- present
- HCM
- Cardiac Sarcoid
- Infiltrative Cardiomyopathy

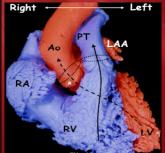
- ARVC

PVCs with Structural Heart Disease

- Coronary Disease
 - PVC origin is commonly from ischemic tissue or scar
 - Reperfusion arrhythmias are common
 - Can increase likelihood of sustained VT/VF
 - Remember CAST!
- Nonischemic Cardiomyopathy
- Epicardial and basal LV origins are common
- ARVC
 - PVCs are common with RV origin from regions of fibrofatty replacmeent of tissue
- Frequent PVCs may interfere with biventricular pacing (CRT)

Washington University in St. Louis

"Malignant" PVCs



PVCs without Structural Heart Disease

- Ventricular outflow tracts are most common sites of origin
 - RVOT >>> Aortic Cusps/LVOT
 - Common Embryologic Origin
 - Other: Mitral/Tricuspid Annulus, Aortomitral continuity, papillary muscles, Purkinje fibers
- Triggered Activity
- Catecholamine sensitive
- Catheter ablation can be curative

Washington University in Schouls

Idiopathic VT/PVCs: Anatomy

Points of Emphasis • The RVOT runs anterior, leftward, and superior to the LVOT • Tight Quarters: Many potential sites of origin requiring different approaches

PVC-Induced Cardiomyopathy

First Evidence of Premature Ventricular Complex-Induced Cardiomyopathy: A Potentially Reversible Cause of Heart Failure

- 22 y/o Female with Fatigue/Palpitations
- Holter: 25-50,000 PVCs/24 hrs
- Echo: LVEF 43%, globally dilated LV
- Successful elimination of PVCs (Ablation)
- 6 months follow up: Normal LV, LVEF

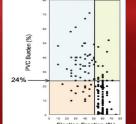
Washington University in St. Louis

ugh SS et al. JCE 2000; 11: 328

Which patient is most likely to develop a PVC-Induced Cardiomyopathy?

- A) Symptomatic with 50,000 PVCs (50%), PVC ~ 135ms
- B) Asymptomatic with 3000 PVCs (3%), PVC ~ 165ms
- C) Symptomatic with 42,000 PVCs (42%), PVC ~ 140ms

D) Asymptomatic with 42,000 PVCs (42%), PVC ~ 180 ms


- E) Symptomatic with 42,000 PVCs (42%), PVC ~ 185ms
- Washington University in St.Louis

Which patient is most likely to develop a PVC-Induced Cardiomyopathy?

- A) Symptomatic with 50,000 PVCs (50%), PVC ~ 135ms
- B) Asymptomatic with 3000 PVCs (3%), PVC ~ 165ms
- C) Symptomatic with 42,000 PVCs (42%), PVC ~ 140ms
- D) Asymptomatic with 42,000 PVCs (42%), PVC ~ 180 ms
- E) Symptomatic with 42,000 PVCs (42%), PVC ~ 185ms
- Washington University in St Louis

PVC-Induced Cardiomyopathy

PVC Burden > 24% associated with overtly diminished LV function

10 9 8 7 6	0	46 58 75
8	D	
	0	
6		88
	D	91
5	O	91
4	0	94
3		95
2		96
1	D	99

PVC-Induced Cardiomyopathy

• Cardiomyopathy is reversible if PVC burden is substantially
reduced
Patients With Repetitive Monomorphic Ventricular Ectory and Depressed Left Ventricular Eurotion

Paue	ans wit	n vehennae i	monomorphic	venurcular	Ectopy and Debi	esseu Len	venuiculai rui	ICTION		
Age, y	Sex	Presenting Symptom	Origin of CMP	Cardiac Medications	PVC Origin in RVOT	RFA Success	Initial Holter, PVCs/24 h	F/U Holter, (PVCs/24 h	Initiai EF, %	F/U EF %
37	F	Dyspnea	Idiopathic	β-Blockers	Anterior	Yes	5502	44	38	65
51	М	None	Idiopathic	β-Blockers	Posteroseptal	Yes	26 491	1893	45	60
80	М	Presyncope	Idiopathic	None	Anteroseptal	Yes	35 664	1100	35	55
51	м	Palpitations	Idiopathic	None	Anterior	Yes	9791	5	35	60
71	F	Palpitations	Idiopathic	β-Blockers	Posteroseptal	Yes	23 352	117	43	65
62	м	Presyncope	Idiopathic	β-Blockers	Posterolateral	Yes	*	332	45	65
47	М	Palpitations	Idiopathic	None	Posterolateral	Yes	16 362	55	45	65
68	F	Palpitations	Idiopathic	β-Blockers	Posterior	No	5626	12 883	30	35
₩V	Väshtop	ton Universit		p blooksto			RK et al CIRC :			

PVC Induced Cardiomyopathy

- PVC Burden greater than 15-20% have been associated with CM...but it has also been seen with lower burdens (4%). » Lee et al. Circ AE 2012; 5: 229-36
 » Yarlagadda RK. CIRC 2005; 112:1092
 » Kanei Ann Noninvasive Electrocardiol 2008; 13: 81-85
- Subtle cardiac dysfunction likely exists in most patients with frequent PVCs and preserved EF…reversible after elimination.
- Wide PVC duration (>150ms), epicardial origin, and shorter coupling intervals also associated with cardiomyopathy

 Ydokawa M et al. Heart Riythm 2012;9: 1460
 Mulon KP et al URC 1990;81: 1245
 San Y et al. J Cardiobase Imaging 2003; 19: 295

Treatment: Lifestyle changes

- Typical Advice
 - Avoid excessive caffeine
 - Avoid smoking
 - Avoid excessive alcohol
 - Avoid triggers if present
- Data is lacking to support behavior modification...but a reasonable start while further work-up initiated

Washington University in St. Louis

Medical Therapy: Beta Blockers

- Mainstay of conventional medical therapy in symptomatic patients
- Particularly useful and indicated in patients with heart failure or CAD
- Beware the side effects...esp in young pts. - Fatigue, depressed mood, sexual dysfunction

Washington University in Sci outs

Medical Therapy: Calcium-Channel Blockers

- Commonly used in young patients without structural heart disease
- Common Side Effect: Constipation
- · Avoid in patients with significant LV systolic dysfunction

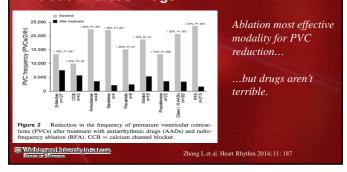
Washington University in St. Louis

Medical Therapy: Antiarrhythmics

- Remember CAST!
- Sotalol
- Class III AAD
- Beta blocker and Potassium Channel Blocker
- Monitor QT +/- hospitalization
- Amiodarone
 - "Class III AAD " - Diverse effects on various ion channels
 - QT prolongation is of less concern

 - Effective, but side effect concerns (short and long-term)
 Thyroid, Liver, Lungs, Skin, Eyes

Washington University in St. Louis


Catheter Ablation

- Patient sedated in fasting state
- Multiple, steerable catheters are placed via femoral access sites
- High burden of PVCs desirable to allow for precise mapping
- Activation Mapping
- Pace-mapping
- Ablation is performed at sites with "earliest" activation and/or "perfect" pacemaps

Washington University in Scionis

Ablation versus Drugs

Catheter Ablation

A Study Name	N	Borderline		Confidence Interval
Sarrazin (2009)	12		-	14.9 (9.3 , 20.5)
Del Carpio Munoz F (2011)	10		_	9.5 (2.8, 16.2)
Mountantonakis SE (2011)	69		-	14.0 (11.6 , 16.4)
Ban JE (2012)	28			10.0 (7.8, 12.2)
Lakkireddy D (2012)	65			6.4 (5.1,7.7)
Lu F (2012)	24			11.2 (6.7, 15.7)
Yokokawa M-Subgroup (2013)	75			20.0 (18.2 , 21.8)
Penela D (2013)	53	-+		12.6 (9.3, 15.9)
Overall			P<0.05	12.4 (8.1, 16.6)
hange in LVEF post ablatio	0	5 10	15 20	- 96
	0	- 10		

Ablation improves LV function...

- ...and is often curative!
- ~ Success rate 70-90 % ~ Complication rate 1-3 % ~ Duration 2-6 hrs

Zang M et al. Heart 2014; 100: 787

"Real World" Translation

- Most PVCs are benign...but not all.
- Ablation should be offered to patients with a substantial PVC burden (>20-25%) and diminishing EF for presumed PVCinduced cardiomyopathy.
- If asymptomatic with normal EF, it is reasonable to follow with annual TTE.
- Ablation can be considered in patients with symptomatic PVCs that are refractory to CCB or BB.
- PVCs that induce malignant arrhythmias (PMVT, TdP, VF) and are refractory to AAD, should be targeted with ablation.

Washington University in St.Louis

