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The Macdowell-Mansouri Extension
J. D. Bjorken
. Introduction; First Order Gravity

MacDowell-Mansouri gravity is an extension of the first-order formalism for gravity that goes
back to the days of Cartan, and which is demanded when Dirac particles are coupled to gravity.
In the standard first-order formalism, the basic variables are a vierbein eA and a connection u):B
Each is a vectorin (3 + 1) spacetime. But these quantities also live in an internal O(3,1) space. In
that internal space the vierbein e transforms as a vector and the connection tJ transforms in
the adjoint representation, as an antisymmetric tensor. | will throughout this note contract the
vierbein e into a gamma matrix, and the connection &) into a pair of gamma matrices:
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Evidently these gamma matrices live only in the internal space, and have no spacetime
dependence.

There is an action (often called Palatini, which will be written down later) which describes this
version of gravity. Variation of this action with respect to the 24 connection variables () (up
to now taken to be general) gives a set of algebraic equations which can be solved in terms of
the vierbeins and their spacetime gradients. The vierbein is related by definition to the metric
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And the net result of the 24 “equations of motion” for the connection variables ¢4 is to specify
that they are Levi-Civita, i.e. described by the Christoffel symbols of textbook GR. Variation with
respect to the remaining 16 vierbein variables yields the Einstein field equations.
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IIl. The MacDowell-Mansouri Extension of First order Gravity

The MacDowell-Mansouri idea is to synthesize the vierbein e and the connection ¢&) into a
single grand connection A which lives in an O(4,1) internal space. Since there are 4 x 10 =
40 components to such an A, the counting is correct. Two things have to be done to the
vierbein e for it to qualify. One is to multiply e by )/5 in order for it to transform in the
adjoint representation of O(4,1). In the formulae to come this will be assumed to have been
done. The second modification to e is to multiply it by a parameter with dimension of mass,
because that is the appropriate dimensionality for the components of a gauge potential. (e is
dimensionless, because its “square” is the dimensionless metric tensor.) So we have
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A= me +

Note that nothing need be done to theb/—matrices themselves, because they live happily in
0(4,1) (as long as we specify the square of Ys_to be -1, contrary to the bj-Drell convention.)

From A one constructs its curvature, or field-strength, F in the standard Yang-Mills way:

F = dA+ AAA

(I will use form language in what follows, but only for the spacetime indices.)

With these preliminaries, the MM Lagrangian density can be written down:
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The quantity C is a pure number which normalizes this Lagrangian density appropriately. Note
that this Lagrangian looks “almost topological”. But it is not, because the Yg breaks down the
0(4,1) symmetry down to O(3,1). And, after all, there are graviton degrees of freedom lurking
deep inside this formalism.

Upon expanding things out, down to the O(3,1) level, one finds three contributions to the
Lagrangian density, each of which is even in the parameter m. The first is a cosmological term.
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The second is the Einstein-Cartan (Hilbert, Palatini) term.
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Here R is defined as the curvature derived from the O(3,1) connection ) ; it is the Einstein

R = Ao+ waw

The third term in the Lagrangian, pure topological, is known as the Euler or Gauss-Bonnet term.
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curvature tensor.



The two free parameters in this MM description, C and m , can be fitted to the known

coefficients of the cosmological and Einstein terms. Without worrying here about the factors 2,
etc., one has
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Here G is Newton’s constant and A is the cosmological constant. We also have introduced the
constant H as a convenient proxy forA ; itis the value of the Hubble constant in the limit
when dark energy dominates the expansion and H becomes time-independent. (In a future
section we will need to also consider the time dependent, dynamical Hubble constant. When
that occurs we will distinguish it from this H by writing it as H(t). )

The above equations imply that the scale factor m equals H, indicating that the MM formalism
becomes degenerate in the absence of dark energy. Nonvanishing dark energy is a necessary
ingredient for the MM description to make sense. While we have not demonstrated it here, the
numerical value of m is not only of order H, it actually equals H.

Even more important to note is the extremely large value of C that follows from the above

equations. It is another way of expressing the notorious puzzle associated with this large
number. In fact, the remainder of this note is devoted to the exploration of the implications of
this large number.

Another feature of the MM construction is that deSitter spacetime is a solution of the condition
F = 0. This means that, thanks to the presence of the Gauss-Bonnet term, the semiclassical
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Wheeler-deWitt wave-function describing the expansion of a piece of dark-energy-dominated
spacetime is just a constant independent of time. The usual semiclassical phase factor is absent
because the action along the classical path is quadratic in F and vanishes. In some sense, the
deSitter limit of spacetime, as described by MM, “goes beyond the quantum theory”. If you
wish, there are a few more details on this in a talk of mine posted on the arXiv (1008.0033). In
these notes (and, in more detail, in an addendum, available upon request), this feature will be
used in a much more mundane way--simply to normalize the correct value of the GB coefficient
C in arelatively painless way.

There is also an easy way to generalize MM to include CP violation and torsion effects. My way
of doing this is described in the aforementioned talk, just beyond Eqn. 24 of arXiv 1008.0033.

lll. Gauss-Bonnet Numerology: deSitter Space

It is the large value of the constant C multiplying the Gauss-Bonnet (GB) term which will be the
main theme throughout this note. First of all, the GB action, being topological, is typically
expressed in terms of integers
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This is because the Lagrangian is a pure time derivative, and because the resulting “topological
charges” at the quantum level typically take integer values. | here assume this kind of

normalization. Then for flat, k =0, FRW deSitter space it is easy to compute the spatial density
n(t) , whose integral over a comoving volume gives the integrated charge N. | find it simplest to

retreat to the language of textbook metric gravity. Omitting indices and a lot of details, one
finds
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Derivation of this result is described in more detail in the aforementioned addendum.

Numerically, this (time-independent!) density n is about 60 powers of ten less than the Planck
density. Consequently this is of order the QCD density, since the QCD distance scale is about 20
powers of ten larger than the Planck distance scale.

The above relation is essentially what | call the Zeldovich relation (again, see 1008.0033 for a bit
more discussion of this). Before the end of this note, this relation will be encountered three
more times. Needless to say, | take it as something more significant than a numerical accident.

IV. Gauss-Bonnet Numerology: Cosmology

The “topological charge density” n(t) can be evaluated not only for deSitter space, but for our
cosmological history as well. We can do this just by replacing the constant deSitter H in the
expression for n(t) by the time-dependent Hubble constant H(t). (Note: it is here we need to
be cognizant of the notation | have adopted, which invites confusion if one is not careful. My
apologies.) The substitution is as follows:
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Therefore,
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In the early universe, H(t) was much larger than the present value, which is very close to the
deSitter H. So it is of interest to determine when the density n(t) was Planckian or greater.
Under such circumstances, we may infer that, even though this topological quantity does not
influence the Einstein equations, in some real sense the MM formalism must undergo
modifications. In other words, under such circumstances the MM formalism is incomplete.

It turns out that the critical time occurs during the radiation dominated epoch, and therefore it
is convenient to trade in FRW time t for CMB photon temperature T. The FRW equation, along
with the Stefan-Boltzmann expression for temperature in terms of energy density, implies
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Therefore the critical temperature TQ satisfies the expression
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Care with numerical factors has been neglected here, but is again covered in the addendum to
these notes. But from the above structure, we expect, again because.of the presence of the
Zeldovich relation, that the critical temperature will be of order /EQCD Indeed when the
numbers are more carefully crunched, one finds that
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V. Gauss-Bonnet Numerology: Neutron Stars and Other Such Sources

Itis also of interest to go back to the present time, and consider the growth of n(t) as one
approaches a stationary source of gravity, such as the earth, a star, or a black hole. An easy way
to do that is to replace the k=0, cosmological description of dark-energy-dominated deSitter
space with a stationary, spherically symmetric description of deSitter space. Then addition of a
source term centered at r = 0 can extend this solution to the Schwarzschild-deSitter metric
description. Upon moving from large r to small r, the gravitational source term will of course
dominate, and at that point the dark-energy contribution can be dropped.
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In each step it is not hard to keep track of how the “topological density” n(t) continues to be
described. Of course, as one approaches the gravitational source, this density will grow, and
again it is of interest to determine when the density becomes Planckian. The answer is best
expressed for the case of a source of nuclear matter density, such as a neutron star, a gold
nucleus, or for that matter a proton or alpha-particle. We write down the answer first:
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Here R is the radius of the source. Again the reason for this remarkable answer lies in the
Zeldovich relation. Again leaving details to the addendum, we sketch the passage through the
steps outlined above, leading to the above relationship.

Begin with the FRW metric for deSitter space:
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This metric is of the Painleve-Gullstrand form with the special relationship of v(r) to the

Hubble parameter H as shown. This form generalizes to the Schwarzschild-deSitter stationary
metric in a remarkably simple manner. One simply modifies the formula for v(r) as follows:
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The topological density n(r) , which is a constant for pure deSitter space, now becomes a
function of r, and the formula for it generalizes in a simple way:
L
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Upon approaching the source, neglect the dark energy contribution and write
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Now write the mass M and the radius R of the source as follows:
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This exhibits the role, as expected, of the Zeldovich relation in arriving at the above conclusion.

I again interpret this as a breakdown of the MM description within regions of nuclear matter
density or larger. This may just mean that MM is a description inferior to that of standard
metric gravity. | obviously choose not to draw that conclusion, but to assume that there is
meaning in the MM formal structure that goes deeper than the phenomenology of the Einstein
equations of motion.

VI. Extending the MacDowell Mansouri Extension

The origin of these surprising (at least to me) results is clearly the hugeness of the coefficient C
in front of the MM action, leading to the same coefficient in front of the GB term. Why is it so
big? Its unnaturalness is itself evidence that the MM description is incomplete. It is more likely
an effective action which has emerged from some more fundamental starting point. What
might have been “integrated out”?

One straightforward possibility, which is what will be pursued here, is that it is just some extra
dimensions that have been integrated out, starting from a generalized MM action of the same
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form. For example, add a couple of extra compactified dimensions, introduce an 0(6,1)
connection A and associated field strength F , and write

L~ T Y% FAFAF

Imagine that, in the pair of extra dimensions, F is of Planckian scale, and that those two extra
dimensions are large compared to the Planck distance scale, of size.ﬁ. Then, schematically, one
might imagine a scenario where the effects of the two extra dimensions easily “integrate out”,
leaving an effective O(4,1) MM theory with a coefficient C of order ML (l/z 5 1.

To get a factor 10’2'0 this way with only two extra dimensions is awkward. Trial and error,
along with political correctness, rapidly converges on the most attractive choice, namely six
extra “large” dimensions. The internal symmetry group is now 0(10,1) (or perhaps a variant
like O(8,3) or O(6,5) ), and the Lagrangian density is
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After integrating out the six extra dimensions in the same style as our example above, we will
obtain the coefficient C as
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This implies, as shown, that the sizejof the extra compact dimensions is of the QCD scale.

This result provides something of an a posteriori reason for understanding why the previous
results on the limits of the applicability of the MM description should apply. For distance scales
larger than the QCD scale the description has the six extra dimensions fully “integrated out”. It
is utterly unreasonable that, as the distance scale is taken to be smaller or equal to the QCD
scale, the impact of those extra dimensions does not affect the nature of the description. In
particular, the “topological charge” N we have been considering may enter all ten dimensions,
which of course will dilute its (ten-dimensional) density far below the Planck scale.

The real challenge for this viewpoint is to ensure that the opening up of these extra dimensions
at such a large scale does not ruin well-established, precise, standard model phenomenology.
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There should for example be no low-scale Kaluza-Klein modes interfering with existing
experimental constraints. Fermionic degrees of freedom should lie on boundaries of the
internal space, for the most part away from the bulk. There may be guidance here from the
description of topological insulators, and condensed-matter experience with the Hall effect, etc.
But independently of how high the risk factor is, | much prefer worrying about this problem
instead of pondering the description of /05—°°member universes within the string-theory
landscape.

VII. Some Comments

There are some clear echoes of string theory in this scenario, despite this extended MM action
being only applicable as an effective field theory taken at the QCD scale and having nothing
directly to do with supersymmetry. Therefore this extra six-dimensional manifold need not be
Calabi-Yau. Nevertheless, it might inherit common features if it turns out that this MIM-
extension effective theory is the infrared descendant of an ultraviolet string-theory starting
point.

With this in mind, | sought out a guru, Shamit Kachru. He gave me splendid advice on how to
learn something of the Calabi-Yau trade. It is to read Yau’s popular book “The Shape of Inner
Space”. It is a superb survey of string theory technology, within a pictorial and intuitive setting
that even | can follow reasonably well. | highly recommend it. | am still not competent in stringy
ways of thinking. But, thanks to Yau, | am no longer intimidated by the prospect of dealing with
these extra dimensions in the style of Kahler, Calabi-Yau, et. al.

However, the general problem remains intimidating, at least to me. The MM potential A now
has 550 components, and a single field strength F has 2475 components. Only 40 of the A’s
(and a mere 60 of the F’s) are directly relevant to Einstein gravity. Clearly one wants to exploit
the remaining elements as candidate standard-model degrees of freedom. There is an easy O(6)
subgroup to exploit, enough to accommodate the SU(3) color group. | regard identifying the
gluon degrees of freedom within the MM fields as the first order of business. This is not totally
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trivial, because the “topological” texture of this extended MM action conflicts a bit with the

structure of the desired Maxwell kinetic term for the gluons.

Of course one does not want to stop with gluons alone. But it is not at all clear that the
electroweak sector, plus three generations of fermions, plus an appropriate Higgs sector, can all
coexist with QCD degrees of freedom inside this structure. | think it Is most prudent to build
things up a step at a time---starting, as indicated above, with the QCD sector. To me this option
is also highlighted by the ubiquity of the Zeldovich relation, indicating perhaps that QCD has an
exceptionally important role to play, especially given that this scale is the characteristic scale
for the MM-extension description itself.
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Since the scale at which the extra dimensions open up is the same as the scale of the quark and
lepton masses, it is attractive to try to link the origins of mass and CKM/MNS mixings to the
presence of these large extra dimensions. This is what has presently attracted my attention the
most. | have opted to study the “rotating mass matrix” scenario of Hong-Mo Chan (arXiv
1103.5615) as the description most easily adaptable in principle to the problem at hand. This is
a high-risk judgment call, but for better or worse that is where | am at present.

In this regard, it is interesting to me that on a logarithmic scale the centroid of the mass

spectrum of quarks and leptons lies near Aac

quark mass and the electron mass is of order 300 MeV . The usual Higgs picture does not give

- For example, the geometric mean of the top

much of a clue as to why this should be true, while this extra-dimensional viewpoint might in
the long run provide a rationale.

Another frontier which is very interesting, but which | have set aside for now, is to try to
understand the nature of the “topological density” n(t) which was central to the whole line of
argument in this note. Can one identify it with some quantity defined within the standard
model? Especially because of the numerology, it is tempting to compare its role with the role
of Skyrmions in the QCD chiral effective action. In the Skyrmion analogy, the topological charge
density is baryon number. The density n(t) cannot be that. But maybe there are some lessons
to learn in making the comparison. And | feel that somehow the N and the eqcp parameters
of strong CP-violation may somehow be a part of the story line.

In any case, there remain a lot of things to do.



