Background

- Person fit:
 - Evaluation of model-data fit at the individual respondent level across the set of test items
- Person misfit
 - Occurs when a person's response pattern is inconsistent with what the model predicts
 - For example, low ability person scoring high on a set of difficult items
- Person-fit Monte Carlo studies
 - Focused on the statistics' abilities to capture aberrant response patterns
 - Context of unidimensional IRT but not multidimensional IRT to the authors' knowledge
- Many psychological constructs are inherently multidimensional, but collapsed to unidimensional for application
 - For example, scaling a personality measurement using unidimensional 2PL
- Because the *Zh* statistic is the most common, pre-packaged person-fit statistic, we used it for our simulation

Objective

• To assess the performance of the *Zh* person-fit statistic under null conditions when the model is misspecified with 1, 2 and 3 factors.

Drasgow & Levines L, statistic

Person fit is evaluated using Drasgow & Levines L_z statistic. Here X_{q} is the binary item response and P_{q} is the item response function: • *I*₀ • $\sum_{g=1}^{k} \{ X_g \ln P_g(\theta) + (1 - Xg) \ln[1 - Pg(\theta)] \}$ • $E(l_0)$ • $\sum_{g=1}^{k} \frac{\{Pg(\theta) \ln[P_g(\theta)] + \sum_{g=1}^{k} [1 - Pg(\theta)] \ln[1 - Pg(\theta)]\}}{\left[1 - Pg(\theta)\right]}$ • *Var(l₀)* • $\sum_{g=1}^{k} P_g(\theta) [1 - Pg(\theta)] \left[ln \frac{P_g(\theta)}{1 - Pg(\theta)} \right]^2$ • L_z $\frac{l_0 - E(l_0)}{[Var(l_0)]}$

Person-Fit Statistics with Model Misspecification: A Monte Carlo Study Ruben Castaneda, Nicole Zelinsky, and Michelle Turitz.

Simulation Conditions

To examine the performance of the Zh person-fit statistic we used the following conditions:

- Model Specification
 - Correctly specified (Bifactor Model)
 - Incorrectly specified (1, 2, or 3 Factors)
- Sample Size (200, 500, or 1000)
- Number of Items (5, 10, 15, or 20)

Proportion of Converged Cells

Number	of	Items	per	Factor
			-	

		5	10	15	20
	200	0.139	0.539	0.853	0.607
<u>Sample</u> Size	500	0.472	0.452	0.914	0.674
	1000	0.315	0.361	0.340	0.229

Data Generating Model

Figure 1. Bifactor Model

Contact Information

- **Ruben Castaneda**: rcastaneda2@ucmerced.edu
- Nicole Zelinsky: nzelinsky@ucmerced.edu
- Michelle Turitz: mturitz@ucmerced.edu

University of California, Merced 5200 Lake Rd, Merced, CA 95343

Methods

- Data for this study were simulated using the R software (R Core Team, 2014) and IRT estimation used the package mirt.
 - Simulated item responses were generated by a 2PL, bifactor model
 - Slopes were generated randomly from a log normal distribution with a mean = 0 and standard deviation = 0.5
 - Intercepts were randomly generated from a standard normal distribution
- After simulating the data, we applied the correctly specified model to the data as well as the incorrectly specified 1, 2, and 3 factor models.
- Only used results when models converged
- Kept running cell until at least 1,000 converged

Misspecified Model

Figure 2. Multidimensional Model

References

Drasgow, F., Levine, M. V., Williams, E. A. (1985). Appropriateness measurement with polychotomous item response models and standardized indices. Meijer, R.R., Sijtsma, K. (2001). Methodology Review: Evaluating Person Fit. R Core Team, R. (2014). R: A language environment for statistical computing. Vienna, Austria.: R Foundation for Statistical Computing.0

 Bifactor and Unidimensional models flagged for person misfit at a rate below alpha

 Models with 2 factors and 3 factors models erroneously flagged person misfit as the number of items increased

Stayed constant as the sample size changed

• Further simulation work with person fit statistics with misspecified, multidimensional models

-UNIVERSITY OF CALIFORNIA-