Evasion Black-box Attacks Against Machine Learning Models
Black-box attacks

• Zero-Query Attack
 • Random perturbation
 • Difference of means
 • Transferability based attack

• Query Based Attack
 • Finite difference gradient estimation
 • Query reduced gradient estimation

The zero-query attack can be viewed as a special case for the query based attack, where the number of queries made is zero.
Transferability in machine learning: from phenomena to black-box attacks using adversarial samples

• Adversarial example

\[\tilde{x}^* = \tilde{x} + \delta_{\tilde{x}} \text{ where } \delta_{\tilde{x}} = \arg \min_{\tilde{z}} f(\tilde{x} + \tilde{z}) \neq f(\tilde{x}) \]

• Adversarial sample transferability

\[\Omega_X(f, f') = |\{ f'(\tilde{x}) \neq f'(\tilde{x} + \delta_{\tilde{x}}) : \tilde{x} \in X \}| \]

 • Intra-technique transferability
 • Cross-technique transferability
Transferability in machine learning: from phenomena to black-box attacks using adversarial samples

- Transferability based black-box attack
 - Train a substitute model, and craft adversarial examples against the substitute, and transfer them to a victim model

- *Distillation* – use the victim model as an oracle to label a synthetic training set for the substitute

- *Reservoir sampling* – efficient data augmentation
 - Support SVM and decision trees which are non-differentiable models
Transferability in machine learning: from phenomena to black-box attacks using adversarial samples

- Jacobian-based dataset augmentation

\[S_{\rho+1} = \{ \tilde{x} + \lambda_{\rho} \cdot \text{sgn}(J_f[\tilde{O}(\tilde{x})]) : \tilde{x} \in S_{\rho} \} \cup S_{\rho} \]

- Reservoir sampling

Algorithm 1 Jacobian-based augmentation with Reservoir Sampling: sets are considered as arrays for ease of notation.

<table>
<thead>
<tr>
<th>Input:</th>
<th>(S_{\rho-1}, \kappa, J_f, \lambda_{\rho})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>(N \leftarrow</td>
</tr>
<tr>
<td>2:</td>
<td>Initialize (S_{\rho}) as array of (N + \kappa) items</td>
</tr>
<tr>
<td>3:</td>
<td>(S_{\rho}[0 : N - 1] \leftarrow S_{\rho-1})</td>
</tr>
<tr>
<td>4: for i ∈ 0..(\kappa - 1) do</td>
<td></td>
</tr>
<tr>
<td>5:</td>
<td>(S_{\rho}[N + i] \leftarrow S_{\rho-1}[i] + \lambda_{\rho} \cdot \text{sgn}(J_f[\tilde{O}(S_{\rho-1}[i])]))</td>
</tr>
<tr>
<td>6: end for</td>
<td></td>
</tr>
<tr>
<td>7: for i ∈ (\kappa .. N - 1) do</td>
<td></td>
</tr>
<tr>
<td>8:</td>
<td>(r \leftarrow \text{random integer between 0 and } i)</td>
</tr>
<tr>
<td>9: if (r < \kappa) then</td>
<td></td>
</tr>
<tr>
<td>10:</td>
<td>(S_{\rho}[N + r] \leftarrow S_{\rho-1}[i] + \lambda_{\rho} \cdot \text{sgn}(J_f[\tilde{O}(S_{\rho-1}[i])]))</td>
</tr>
<tr>
<td>11: end if</td>
<td></td>
</tr>
<tr>
<td>12: end for</td>
<td></td>
</tr>
<tr>
<td>13: return (S_{\rho})</td>
<td></td>
</tr>
</tbody>
</table>
Cross technique transferability

Cross-technique transferability matrix: cell (i,j) is the percentage of adversarial samples crafted to mislead a classifier learned using machine learning technique I that are misclassified by one trained with technique j.
Takeaways

• Both intra-technique and cross-technique adversarial sample transferabilities are consistently strong phenomena across the space of machine learning techniques

• Black-box attacks are possible in practical settings against any unknown machine learning classifier

• Black-box attacks against classifiers hosted by Amazon and Google and achieve high misclassification rate, by training a logistic regression substitute model with only 800 queries
Interesting reading

• Mixup: Beyond Empirical Risk Minimization

\[
\begin{align*}
\tilde{x} &= \lambda x_i + (1 - \lambda) x_j, & \text{where } x_i, x_j \text{ are raw input vectors} \\
\tilde{y} &= \lambda y_i + (1 - \lambda) y_j, & \text{where } y_i, y_j \text{ are one-hot label encodings}
\end{align*}
\]

• Pros: improve the robustness of the networks
• Cons: without guarantee for accuracy or robustness and not interpretable
Takeaways

• Different data augmentation can have opposite effects: increase attack transferability, or improve model robustness
Exploring the space of black-box attacks on deep neural networks

• Make queries to estimate gradient based on the output
• Need to know obtain the output of the logit layer
• Interesting point: simple feature reduction is efficient for query reduction
Query Based black-box attack

- Finite difference gradient estimation
 - Given d-dimensional vector x, we can make $2d$ queries to estimate the gradient as below

$$\text{FD}_x(g(x), \delta) = \begin{bmatrix}
\frac{g(x+\delta e_1) - g(x-\delta e_1)}{2\delta} \\
\vdots \\
\frac{g(x+\delta e_d) - g(x-\delta e_d)}{2\delta}
\end{bmatrix}$$

$$\hat{g}_i := \frac{\partial f(x)}{\partial x_i} \approx \frac{f(x + he_i) - f(x - he_i)}{2h}$$

- An example of approximate FGS with finite difference

$$x_{adv} = x + \epsilon \cdot \text{sign}(\text{FD}_x(\ell_f(x, y), \delta))$$

- Query reduced gradient estimation
 - Random grouping
 - PCA

Similarly, we can also approximate for logit-based loss by making $2d$ queries
Effectiveness of various single step black-box attacks on MNIST. The y-axis represents the variation in adversarial success as ϵ increases.

Finite Differences method outperform other black-box attacks and achieves similar attach success rate with the white-box attack.
Effectiveness of various single step black-box attacks on CIFAR-10. The y-axis represents the variation in adversarial success as ϵ increases.

Finite Differences method outperforms other black-box attacks and achieves similar attack success rate with the white-box attack.
Gradient Estimation Attack with Query Reduction

Adversarial success rates for Gradient Estimation attacks with query reduction on Model A (MNIST) and Resnet-32 (CIFAR-10).

Finite Differences method with query reduction perform approximately similar with the gradient estimation black-box attack.
Black-box Attack Clarifai

Original image, classified as “drug” with a confidence of 0.99

Adversarial example, classified as “safe” with a confidence of 0.96

The Gradient Estimation black-box attack on Clarifai’s Content Moderation Model
Takeaways

• Without relying on transferability, it is also possible to conduct black-box attacks
• Gradient estimation is accurate based on finite difference method
• It is possible to reduce the number of queries and still obtain good gradient approximation
Similar work

• ZOO: zeroth order optimization based black-box attacks to deep neural networks without training substitute models
 • Estimate gradient based on queries
 • Also need to access the logit layer results
 • Need to make large amount of queries
 • Difference: apply optimization based attack with the estimated gradient
Interesting reading

• Our transferability proof?

• The Space of Transferable Adversarial Examples
 • Adversarial examples span a continuous subspace of large (~25) dimensionality
 • For two different models, a significant fraction of their subspaces is shared, thus enabling transferability
 • Empirically show similarity of different models’ decision boundaries: boundaries are actually close in arbitrary directions, whether adversarial or benign

If two models achieve low error for some task while also exhibiting low robustness to adversarial examples, adversarial examples crafted on one model transfer to the other.
Related reading

- **Adversarial Learning**
 - For linear classifier with binary features, it is possible prove efficiency for black-box attack
 - What’s ACRE (1 + ε) - learnable?
 - How to prove it?
 - Is it possible to apply it to DNNs? -- the next paper