The Five Essentials for Math Intervention for

Students Struggling in Math

Sarah R. Powell, Ph.D.

Associate Professor

The University of Texas at Austin

srpowell@utexas.edu

@sarahpowellphd

Introduce yourself.
Describe your role as an educator or caregiver.
Describe the mathematics you support.

Share fun things from tonight and tag @sarahpowellphd!

MATH
 INTERVENTION

For students experiencing math difficulty

With a schoolidentified disability

Tier 2

Tier 3

Secondary

Targeted
Intensive
Special Education

Why is mathematics intervention necessary?

The Five Essentials for Math Intervention for Students Struggling in Math
srpowell@utexas.edu @sarahpowellphd
www.sarahpowellphd.com
Why is math intervention necessary?

Broad math in preK predicted K broad math

Broad math in prek predicted grade 10 broad math

| SSch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | >sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | IPFWSFWSFWSFWSFWSFWSFWSFWSFWSFWFSWSFWSFWS $\stackrel{+}{8}$ ee (2012) cohort 1 ubertus et al. (2013) Mazzocco et al (2011b) Mazzocco et al. (201 Watts et al. (2014) Navarro et al. (2012) passolunghi et al. (2012) stock et al. (2009) cohort Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) diPerna et al. (2007) DiPerna et al. (2007)

Jordan et al. (2009) Jordan et al. (2009) Missall et al. (2012) Claessens et al. (2009) Judge \& Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (2013) Bagliciet al. (2010) Desoete et al. (2012) esoete et al. (2012) LeFevre et al. (2010) tock et al. (2010) lachance \& Mazzocco (2006) Mazzocco \& Thompson (2 Mazzocco et al. (2011a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 Vukovic (2012)
Krajewski \& Schneider (2009b Geary et al. (2012) Geary et al. (20
Geary (2011) Geary et al. (2013)
Friso-van den Bos et al. (2015) Desoete et al. (2009) Bailey, Watts, et al. (2014) cohort Bailey, Siegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013) Reigosa-Crespo et al. (2013) Siegler et al. (2012) cohort 1 siegler et al. (2012) cohort 2 Hansen et al. (2015) ailey et al. (2012) Primi et al. (2010) Wilkins \& Ma (2002) Lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) ritt \& Irwin (2008)

| \langle Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Counting in K predicted grade 1 broad math

Broad math in K predicted grade 8 broad math

K math accurately predicted math performance below $10^{\text {th }}$ percentile in grades 2 and 3 with 84\% correct classification

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | >Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Starr et al. (2013) Lee (2012) cohort 1 Libertus et al. (2013) Mazzocco et al. (2011 Watts et al. (2014)

Jordan et al. (2007) Navarro et al. (2012) Passolunghi et al. (2012) Stock et al. (2009) cohort Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) DiPerna et al. (2007) Jordan et al. (2009) Jordan et al. (2009) Missall et al. (2012) Judge \& Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (2013) Bagliciet al. (2010) Desoete et al. (2012) LeFoevre et al. (2010) Stock et al. (2010) tock et al. (2010) lachance \& Mazzocco (2006) Mazzocco \& Thompson (2 Mazzocco et al. (2011a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 Vukovic (2012)
Krajewski \& Schneider (2009b) Geary et al. (2012) Geary et al. (2012
Geary (2011) Geary et al. (2013) Friso-van den Bos et al. (2015) Desoete et al. (2009) Bailey, Watts, et al. (2014) cohort Bailey, Siegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013) Reigosa-Crespo et al. (2013) Siegler et al. (2012) cohort 1 Segler et al (2012) (2013) legler et al. (2012) coh Hansen et al. (2015) Bailey et al. (2012) Primi et al. (2010) Wilkins \& Ma (2002) Lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) Britt \& Irwin (2008)

| $<$ Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Broad math in grade 8 predicted completion of 4 -year college degree

Students who took algebra in grades 8 took more advanced math courses and enrolled in 4-year colleges more often than students who took algebra in grade 9

Numeracy measured in adolescence impacted hourly earnings 7 to 15
years later

Mathematics in preschool predicts later mathematics

Mathematics in kindergarten predicts later mathematics

Mathematics in elementary school predicts later mathematics

Mathematics in middle school predicts later mathematics

Mathematics in high school predicts later outcomes

Computation

Problem Solving

The Five Essentials for Math Intervention for Students Struggling in Math
srpowell@utexas.edu @sarahpowellphd
www.sarahpowellphd.com
Why is math intervention necessary?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Fluency building
Problem solving
instruction

MODELING

Step-by-step
explanation
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Modeling is a dialogue between the teacher and students.
 MODELING
 Step-by-step
 explanation
 Planned examples
 SUPPORTS
 Ask high-level and low-level questions
 Eliciting frequent responses
 Providing affirmative and corrective feedback

Modeling	MODELING	PRACTICE
includes a	Step-by-step	Guided practice
step-by-step	explanation	Independent practice
explanation of		
how to do a	Planned examples	
mathematical	SUPPORTS	
problem.	Ask high-level and low-level questions	
A teacher may		
Ao 1 modeled		
problem or		
several.	Providing affirmative and corrective feedback	

26

"Today, we are learning about addition. This is important because sometimes have different amounts - like money - and you want to know how much money you have altogether."

26 "Let's solve this

 problem. What's the problem?"To solve 26 plus 79 , first decide
about the operation.
Should we add,
subtract, multiply, or divide?"
"Add."

"How did you know we want to add?"
"There's a plus sign."

26

"The plus sign tells us we want to add. To add, let's use the partial sums strategy. What strategy?"
"Partial sums."

"With the partial sums strategy, we start adding in the greatest place value. What's the greatest place value in this problem?"
"So, let's add the tens. What's 20 plus 70?"
"The tens,

26
"20 plus 70
equals 90. Let's write 90 right here below the equal line. What will we write?"
"90 is the partial sum when you add the tens. What does 90 represent?"
"Now, let's add the ones. What should we add?"
"It's the partial sum of adding 20 plus 70 ."
 20 plus 70 ." \square

" 6 plus 9 equals what?"
"Let's write 15 below the 90 . Where do we write the 15?"
" 15 is the partial sum when you add the ones. Now, let's add the partial sums together. What will we add?"

"15."

What math should be modeled?

MODELING

Step-by-step
explanation
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

MODELING PRACTICE Practice
 Step-by-step explanation
 Planned examples
 SUPPORTS
 Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

MODELING

Step-by-step
explanation
Planned examples

PRACTICE

Guided practice

Independent practice

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

"Now, you'll practice
a problem on your
own. Use your
attack strategy!"

Independent practice is practice in which the
students practice
independently
with teacher support.

MODELING

Step-by-step
explanation
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

PRACTICE

Guided practice
Independent practice

How do you engage your students in guided practice?

MODELING
 Step-by-step
 explanation
 Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback
These Supports should be used in both Modeling and Practice.

MODELING

Step-by-step
explanation
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Modeling and Practice, it is essential to engage
students and check for
understanding.

Ask a

MODELING

Step-by-step explanation

Planned examples

PRACTICE

Guided practice

Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Modeling and Practice, it is essential to engage students and check for understanding.

During	MODELING	PRACTICE
Modeling and Practice, students	Step-by-step explanation Planned examples	Guided practice Independent practice
frequently	SUPPORTS Ask high-level and low-level questions	
frequent	Eliciting fr	t responses
responses	Providing affirmative and corrective feedback	
keeps student attention and		
keeps student learning active.		

MODELING
 Step-by-step
 explanation
 Planned examples
 PRACTICE
 Guided practice
 Independent practice

During
Modeling and Practice, students should receive immediate feedback on

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

Students should receive affirmative and (when necessary) corrective feedback.
their responses.

MODELING
 Step-by-step
 explanation
 Planned examples
 Independent practice

 \section*{Guided practice}

 \section*{Guided practice}}

MODELING
 Step-by-step
 explanation
 Planned examples
 Independent practice

 \section*{PRACTICE}

 \section*{PRACTICE}

 \section*{Guided practice}

 \section*{Guided practice}}

During
Modeling and Practice, students should receive immediate feedback on their responses.

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

"Let's look at that again. Tell me how you added in the hundreds column."

MODELING

Step-by-step
explanation
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Which of these supports do you use most often?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Mathematical Language

Instead of that...	Say this...

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar m
(but a more precise math meaning)
3. Some math terms are shared with English but have different meanings
4. Some math words are shared with English with similar meanings
(but a more precise math meaning)
5. Some math terms are only used in math
6. Some math terms are shared with English but have different meanings
7. Some math words are shared with English with similar meanings
(but a more precise math meaning)
8. Some math terms are only used in math
9. Some math terms have more than one meaning
10. Some math terms are shared with English but have different meanings
11. Some math words are shared with English with similar meanings
(but a more precise math meaning)
12. Some math terms are only used in math
13. Some math terms have more than one meaning
14. Some math terms are similar to other content-area terms with different meanings
divide vs. Continental Divide
variable vs. variably cloudy
15. Some math terms are shared with English but have different meanings
16. Some math words are shared with English with similar meanings
(but a more precise math meaning)
17. Some math terms are only used in math
18. Some math terms have more than one meaning
19. Some math terms are similar to other content-area terms with different meanings
20. Some math terms are homographs
21. Some math terms are shared with English but have different meanings
22. Some math words are shared with English with similar meanings
(but a more precise math meaning)
23. Some math terms are only used in math
24. Some math terms have more than one meaning
25. Some math terms are similar to other content-area terms with different meanings
26. Some math terms are homographs
27. Some math terms are related but have distinct meanings
hundreds vs. hundredths

numerators

VS. denominator
factor vs.
multiple

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings
(but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings

mesa vs. tabla

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings
(but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
four vs. forty
10. Some math terms are shared with English but have different meanings
11. Some math words are shared with English with similar meanings
(but a more precise math meaning)
12. Some math terms are only used in math
13. Some math terms have more than one meaning
14. Some math terms are similar to other content-area terms with different meanings
15. Some math terms are homographs
16. Some math terms are related but have distinct meanings
17. An English math term may translate into another language with different meanings
18. English spelling and usage may have irregularities
19. Some math concepts are verbalized in more than one way
quarter
skip count
vs. multiples
20. Some math terms are shared with English but have different meanings
21. Some math words are shared with English with similar meanings
(but a more precise math meaning)
22. Some math terms are only used in math
23. Some math terms have more than one meaning
24. Some math terms are similar to other content-area terms with different meanings
25. Some math terms are homographs
26. Some math terms are related but have distinct meanings
27. An English math term may translate into another language with different meanings
28. English spelling and usage may have irregularities
29. Some math concepts are verbalized in more than one way
vertex vs.
corner
30. Informal terms may be used for formal math terms

> rhombus vs.
> diamond

1. Some math terms are shared with English but have different meanings
2. Some math words are shared with English with similar meanings
(but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities

Which of these cause difficulty for your student(s)?
10. Some math concepts are verbalized in more than one way
11. Informal terms may be used for formal math terms

Use formal math language

Use terms precisely

Use formal math language

Use formal math language

Use terms precisely

Use terms precisely

Equation $9 x-4=7 x$
Expression $9 x-4$
Formula $a^{2}+b^{2}=c^{2}$
Function $f(x)$
Inequality $9 x-4>6 x$

Use terms precisely

Quadrilaterals

Acute triangle

Obtuse triangle Isosceles triangle

Right triangle

Scalene triangle

Alternate angles

Complementary angles

Corresponding angles

Supplementary angles $=180^{\circ}$

Vertical angles

Use terms precisely

Use terms precisely

What are terms that your students do not use precisely?

Use formal math language

Use terms precisely

Word	Lightbulb Word
Definition	Picture

Integer Definitions

Numerator: how many parts of the whole

```
4
                            (4)
    - Ex.
Odd number: a number not divided evenly by 2
    - Ex. 1, 3, 5, 7, \(9 . .\).
    Percent: a specific number in comparison to 100
    - \(74 \%\)
```

Polygon: any enclosed shape that is made up of 3 or more straight lines

Dear Feisty Fifth Graders,

Today we have multiple opportunities to do exciting projects! For example, we are going to be doing a science experiment to see how the tilt of a ramp relates to how far a matchbox car will roll. There are several factors we will be looking at in this experiment. I look forward to hearing multiple ideas on how to set up this experiment.

One other thing that factors into our day is that we have an assembly before lunch. We will get to hear music from the high school play. I think we will hear multiple songs.

Sincerely, Ms. Livers
Here is a problem to start your day... in my letter I have used two words that are important math words for today's lesson. Can you find them and tell what they mean in this letter and what they mean when talking about numbers? (Answer this in your math notebook)

Rating	Word	Definition	Synonym(s)	Example	Sample Problem
2	$e x e^{(x)^{501}}$	a mathematical phrase combining operations, numbers and/or variables.	phrase algebraic expression	$\begin{array}{lcc} 6 & \text { u' ijal. } \\ 6 n & \text { noeqain } \\ 6+n & \text {, sign: } \end{array}$	Lucia carns $\$ 8$ por har for babysilting and gets a $\$ 5$ tip. Write an expression to represent the amount she would earn if she worked for x hours.
2	joiver	a quantity that can change ortake many values. (refers to the letter orsymbol reperenting the quantity)	Unknown	$\begin{array}{ll} x & D \\ y & T \end{array}$	The variable x vepresents the nimber of hous charlie works in a week. Write an expression to represent his earnings if he carins $\$ 9$ per
1	$p^{100^{x}}$	the result when two or more numbers are multiplied	total answer	$3 \times 2=6$ product	The product of 6 and a number is 24 . What is the number?
3	avo wier	the result of a division crefers to the number of times the divisor divides the dividend)	answer	$\begin{aligned} & 18 \div 2=9 \\ & 9 \longdiv { 9 } \div \text { quotert } \end{aligned}$	Estimate the quotient when 365 is divided by 12.

Math Word Search \#6

Number Words 51 to 60

Use the word bank to find the number words in the grid below, Worcs oppecr

What are ways you support the math vocabulary of your student(s)?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

$34=3$ tens and 4 ones

$$
4,179
$$

$$
x-6=8
$$

$$
\begin{array}{r}
569 \\
+\quad \\
\hline
\end{array}
$$

If you are left handed:
What's one of your favorite handson manipulatives?

If you are right handed: What's one of your favorite virtual manipulatives?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

Fluency

Addition

Multiplication
Division

Addition Subtraction
 Multiplication
 Division

Total (Part-Part-Whole, Combine)

Join (Change Increase)

Total (Part-Part-Whole, Combine)

Karly saw 4 cardinals and 5 blue jays. How many birds did Karly see?

Join (Change Increase)

Addition	Subtraction
Multiplication	Division

Pia had \$4. Then they earned $\$ 5$ for cleaning their room. How much money does Pia have now?

If you have brown eyes: What's a Total story to show addition?

If you don't have brown eyes: What's a Change/Join story to show addition?

Separate (Change Decrease)

Addition	Subtraction
Multiplication	Division

$$
5-3=2
$$

Difference (Compare)

Addition	Subtraction
Multiplication	Division

Separate (Change Decrease)

Brady had 9 cookies. Then they ate 2 of the cookies. How many cookies does Brady have now?

Addition	Subtraction
Multiplication	Division

Rachel has 9 apples. Jodie has 2 apples.
How many more apples does Rachel have?
(How many fewer does Jodie have?)

$$
9-5=
$$

If you were born in Canada:
What's a Change/Separate story to show subtraction?
If you weren't born in Canada: What's a Difference story to show subtraction?

Equal Groups

Equal Groups (Array)

Multiplication
Division

Comparison

Addition	Subtraction
Multiplication	Division

$$
3 \times 2=6
$$

Equal Groups

Diego has 2 boxes of crayons. There are 8 crayons in each box. How many crayons does Diego have altogether?

Comparison

Addition	Subtraction
Multiplication	Division

Vivienne picked 2 apples. Jessica picked 8 times as many apples as Vivienne. How many apples did Jessica pick?

If you aren't wearing glasses: What's an Equal Groups story to show multiplication?
If you are wearing glasses: What's a Comparison story to show multiplication?

Partitive Division

Quotative Division

Addition	Subtraction
Multiplication	Division

Partitive

Stefanie has 12 apples. She wants to share them equally among her 2 friends. How many apples will each friend receive?

Quotative

Addition	Subtraction
Multiplication	Division

Nicole has 12 apples. She put them into bags containing 2 apples each. How many bags did Nicole use?

If you'd watch a comedy show: What's a Partitive story to show division?
If you'd watch a drama how: What's a Quotative story to show division?

Build fluency with math facts.

- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor

$$
\begin{array}{r}
5 \\
+\quad 8 \\
+\quad 4 \times 7 \\
\hline
\end{array}
$$

Build fluency with whole-number computation

$$
\begin{array}{r}
15 \\
+\quad 28 \\
\hline 23 \quad 724 \\
\times \quad 9 \\
\hline \quad 7250 \\
\hline \quad 15 \\
\hline
\end{array}
$$

Build fluency with rational-number computation

$$
\begin{array}{r}
1.4 \\
+\quad 3.892 \\
+\quad 0.14 \\
\hline
\end{array}
$$

$$
\frac{2}{3} \times \frac{3}{4} \quad \frac{9}{4}-\frac{3}{8}
$$

Build fluency with integer computation

$$
-135 \div 2=\begin{array}{r}
6 \\
\times-12 \\
\hline
\end{array}
$$

What type of fluency do your students need to develop?
How will you practice that?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Fluency building
Problem solving
instruction

Problem-Solving Difficulties

\square
\square
\square
\square
\square
\square

Attack Strategy

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many n students chose Math than chose Writing?

J.

Students' Favorite Subjects

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

1. Keywords tisc to operations

Lincoln had 8 pencils fewer than Roscoe. If Roscoe had 18 pencils, how many pencils did Lincoln have?

Lincoln had 8 pencils fewer than Roscoe. If Lincoln had 18 pencils, how many pencils did Roscoe have?

Description of Single-Step Word Problems $(n=132)$

Schema	Occurrence of schema		Any keyword		Schemaspecific keywords ${ }^{\text {a }}$		Multiple keywords ${ }^{3}$		Keyword(s) led to correct solution ${ }^{\text {a }}$	
	n	\%								
Total	27	20.5	26	96.3	23	88.5	5	19.2	21	80.8
Difference	17	12.9	17	100.0	14	82.4	2	11.8	12	70.6
Change	11	8.3	7	63.6	5	71.4	5	71.4	2	28.6
Equal groups	29	22.0	26	89.7	22	84.6	18	69.2	8	30.8
Comparison	10	7.6	9	90.0	9	100.0	4	44.4	5	55.6
Ratios or proportions	29	22.0	23	79.3	9	39.1	9	39.1	6	26.1
Product of measures	9	6.8	9	100.0	8	88.9	1	11.1	5	55.6
${ }^{3}$ When a problem fea	d a key	ord.								

Description of Multi-Step Word Problems ($n=84$)

Schema	Occurrence of schema ${ }^{*}$		Any keyword		Keyword(s) led to correct solution ${ }^{\text {b }}$	
	n	\%	n	\%	n	\%
Total	40	47.6	39	97.5	3	7.7
Difference	11	13.1	11	100.0	1	9.1
Change	21	23.8	19	95.0	1	5.3
Equal groups	49	58.3	48	98.0	1	2.1
Comparison	7	8.3	7	100.0	0	0.0
Ratios or proportions	22	25.0	16	76.2	1	6.3
Product of measures	7	8.3	7	100.0	2	28.6

${ }^{\text {a }}$ Sum across schemas does not equal 100 because each word problem featured more than one schema.
bhen a problem featured a keyword.

Mr. Rivera's taxable income is $\$ 20$ each hour before taxes are taken out. Mr. Rivera worked a total of 40 hours each week for 50 weeks.

What is the dollar amount, to the nearest dollar, taken out for taxes based on Mr. Rivera's taxable income?

Jessica rented 1 video game and 3 movies for a total of $\$ 11.50$.

- The video game cost $\$ 4.75$ to rent.
- The movies cost the same amount each to rent.

What amount, in dollars, did Jessica pay to rent each movie?

The temperature of a substance decreased by $24^{\circ} \mathrm{C}$ per minute for 3 minutes. What was the overall change of the temperature of the substance?

Important notes about keywords

Talk about keywords
("What does more than tell you about?")

But, do not tie a keyword to a specific operation!
2. Presenting pro'iems by operation

Subtraction Word Problems

In a botanical garden, there are 5.626 varieties of native and exotic plants. 12.290 of
the plants are exoctic, what is the number of native plants?

Have an attack strategy
 Teach word-problem schemas

Have an attack strategy

RIDE

Read the problem.
Identify the relevant information.
Determine the operation and unit for the answer.
Enter the correct numbers and calculate, then check the answer.

\author{

RIDGES

 Read the problem.
 I know statement.
 Draw a picture.
 Goal statement.
 Equation development. Solve the equation.}

Have an attack strategy

STAR

Stop and read the problem carefully.
Think about your plan and the strategy you will use.
Act. Follow your plan and solve the problem.
Review your answer.

RICE

Read and record the problem.
Illustrate your thinking.
Compute.
Explain your thinking.

Have an attack strategy

SUPER

Slowly read the story problem twice.
Underline the question and circle the numbers you need.
Picture it. Draw the scenario to show what is happening.
Explain the problem with a number sentence.
Rewrite the answer in a sentence.

SHINES

Slowly and carefully read the problem.
Highlight or underline key information.
Identify the question by drawing a circle around it.
Now solve the problem. Show your work.
Examine your work for precision, accuracy, and clarity.
Share your answer by writing a sentence.

Have an attack strategy

SOLVE

Study the problem.
Organize the facts.
Line up the plan.
Verify the plan with computation.
Examine the answer.

\author{

R-CUBES

 Read the problem. Circle key numbers. Underline the question. Box action words. Evaluate steps. Solve and check.}

UPS,

UNDERSTAND
Read and explain.
Plan
How will you solve the problem?
Solve
Set up and do the math!
CHECK
Does your answer make sense?

What's your favorite attack strategy? Why?

Teach word-problem schemas

Total
Difference
Change

Equal Groups

Comparison

Ratios/Proportions

Material collected from: Griffin \& Jitendra, 2009: Fuchs et al., 2014; Fuchs, Seethaler, et al., 2008; Fuchs et al., 2010; Jitendra, 2002: Kin tsch \& Greeno, 1985; Van de Walle, Karp, \& Bay-Williams, 2013.

Total

Parts put together into a total

Daniela saw 3 canoes and 8 kayaks. How many boats did Daniela see?

Daniela saw 11 boats. If 3 of the boats were canoes, how many were kayaks?

Total

Part

Part

Daniela saw 11 boats. 8 of the boats were kayaks, how many were canoes?

Total

Are parts put together for a total?"

Total

P1 $+\quad$ P2 $=$

Difference

Greater and lesser amounts

 compared for a differenceAdrianna has 10 pencils. Tracy has 4 pencils. How many more pencils does Adrianna have?

Difference

Greater amount
Adrianna has 6 more pencils than Tracy. If Tracy has 4 pencils, how many does Adrianna have?

Lesser amount

Tracy has 6 fewer pencils than Adrianna. Adrianna has 10 pencils. How many pencils does Tracy have?

Total
"Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Difference

(lesser)
(greater)

Change

An amount that increases or decreases

Nickole had 6 notebooks. Then, she bought 3 notebooks. How many notebooks does Nickole have now?

End amount

Change amount

Start
 mount

Nickole had 6 notebooks. Then, she bought a few more notebooks. Now, Nickole has 9 notebooks. How many notebooks did she buy?

Nickole had some notebooks. Then, she bought 3 notebooks. Now, Nickole has 9 notebooks. How many notebooks did she have to start with?

Change

An amount that increases or decreases

Samantha baked 20 cookies. Then, she ate 3 of the cookies. How many cookies does Samantha have now?

Samantha baked 20 cookies. Then, she ate some of the cookies. Now, she has 17 cookies. How many cookies did Samantha eat?

End amount

Change amount

Start
amount

Samantha baked some cookies. She ate 3 of the cookies and has 17 cookies left. How many cookies did Samantha bake?

Total
Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Change

"Does an amount increase or decrease?"

Change

ST +/-
 C

Schema and Definition	Graphic Organ izers	Examples			Variations
Equal Groups (Vary) A number of equal sets or units		Product unknown: Maria bought 5 cartons of eggs with 12 eggs in each carton. How many eggs did Maria buy?	Groups unknown: Maria bought 60 eggs. The eggs were sold in cartons with 12 eggs each. How many cartons of eggs did Maria buy?	Number unknown: Maria bought 5 cartons of eggs for a total of 60 eggs. How many eggs were in each carton?	With rate: Maria bought 5 cartons of eggs. Each carton cost $\$ 2.95$. How much did Maria spend on eggs?
Comparison One set as a multiple or part of another set		Product unknown: Malik picked 7 flowers. Danica picked 3 times as many flowers. How many flowers did Danica pick?	Set unknown: Danica picked 3 times as many flowers as Malik. If Danica picked 21 flowers, how many flowers did Malik pick?	Times unknown: Malik picked 7 flowers. Danica picked 21 flowers. How many times more flowers did Danica pick?	With fraction: Malik picked 25 red and yellow flowers. If $1 / 5$ of the flowers were yellow, how many were red?
Proportions		Subject unknown: Sally typed 56 words in 2 minutes. How many words could Sally type in 7 minutes? Base unknown: Justin baked cookies and brownies. The ratio of cookies to brownies was $3: 5$. If he baked 15 cookies, how many brownies did he bake?	Object unknown: Sally typed 56 words in 2 minutes. How many minutes would it take Sally to type 192 words? Compared unknown: Justin baked cookies and brownies. The ratio of cookies to brownies was $3: 5$. If he baked 25 brownies, how many cookies did he bake?	Ratio unknown: Justin baked 15 cookies and 25 brownies. What's the ratio of cookies to brownies?	With percentage: Watson received an 80% on his science quiz. If the test had 40 questions, how many questions did Watson answer correctly? With unit rate: Paula bought 5 boxes of markers. She spent $\$ 9.75$. What is the price of one box of markers?

Material collected from: Jitendra, DiPipi, \& Perron-Jones, 2002; Jitendra \& Star, 2011; Jitendra et al., 2009: Van de Walle et al., 201 3; Xin, Jitendra, \& Deatline-Buchman, 2005; Xin \& Zhang, 2009.

Equal Groups

Groups multiplied by number in each group for a product

Toni has 2 boxes of crayons. There are 12 crayons in each box. How many crayons does Toni have altogether?

Toni has 24 crayons. They want to place them equally into 2 boxes. How many crayons will Toni place in each box?

Groups

Number in each group

Product
Toni has 24 crayons. They put them into boxes with 12 crayons each. How many boxes did Toni use?

Equal Groups

"Are there groups with an equal number in each group?"

Equal Groups $\begin{aligned} & \text { Array } \\ & \text { Vary }\end{aligned}$

GR
 X

 $=$

$x A+H$

Comparison

Set multiplied by a number of times

 for a productBrooke ran 6 minutes. Shaleeni ran 4 times longer than Brooke. How many minutes did Shaleeni run?

Set

Number of times

Product

Equal Groups

"Are there groups with an equal number in each group?"

Comparison

"Is a set compared a number of times?"

Comparison

S X

Ratios/Proportions

Description of relationships among quantities

Emma typed 56 words in 2 minutes. At this rate, how many words could Emma type in 7 minutes?

Melissa baked cookies and brownies. The ratio of cookies to brownies was 3:5. If she baked 25 brownies, how many cookies did she bake?

Equal Groups

"Are there groups with an equal number in each group?"

Comparison

"Is a set compared a number of times?"
Ratios/Proportions
"Are there relationships among
quantities - if this, then this?"

Ratios/Proportions

Teach word-problem schemas

Total
Difference
Change

Equal Groups

Comparison

Ratios/Proportions

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Fluency building
Problem solving
instruction

 This content is designed to support faculty and professional development providers with instructing preservice and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

> Intensive instruction was recently identified as a high-leverage practice in special educations, and DBI is a research based approach to delivering intensive instruction across content areas ($\mathrm{NCII}, 2013$). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in位 educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and implement intensive mathematics intervention through data-based individualization (DBI). The content in this course both courses.

Sarah R. Powell, Ph.D.

Associate Professor

The University of Texas at Austin

srpowell@utexas.edu

@sarahpowellphd

