Math 2371 Calc III Sample Test 3 - Solns

1. Is the following vector field conservative?

$$
\vec{F}=\left\langle 2 x y, x^{2}+z^{2}, 2 y z>.\right.
$$

Soln. Since $\nabla \times \vec{F}=0$ then yes, the vector field is conservative. Thus f exists such that $\vec{F}=\vec{\nabla} f$ so

$$
\begin{array}{ll}
f_{x}=2 x y & \Rightarrow f=x^{2} y+A(y, z) \\
f_{y}=x^{2}+z^{2} & \Rightarrow f=x^{2} y+y z^{2}+B(x, z) \\
f_{z}=2 y z & \Rightarrow f=y z^{2}+C(x, y)
\end{array}
$$

Therefore we see that

$$
f=x^{2} y+y z^{2}+c
$$

and

$$
\int_{C} 2 x y d x+\left(x^{2}+z^{2}\right) d y+2 y z d z=x^{2} y+\left.y z^{2}\right|_{(1,1,1)} ^{(2,3)}=58
$$

2. Evaluate the following line integral $\int_{c} y d s$ where c is ccw direction around the circle $x^{2}+y^{2}=1$ from $(1,0)$ to $(-1,0)$.

Soln. Here we parameterize the curve by $x=\cos t, y=\sin t$ so $t=0$ to $t=\pi$. Also, $\frac{d x}{d t}=\sin t$ and $\frac{d y}{d t}=-\cos t$ so $d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\sqrt{\sin ^{2} t+\cos ^{2} t} d t=d t$. Thus, the line integral becomes

$$
\int_{0}^{\pi} \sin t d t=2
$$

3. Evaluate the following line integral $\int_{c} 2 y d x+x d y$ where c is clockwise direction around the triangle with vertices $(0,0),(1,0)$ and $(1,1)$.

Soln. Here we have three separate curves which we denote by C_{1}, C_{2} and C_{3}.
$C_{1}: \quad$ Here $y=0, d y=0$ so $\int_{C_{1}} 0=0$
$C_{2}: \quad$ Here $x=y, d x=d y$ so $\int_{0}^{1} 3 x d x=3 / 2$
C_{3} : Here $x=1, d x=0$ so $\int_{1}^{0} d y=-1$

Thus $\int_{c} 2 y d x+x d y=0+3 / 2-1=1 / 2$.
4. Green's Theorem is

$$
\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Verify Green's Theorem where $\vec{F}=<y^{2}, x^{2}+2 x y>$ where R is the region bound by the curves $y=x^{2}, y=1$ and $x=0$ in Q1.

Soln. Again, we have three separate curves which we denote by C_{1}, C_{2} and C_{3}.
$C_{1}: \quad$ Here $y=x^{2}, d y=2 x d x$ so $\int_{0}^{1} x^{4} d x+\left(x^{2}+2 x^{3}\right) 2 x d x=3 / 2$
$C_{2}:$ Here $y=1, d y=0$ so $\int_{1}^{0} d x=-1$
C_{3} : Here $x=0, d x=0$ so $\int_{C_{3}} 0=0$
Thus $\int_{c} y^{2} d x+\left(x^{2}+2 x y\right) d y=3 / 2-1+0=1 / 2$.
Since $P=y^{2}$ and $Q=x^{2}+2 x y$ then $Q_{x}-P_{y}=2 x+2 y-2 y=2 x$ so

$$
\iint_{R}\left(Q_{x}-P_{y}\right) d A=\int_{0}^{1} \int_{x^{2}}^{1} 2 x d y d x=1 / 2
$$

5. Evaluate $\iint_{S} z d S$ where S is the surface of the paraboloid $z=1-x^{2}-y^{2}, z \geq 0$.

Soln. Since $z=1-x^{2}-y^{2}$ then $d S=\sqrt{1+z_{x}^{2}+z_{y}^{2}} d A=\sqrt{1+4 x^{2}+4 y^{2}} d A$ and so far we have $\iint_{R}\left(1-x^{2}-y^{2}\right) \sqrt{1+z_{x}^{2}+z_{y}^{2}} d A$ where the region of integration is the circle $x^{2}+y^{2}=1$. Switching to polar gives

$$
\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) \sqrt{1+4 r^{2}} r d r d \theta=\left(\frac{5 \sqrt{5}}{24}-\frac{11}{120}\right) 2 \pi
$$

6. Find the flux $\iint_{S} \vec{F} \cdot \vec{n} d S$ through the surface of the plane $x+y+z=1$ in the first quadrant over the vector field $\vec{F}=<2 x, 2 y, 2 z+2>$
Soln. The normal to the surface is given by $\vec{n}=\frac{<1,1,1>}{\sqrt{3}}$. For this surface $d S=$ $\sqrt{1+1+1} d A$ so $\iint_{S} \vec{F} \cdot \vec{n} d S=\iint_{S}<2 x, 2 y, 2 z+2>\cdot \frac{<1,1,1\rangle}{\sqrt{3}} \sqrt{1+1+1} d A=$ $\iint_{S}(2 x+2 y+2 z+2) d A$. Bringing in the surface we obtain

$$
\int_{0}^{1} \int_{0}^{1-x} 4 d y d x=2
$$

