
IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1466 | P a g e

Multivariant Execution Environment against Code Injection

Attacks

R.Deepa1, P.Thenmozhi2, L. John Ritchie Immanuel3
123Asst. Prof, Dept. of CSE, M.I.E.T Engineering College.

Abstract- The number and complexity of attacks on computer

systems are increasing. This growth necessitates proper

defense mechanisms. Intrusion detection systems play an

important role in detecting and disrupting attacks before they

can compromise software. Multivariant execution is an

intrusion detection mechanism that executes several slightly

different versions, called variants, of the same program in

lockstep. The variants are built to have identical behavior

under normal execution conditions. However, when the

variants are under attack, there are detectable differences in

their execution behavior. At runtime, a monitor compares the

behavior of the variants at certain synchronization points and

raises an alarm when a discrepancy is detected. We present a

monitoring mechanism that does not need any kernel

privileges to supervise the variants. Many sources of

inconsistencies, including asynchronous signals and

scheduling of multithreaded or multiprocess applications, can

cause divergence in behavior of variants. These divergences

cause false alarms. We provide solutions to remove these false

alarms. Our experiments show that the multivariant execution

technique is effective in detecting and preventing code

injection attacks.

I. INTRODUCTION

Security vulnerabilities in software have been a significant

problem for the computer industry for decades. As a result, the

challenge of finding mechanisms to detect and remove

vulnerabilities persists. Modern static analysis tools are

capable of finding many varieties of programming errors, but

a lack of runtime information limits their abilities. Dynamic

and runtime tools are often not effective because they lack a

baseline to use for detection. Also, the performance overhead

of sophisticated algorithms used by such runtime tools is often

prohibitively high in some production systems.

Multivariant code execution is a run time monitoring

technique that prevents system damage resulting from

malicious code execution and addresses the above problems

with dynamic detection tools. Multivariant execution protects

against malicious code execution attacks by running two or

more slightly different versions of the same program, called

variants, in lockstep. At defined synchronization points, the

variants’ behavior is compared against each other. Divergence

among the behavior is an indication of an anomaly and raises

an alarm.

II. THE MULTIVARIANT MONITOR

Multivariant execution is a monitoring mechanism that

controls the states of the variants being executed and verifies

that the variants are complying to defined rules. A monitoring

agent, or monitor, is responsible for performing the checks

and ensuring that no program instance has been corrupted.

This can be achieved at varying granularities, ranging from a

coarse-grained approach that only checks that the final output

of each variant is identical, all the way to a checkpointing

mechanism that compares each executed instruction. The

granularity of monitoring does not impact what can be

detected, but it determines how soon an attack can be caught.

This paper use a monitoring technique that synchronizes

program instances at the granularity of system calls. This

rationale for using this granularity is that the semantics of

modern operating systems prevent processes from having any

outside effect unless they invoke a system call. Thus, injected

malicious code cannot damage the system without invoking a

system call. Moreover, coarse-grained monitoring has lower

overhead compared to fine-grained monitoring, as it reduces

the number of comparisons and synchronization points.

The monitor runs completely in user space. The monitor is a

process invoked by a user and receives the paths of the

executables that must be run as variants. The monitor creates

one child process per variant and starts executing all of them.

It allows the variants to run without interruption as long as

they do not require data or resources outside of their process

spaces. Whenever a variant issues a system call, the request is

intercepted by the monitor and the variant is suspended. The

monitor then attempts to synchronize the system call with the

other variants. All variants need to make the exact same

system call with equivalent arguments within a small time

window. The invocation of a system call is the

synchronization point in this technique.

Note that argument equivalence does not necessarily mean

that argument values are identical. When an argument is a

pointer to a buffer, the contents of the buffers are compared

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1467 | P a g e

and the monitor expects them to be the same, whereas the

pointers themselves can be different. Nonpointer arguments

are considered equivalent only when they are identical.

In a more formal way, the monitor determines whether the

variants are in complying state based on the following rules. If

p1 to pn are the variants of the same program p, they are

considered to be in conforming states if at every

synchronization point the following conditions hold:

1. Ұsi,sj ε S: si = sj where S={s1,s2,….sn} is the set of all

invoked system calls at the synchronization point and si is the

system call invoked by variant pi.

2. Ұaij, aik ε A : aij ≡ aik where A ={a11, a12, . . . , amn} is

the set of all the system call arguments encountered at the

synchronization point, aij is the ith argument of the system

call invoked by pj, and m is the number of arguments used by

the encountered system call. A is empty for system calls that

do not take arguments. When an argument is a pointer to a

buffer, the contents of the buffers are compared and the

monitor expects them to be the same, whereas the pointers

(actual arguments) themselves can be different. Formally, the

argument equivalence operator is defined as

 a ≡ b ↔{ if type ≠ buffer : a = b

 else:content(a)= content(b)

with type being the argument type expected for this argument

of the system call. The content of a buffer is the set of all

bytes contained in it

 content(a) :={a[0]… . a[size(a) – 1]}

with the size function returning the first occurrence of a zero

byte in the buffer in case of a zeroterminated buffer, or the

value of a system call argument used to indicate the size of the

buffer in case of buffers with explicit size specification.

3. Ұti ε T : ti - ts ≤ ω where T ={t1, t2, . . . ; tn} is the set of

times when the monitor intercepts system calls, ti is the time

that system call si is intercepted by the monitor, and ts is the

time that the synchronization point is triggered. This is the

time of the first system call encountered at this

synchronization point. ω is the maximum amount of wallclock

time that the monitor waits for a variant. ω is specified in the

policy and depends on the application and hardware. As an

example, the ratio of the number of variants to the number of

available processor cores can increase or decrease ω.

If any of these conditions is not met, an alarm is raised and the

monitor takes an appropriate action based on a configurable

policy. Terminate and restart all the variants, but other

policies such as terminating only the nonconforming ones,

based on majority voting, are possible.

III. SYSTEM CALL EXECUTION

An MVEE and all the variants executed in this system must

act as if only one variant was running conventionally on the

host operating system. The monitor is responsible for

providing this behavior by running certain system calls on

behalf of the variants and providing the variants with the

results.

Depending on the effects of these system calls and their

results, we specified which ones can be executed by the

variants and which ones must be run by the monitor. The

decision is based on the following parameters:

 System calls that change the state of the system are

executed by the monitor and the results are copied to the

variants. For example, a system call that creates a file on

the system must be executed once by the monitor and the

variants are not allowed to run it.

 Non-state-changing system calls that return volatile

results must also be executed by the monitor, and the

variants must receive identical results of the system call.

For example, reading the system time (gettimeofday)

must be performed by the monitor and the variants only

receive the results. This is necessary to keep the variants

in conforming states in the course of execution and to

prevent false positives.

 Non-state-changing system calls that produce immutable

results can be executed by the variants. For example,

uname, which returns information about the operating

system, is executed by all the variants.

These are only general rules for system call execution. Some

system calls, such as chdir, must be executed by all the

variants and also by the monitor. The monitor needs to run

this system call to synchronize its working directory with that

of the variants. This is required because the variants may later

perform a file operation that is intercepted and executed by the

monitor, but they may not provide the full path of the file.

The system call write must sometimes be executed by the

monitor and sometimes by the variants. When the variants

read input data, the monitor intercepts the input, and then

sends identical copies of the data to all the variants. This is not

only required to mimic the behavior of a single application,

but it is also essential to prevent attackers from compromising

one variant at a time.

File, socket, and standard I/O operations are performed by the

monitor and the variants only receive the results. When a file

is opened for writing, for example, the monitor is the only

process that opens the file and sets the registers of the variants

so that it appears to them that they succeeded in opening the

file. All subsequent operations on such a file are performed by

the monitor and the variants are just recipients of the results.

This method would fail if the variants tried to map a file to

their memory spaces using mmap, because the file descriptor

received from the monitor was not actually opened in their

contexts and, hence, mmap would return an error. This would

cause a major restriction because shared libraries are mapped

using this approach. Therefore, we allow the variants to open

files locally if requested to be opened read only. Mapping

shared libraries is allowed, but mapping a file opened for

writing fails. However, mmap is rarely used in this manner.

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1468 | P a g e

When the mmap system call is used to map a file into the

address space of a process, reads and writes to the mapped

memory space are equivalent to reads and writes to the file,

and can be performed without calling any system call. This

could allow an attacker to take control over one variant and

compromise the other variants using shared memory. To

prevent this vulnerability,wedeny anymmap request that can

create potential communication routes between the variants

and only allow MAP_ANONYMOUS and MAP_PRIVATE.

MAP_ SHARED is allowed only with read-only permission.

In practice, this does not seem to be a significant limitation for

most applications.

Variants are allowed to create anonymous pipes, but all data

written to the pipes are checked by the monitor and

must conform to the monitoring rules. Named pipes are

created and operated by the monitor and the variants just

receive the results.

IV. SCHEDULING

Scheduling of child processes or threads created by the

variants can cause the monitor to observe different sequences

of system calls and raise a false alarm. To prevent this

situation, corresponding variants must be synchronized to

each other. Suppose p1 and p2 are the main variants, and p1_1

is p1’s child and p2_1 is p2’s child. p1 and p2 must be

synchronized to each other and p1_1 and

p2_1 must also be synchronized to each other. We may

choose to use a single monitor to supervise the variants and

their children or we can use several monitors to do so.Using a

single monitor can cause unnecessary delays in responding to

their requests. Suppose p1 and p2 invoke a system call whose

arguments take a large amount of time to

compare. Just after the system call invocation and while the

monitor is busy comparing the arguments, p1_1 and p2_1

invoke a system call that could be quickly checked by the

monitor, but since the monitor is busy, the requests of the

children cannot be processed immediately and they have to

wait for the monitor to finish its first task.

Simple solution is to spawn a new monitoring thread for each

set of new child processes or threads. This is done by the

monitor responsible for the parent variants whenever the

variants create new child processes or threads. Monitoring of

the newly created children is handed over to the new monitor.

As mentioned before, we use ptrace to synchronize the

variants. Unfortunately, ptrace is not designed to be used in a

multithreaded debugger. As a result, handing the control of

the new children over to a new monitor is difficult. We let the

parent monitor start monitoring the new child variants until

they invoke the first system call. After this point, we create a

new monitoring thread and let the new thread take the control

of the new variants.

V. SYNCHRONOUS SIGNAL DELIVERY

Handling asynchronous signals is one of the major challenges

in multivariant execution, as it can cause the variants to

execute different sequences of system calls. For example,

assume variant p1 receives a signal and starts executing its

handler. p1’s signal handler then invokes

system call s8, causing the monitor to wait for the same

system call from p2. Meanwhile, variant p2 has not received

the signal and calls system call s1 in its normal code flow.

This behavior is considered a discrepancy and raises a false

alarm in the system.

A possible solution is to deliver signals synchronously only at

synchronization points, i.e., at system calls. The problem with

this approach, however, is that CPU-intensive applications

may not invoke any system call for a long period of time.

Empirical results show that this technique adds 0.5

millisecond delay in delivering signals, while delivering

signals at system calls could cause hundreds of milliseconds

of delay in CPU-intensive applications. Such a long delay

might not be acceptable for certain types of signals, such as

timer signals, and could also reduce responsiveness of certain

applications.

We provide a solution that is not based on delivering signals

at system calls. Our solution benefits from the fact

that whenever a signal is sent to a variant, the operating

system pauses the variant and notifies the monitor. The

monitor can either deliver the signal to the variant, or save it

and ignore it for now.

The monitor immediately delivers signals that terminate

program execution, such as SIGTERM, and signals generated

by CPU exceptions, such as SIGSEGV. If the CPU exception

is caused by the normal flow of an application, it must appear

in all the variants and, therefore, all of them receive it in the

same execution state. Hence, the signal is automatically

delivered to all the variants in the same state and delivering

the signals immediately does not cause false alarms even if

variants use user-defined signal handlers for the exceptions. If

the exception is raised only in one or more variants but not all

of them, immediate signal delivery causes an alarm in the

system. This is a true alarm because it is an actual divergence

in the behavior of the variants.

Signals that do not terminate program execution and are not

caused by CPU exceptions are delivered to all the variants

synchronously, meaning that signals are delivered to all of

them either before or after a synchronization point, i.e., a

system call, but not necessarily at the synchronization point.

In other words, if we call the time span between any two

consecutive system call invocation a “signal time frame,” our

algorithm guarantees that a signal is delivered to all the

variants in the same signal time frame.

This algorithm postpones delivery of a signal until at least half

of the variants receive the signal. At such a point, the signal is

delivered to all the variants in the current signal time frame.

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1469 | P a g e

Variants that have not received the signal at such a point and

have invoked a system call are forced to skip the system call

and spin wait for the signal. The skipped system call is later

restored and the variants run them. The subsequent section

provides more details about the algorithm.

We use majority voting to determine when to deliver signals

and also to find noncompliant variants. Using majority voting

in signal delivery works well in multivariant execution

systems that terminate all variants upon

detection of one or more noncompliant variants. However, as

explained in Section 2, terminating only noncompliant

variants and continuing with the compliant majority cannot

always guarantee correct results.

The synchronous signal delivery mechanism guarantees that

the same sequence of system calls is observed in all the

variants. However, if a signal handler invokes a system call

and passes a frequently changing value from the program

context to the system call, a false alarm may still be raised. A

frequently changing value is a value that changes more than

once between two system call invocations.

VI. CONCLUSIONS

A multivariant execution environment runs multiple versions

of a program simultaneously and monitors their behavior.

Discrepancy in behavior of the variants is an indication of an

attack. Using this technique, this paper prevents exploitation

of vulnerabilities at runtime. It is complementary to other

methods that remove vulnerabilities, such as static analysis.

Instead of finding and removing the vulnerabilities, this

method accepts the inevitable existence of vulnerabilities and

prevents their exploitations. A major advantage of this

approach is that it enables to detect and prevent a wide range

of threats, including “zero-day” attacks.

Many everyday applications are mostly sequential in nature.

At the same time, automatic parallelization techniques are not

yet effective enough on such workloads. Even in parallel

applications, such as webservers, limited I/O bandwidth

prevents from putting all available processing resources into

service. As a result, parallel processors in today’s computers

are often partially idle. By running programs in MVEEs on

such multicore processors, this paper put the parallel hardware

in good use and make the programs much more resilient

against code injection attacks.

VII. REFERENCES
[1]. B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and M. Franz.

(2010) on the effectiveness of multi-variant program execution

for vulnerability detection and prevention. In International

Workshop on Security Measurements and Metrics (MetriSec).

[2]. B. Salamat, T. Jackson, A. Gal, and M. Franz. (2009) Orchestra:

Intrusion detection using parallel execution and monitoring of

program variants in user-space. In Proceedings of the European

Conference on Computer Systems, pages 33–46. ACM Press.

[3]. B. Salamat, C. Wimmer, and M. Franz. (2009) Synchronous

signal delivery in a multi-variant intrusion detection system.

Technical report, School of Information and Computer Sciences,

University of California, Irvine.

[4]. B. Salamat, A. Gal, and M. Franz. (2008) Reverse stack

execution in a multi-variant execution environment. In

Workshop on Compiler and Architectural Techniques for

Application Reliability and Security.

[5]. D. Evans, B. Cox, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,

J. Knight, A. Nguyen-Tuong, and J. Hiser (2006) “N-Variant

Systems: A Secretless Framework for Security through

Diversity,” Proc. USENIX Security Symp., pp. 105-120.

AUTHOR PROFILE

Ms. R Deepa is working as an Asst. Professor in M.I.E.T

Engg College,Trichy. She has done undergraduate degree in

Computer Science and Engineering from Ann University,

Chennai in 2006, and completed her postgraduate in

Computer Science and Engineering from Anna University,

Trichy in 2013. She has 3 years of teaching experience. Her

areas of interest include Data Structures, Database and

Computer Networks. She has a number of research papers in

the field of Computer Networks.

Ms. P Thenmozhi is working as an Asst. Professor in M.I.E.T

Engg College,Trichy. She has done undergraduate and

postgraduate degree in Computer Science and Engineering

from Anna University, Trichy. She has 3 years of teaching

experience. Her areas of interest include Artificial Intelligence

and Computer Networks. She has a number of research papers

in the field of Computer Networks.

Mr. L John Richie Immanuel is working as an Asst. Professor

in M.I.E.T Engg College, Trichy. He has done undergraduate

and postgraduate in Computer Science and Engineering from

Anna University, Chennai. He has 1 year of teaching

experience. His area of interest includes Web Technology and

Computer Networks.

