Effective Math

Instruction DAY 1
MA+ \because

MA+拉

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

Introduce yourself.

Describe your role as an educator.

Describe the mathematics you support.

Schedule for Today

8:00-8:25	- Introductions - Trajectories in mathematics
8:25-9:15	- Critical math content - Evidence-based practices
$9: 15-9: 25$	BREAK
$9: 25-10: 25$	- Evidence-based practice: Systematic instruction
10:25-11:30	- Evidence-based practice: Fluency with facts - Evidence-based practice: Multiple representations
11:30-1:00	LUNCH
1:00-2:15	- Evidence-based practice: Fluency with computation - Multiple representations: Whole numbers
2:15-2:25	BREAK
2:25-4:00	- Multiple representations: Rational numbers - Multiple representations: Pre-algebra - Multiple representations: Geometry

Schedule for Tomorrow

8:00-9:30	Language of mathematics
9:30-9:40	BREAK
$9: 40-10: 15$	- Evidence-based practice: Word-problem solving
10:15-10:30	- Word-problem solving: Ineffective strategies
10:30-11:00	- Word-problem solving: Attack strategies
11:00-11:30	- Word-problem solving: Total problems
11:30-1:00	LUNCH
1:00-2:15	- Word-problem solving: Difference problems - Word-problem solving: Change problems - Word-problem solving: Equal groups problems - Word-problem solving: Comparison problems
2:15-2:25	BREAK
2:25-4:00	- Word-problem solving: Ratios/Proportions problems - Word-problem solving: Multi-step problems - Wrap-up

Broad math in preK predicted K broad math

Broad math in prek predicted grade 10 broad math

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Starr etal. (2013) ee (2012) cohort 1 Ibertus et al. (2013) etal. (2013) Watts et al. (2014) Jordan et al. (2007) Navarro et al. (2012) Passolunghi et al. (2012) Stock et al. (2009) cohor Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) diperna et al. (2007) DiPerna et al. (2007)

Jordan et al. (2009) Jordan et al. (2009) Missall et al. (2012) Judge \& Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (2013) Baglici et al. (2010) Baglici et al. (2010) Desoete et al. (2012) LeFevre et al. (2010) tock et al. (2010) achance \& Mazzocco (2006) Mazzocco \& Thompson (2 Mazzocco et al. (2011 a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 Vukovic (2012)
Krajewski \& Schneider (2009b Geary et al. (2012) Geary et al. (20
Geary (2011) Geary et al. (2013)
Friso-van den Bos et al. (2015) Desoete et al. (2009) Bailey, Watts, et al. (2014) cohort Bailey, Siegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013) Reigosa-Crespo et al. (2013) Siegler et al. (2012) cohort 1 slegler et al. (2012) cohort 2 Hansen et al. (2015) ailey et al. (2012) Primi et al. (2010) Wilkins \& Ma (2002) Lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) Britt \& Irwin (2008)

| $<$ Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Counting in K predicted grade 1 broad math

Broad math in K predicted grade 8 broad math

K math accurately predicted math performance below $10^{\text {th }}$ percentile in grades 2 and 3 with 84\% correct classification

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Starr et al. (2013) Lee (2012) cohort 1

Libertus et al Libertus et al. (2013) Mazzocco et al. (2011 Watts et al. (2014)
Jordan et al. (2007) Navarro et al. (2012) Passolunghi et al. (2012) stock et al. (2009) cohort Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) DiPerna et al. (2007) Jordan et al. (2009) Jordan et al. (2009) Missall et al. (2012)
Claessens et al. (2009) udge $\&$ Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (2013) Bagliciet al. (2010) Desoete et al. (2012) LeFevre et al. (2010) Stock et al. (2010) tock et al. (2010) lachance \& Mazzocco (2006) Mazzocco \& Thompson (20 Mazzocco et al. (2011a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 Vukovic (2012)
Krajewski \& Schneider (2009b) Geary et al. (2012) Geary et al. (2012
Geary (2011) Geary et al. (2013) Geary et al. (2013) Desoete et al. (2009) Bailey, Watts, et al. (2014) cohort Bailey, Siegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013) Reigosa-Crespo et al. (2013) Siegler et al. (2012) cohort 1 Siegler et al. (2012) cohort 2 Hansen et al. (2015) Bailey et al. (2012) Primi et al. (2010) Wilkins \& Ma (2002) Lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) Britt \& Irwin (2008)

| $<$ Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | $>$ Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Addition influenced arithmetic with increasing importance from grades 1 to 5

Grade 1 arithmetic predicted arithmetic at grades 2, 3, and 4

> Grade 1 broad math predicted broad math at grades 3,5, and 10

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | >Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | IPFWSFWSFWSFWSFWSFWSFWSFWSFWSFWFSWSFWSFWS

ee (2012) cohort 1 Libertus et al. (2013) azzocco Mazzocco et al. (2011b
Watts et al. (2014) Watts et al. (2014) Navarro et al. (2012) Passolunghi et al. (2012) stock et al. (2009) cohort Aunola et al. (2004) Krajewski et al. (2009a) Bodovski \& Farkas (2007) DiPerna et al. (2007) Jordan et al. (2009) Missall et al. (2012) Claessens et al. (2009) Judge \& Watson (2011) Lee (2012) cohort 2 Morgan et al. (2009) Claessens \& Engel (20 Bagliciet al. (2010) Desoete et al. (2012) Desoete et al. (2012) LeFevre et al. (2010) tock et al. (2010) Lachance \& Mazzocco (2006) Mazzocco \& Thompson (20 Mazzocco et al. (2011a) Desoete \& Gregoire (2006) Locuniack \& Jordan (2008) Stock et al. (2009) cohort 2 Vukovic (2012) Krajewski \& Schneider (2009b) Geary et al. (2012) eary (2011) Geary et al. (2013) riso-van den Bos et al (2015) Desoete et al. (2009) sailey, Watts, et al. (2014) cohort Bailey, Slegler, et al. (2014) Bailey, Watts, et al. (2014) cohort 2 Morgan et al. (2011) Jordan et al. (2013)
 Segler et a. (2012) Segler et al. (2012) cohort Hansen et al. (2015) Bailey et al. (2012) Primi et al. (2010) Wilkins \& Ma (2002) Lee (2012) cohort 3 Spielhagen (2006) Dougherty (2003) Britt \& Irwin (2008)

| <Sch | K | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | >Sch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I P F W S F W S F W S F W S F W S F W S F W S F W S F W S F W F S W S F W S F W S

Fractions at 10-12 years old predicted broad math 5 years later
Counting and comparison in grades 2 or 4 predicted broad math 1 year later

Broad math in grade

 7 predicted broad math in grade 8Broad math in grade 8 predicted completion of 4 -year college degree

Students who took algebra in grades 8 took more advanced math courses and enrolled in 4-year colleges more often than students who took algebra in grade 9

Numeracy measured in adolescence impacted hourly earnings 7 to 15 years later

Mathematics in preschool predicts later mathematics

Mathematics in kindergarten predicts later mathematics

Mathematics in elementary school predicts later mathematics

Mathematics in middle school predicts later mathematics

Mathematics in high school predicts later outcomes

Computation

Problem Solving

Provide examples of how you see

 earlier math skills relating to later math skills.

continuum of mathematics learning

Add and subtract within

20, demonstrating fluency for addition and subtraction within 10.

Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or relationships.

Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division "

Fluently add and subtract multi-digit whole numbers using the standard algorithm.

Fluently multiply multidigit whole numbers using the standard algorithm.

Fluently add, subtract, multiply, and divide multidigit decimals using the standard algorithm.

Recognize that in a multi-digit number, a digit in one place represents 10
times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.

Compose and decompose numbers from 11 to 19 into ten ones and some further ones ${ }^{\cdots}$

Understand
Understand that the two digits of a twodigit number represent amounts of tens and ones.
that the three digits of a three-digit number represent amounts of hundreds, tens, and ones.

Use place value understanding to round whole numbers to the nearest 10 or 100.

Recognize that in a multi-digit number, a digit in one place represents ten times what it represents in the place to its right \cdots

Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions...

Solve real-
world and mathematical problems leading to two linear equations in two variables.

Solve word problems that call for addition of three whole
numbers whose sum
is less than or equal

$$
\text { to } 20 \cdots
$$

Solve real-world and mathematical problems involving the four operations with rational numbers.

Solve multi-step word problems posed with whole numbers and having whole-number answers using the four operations \cdots

Use addition and
subtraction within 100 to
Solve addition and subtraction word problems, and add and subtract within

10…

Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators ${ }^{\text {. }}$

Comparing and Ordering Numbers

(2) Number and operations. The studen applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system. The student is expected to:
(G) compare sets of objects up to at least 20 in each set using comparative language.
(H) use comparative language to describe two numbers up to 20 presented as written numerals.
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(E) use place value to compare whole numbers up to 120 using comparative language.

> (F) order whole numbers up to 120 using place value and open number lines.
> (G) represent the comparison of two numbers to 100 using the symbols $>,<$, or
(2) Number and operations. The student applies mathematical process standards to understand how to represent and compare whole numbers, the relative position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
(D) use place value to compare and order whole numbers up to 1,200 using comparative language, numbers, and symbols (>, <, or =).
(2) Number and operations. The student applies mathematical process standards to represent and compare whole numbers and understand relationships related to place value. The student is expected to:
(D) compare and order whole numbers up to 100,000 and represent comparisons using the symbols $>,<$, or $=$.

An important subset of the major work in grades K-8 is the progression that leads toward middle school algebra.

K	1	2	3	4	5	6	7	8
Know number names and the count sequence Count to tell the number of objects Compare numbers Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from Work with numbers 1119 to gain foundations for place value	Represent and solve problems involving addition and subtraction Understand and apply properties of operations and the relationship between addition and subtraction Add and subtract within 20 Work with addition and subtraction equations Extend the counting sequence Understand place value Use place value understanding and properties of operations to add and subtract Measure lengths indirectly and by iterating length units	Represent and solve problems involving addition and subtraction Add and subtract within 20 Understand place value Use place value understanding and properties of operations to add and subtract Measure and estimate lengths in standard units Relate addition and subtraction to length	Represent \& solve problems involving multiplication and division Understand properties of multiplication and the relationship between multiplication and division Multiply \& divide within 100 Solve problems involving the four operations, and identify \& explain patterns in arithmetic Develop understanding of fractions as numbers Solve problems involving measurement and estimation of intervals of time, liquid volumes, \& masses of objects Geometric measurement: understand concepts of area and relate area to multiplication and to addition	Use the four operations with whole numbers to solve problems Generalize place value understanding for multi-digit whole numbers Use place value understanding and properties of operations to perform multidigit arithmetic Extend understanding of fraction equivalence and ordering Build fractions from unit fractions by applying and extending previous understandings of operations Understand decimal notation for fractions, and compare decimal fractions	Understand the place value system Perform operations with multi-digit whole numbers and decimals to hundredths Use equivalent fractions as a strategy to add and subtract fractions Apply and extend previous understandings of multiplication and division to multiply and divide fractions Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition Graph points in the coordinate plane to solve real-world and mathematical problems*	Apply and extend previous understandings of multiplication and division to divide fractions by fractions Apply and extend previous understandings of numbers to the system of rational numbers Understand ratio concepts and use ratio reasoning to solve problems Apply and extend previous understandings of arithmetic to algebraic expressions Reason about and solve one-variable equations and inequalities Represent and analyze quantitative relationships between dependent and independent variables	Apply and extend previous understanding of operations with fractions to add, subtract, multiply, and divide rational numbers Analyze proportional relationships and use them to solve real-world and mathematical problems Use properties of operations to generate equivalent expressions Solve real-life and mathematical problems using numerical and algebraic expressions and equations	Work with radical and integer exponents Understand the connections between proportional relationships, lines, and linear equations** Analyze and solve linear equations and pairs of simultaneous linear equations Define, evaluate, and compare functions Use functions to model relationships between quantities

 listed here are a subset of those designated as major in the assessment consortia's draft documents.
${ }_{* *}$ Depends on similarity ideas from geometry to show that slope can be defined and then used to show that a linear equation has a graph which is a straight line and conversely.

Table A.3. Grades 6-8 Curriculum Focal Points and Connections Compared with the Expectations of the Content Standards in Principles and Standards for School Mathematics

Curriculum Focal Points and Connections

Grade 6 Curriculum Focal Points

Number and Operations: Developing an understanding of and fluency with multiplication and division of fractions and decimals
Students use the meanings of fractions, multiplication and division, and the inverse relationship between multiplication and division to make sense of procedures for multiplying and dividing fractions and explain why they work. They use the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers (i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain the procedures for multiplying and dividing decimals. Students use common procedures to multiply and divide fractions and decimals efficiently and accurately. They multiply and divide fractions and decimals to solve problems, including multistep problems and problems involving measurement.

Number and Operations: Connecting ratio and rate to multiplication and

 divisionStudents use simple reasoning about multiplication and division to solve ratio and rate problems (e.g., "If 5 items cost $\$ 3.75$ and all items are the same price, then I can find the cost of 12 items by first dividing $\$ 3.75$ by 5 to find out how much one item costs and then multiplying the cost of a single item by $12^{\prime \prime}$). By viewing equivalent ratios and rates as deriving from, and extending, pairs of rows (or columns) in the multiplication table, and by analyzing simple drawings that indicate the relative sizes of quantities, students extend whole number multiplication and division to ratios and rates. Thus, they expand the repertoire of problems that they can solve by using multiplication and division, and they build on their understanding of fractions to understand ratios. Students solve a wide variety of problems involving ratios and rates.

Algebra: Writing, interpreting, and using mathematical expressions and equations

Students write mathematical expressions and equations that correspond to given situations, they evaluate expressions, and they use expressions and formulas to solve problems. They understand that variables represent numbers whose exact values are not yet specified, and they use variables appropriately. Students understand that expressions in different forms can be equivalent, and they can rewrite an expression to represent a quantity in a different way (e.g., to make it more compact or to feature different information). Students know that the solutions of an equation are the values of the variables that

Expectations of the Content Standards

Number and Operations, Grades 6-8

Work flexibly with fractions, decimals, and percents to solve problems

Compare and order fractions, decimals, and percents efficiently and find their approximate locations on a number line

- Develop meaning for percents greater than 100 and less than 1

Understand and use ratios and proportions to represent quantitative relationships

- Develop an understanding of large numbers [identified in Grades 4 and 5 Curriculum Focal Points] and recognize and appropriately use exponential, scientific, and calculator notation
- Use factors, multiples, prime factorization, and relatively prime numbers to solve problems
- Develop meaning for integers and represent and compare quantities with them

Understand the meaning and effects of arithmetic operations with fractions, decimals, and integers

Use the associative and commutative properties of addition and multiplication and the distributive property of multiplication over addition to simplify computations with integers, fractions, and decimals

Understand and use the inverse relationships of addition and subtraction, multiplication and division, and squaring and finding square roots to simplify computations and solve problems

Select appropriate methods and tools for computing with fractions and decimals from among mental computation, estimation, calculators or computers, and paper and pencil, depending on the situation, and apply the selected methods

What is the critical math content for your students?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

evidence-based intervention
evidence-based strategy
promising practice

A method or strategy that has shown a positive result

evidence-based intervention
evidence-based strategy
promising practice

How do you locate and identify evidence-based practices? Which evidence-based practices do you plan to use?

Instructional Delivery

Instructional Strategies

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

Instructional Platform

INSTRUCTIONAL DELIVERY

Explicit instruction

INSTRUCTIONAL STRATEGIES

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Modeling is a dialogue between the teacher and students.	MODELING Step-by-step explanation Planned examples	PRACTICE Guided practice Independent practice
	SU Ask high-level Eliciting fre Providing affirmativ	RTS w-level questions t responses corrective feedback

| Modeling |
| ---: | :---: | :---: |
| includes a |\quad MODELING \quad PRACTICE

26 "Let's solve this, problem. What's the problem?

$$
\text { "26 plus } 79 . "
$$

"To solve 26 plus
79 , first decide
about the operation.
Should we add,
subtract, multiply, or divide?"
"Add."

"How did you know we want to add?"
"The plus sign tells us we want to add.
To add, let's use the partial sums strategy. What strategy?"
"Partial sums."

"With the partial sums strategy, we start adding in the greatest place value. What's the greatest place value in this problem?"
"The tens."

"So, let's add the tens. What's 20 plus 70?"
"20 plus 70
equals 90 . Let's write 90 right here below the equal line. What will we write?"
"90 is the partial sum when you add the tens. What does 90 represent?"
"Now, let's add the ones. What should we add?"

MODELING

Step-by-step explanation

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Explicit Instruction	
Problem	Step-bys-Step Explanation
	Step-by-Step Explanation

Select a math problem. Work with a partner to outline a step-by-step explanation.

MODELING

Step-by-step explanation

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

High-Level Questions

Low-Level Questions

Describe how you would engage students in practice.

MODELING
 Step-by-step explanation
 PRACTICE
 Guided practice
 Independent practice
 Planned examples
 SUPPORTS
 Ask high-level and low-level questions
 Eliciting frequent responses
 Providing affirmative and corrective feedback

These Supports should be used in both Modeling and Practice.

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

During Modeling and Practice, it is essential to engage students and check for understanding.

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback
$\square \square$

MODELING

Step-by-step explanation

Planned examples

SUPPORTS

Ask high-level and low-level questions

Providing affirmative and corrective feedback

PRACTICE

Guided practice
Independent practice

Eliciting frequent responses

"Why do you use zero pairs?"
"Because a positive 1 and a negative 1 equal
0 . I use the zero pair to help me subtract."

9

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

During Modeling and Practice, students should frequently respond. The frequent responses keeps student attention and keeps student learning active.

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

- Oral
- Written
- With manipulatives
- With drawings
- With gestures
$x A+H$

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses

Providing affirmative and corrective feedback

During Modeling and Practice, students should receive immediate feedback on their responses.

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback
"Nice work using your word problem attack
strategy."

MODELING

Step-by-step explanation

PRACTICE

Guided practice
Independent practice
Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback
"Let's look at that again. Tell me how you added in the hundreds column."

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

High-Level Questions

Provide several of your questions.

Provide examples of your feedback.

MODELING PRACTICE
 Step-by-step explanation
 Guided practice
 Planned examples Independent practice
 SUPPORTS
 Ask high-level and low-level questions
 Eliciting frequent responses
 Providing affirmative and corrective feedback

Find a partner.
Share your explicit instruction.

Copyright 2022 Sarah R. Powell, Ph.D.

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

Building Fluency

Fluency is doing mathematics easily and accurately.

Fluency in mathematics makes mathematics easier.

Fluency provides less stress on working memory.

Fluency helps students build confidence with mathematics.

With fluency, it is important to emphasize both conceptual learning and procedural learning.

Multiple
Representations

Copyright 2022 Sarah R. Powell, Ph.D.

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Multiple Representations

Two-dimensional images

MA+

Two-dimensional images

Modeling Fractions with Cuisenaire Rods

Two-dimensional images

Numerals and symbols and words

$$
2+8=10 \quad 34=3 \text { tens and } 4 \text { ones }
$$

$$
x-6=8
$$

$$
4,179
$$

$$
\begin{array}{r}
569 \\
+\quad \\
\hline
\end{array}
$$

Explore 3 virtual manipulatives.

Share with a partner.
$x \mathrm{~A}+\dot{1}$

Building Fluency
with Mathematics
Facts
$|x A+|\cdot|$

100 addition facts

Single-digit addends sum to a single- or double-digit number

> | 5 | (addend) |
| ---: | :--- |
| +4 | (addend) |
| 9 | $($ sum $)$ |

Total

Addition

Count one set, count another set, put sets together, count sum

$$
2+3=5
$$

Change

Addition

Start with a set, add the other set, count sum

$$
2+3=5
$$

Total

Parts put together into a total

Karly saw 4 cardinals and 5 blue jays. How many birds did Karly see?

Addition

Addition

An amount that increases or decreases

Premila had \$4. Then they earned \$5 for cleaning their room. How much money does Premila have now?

$3+9=$

x_{4}^{4}

If you have brown eyes: What's a Total story to show addition?
If you don't have brown eyes: What's a Change/Join story to show addition?

100 subtraction facts

Subtrahend and difference are single-digit numbers and minuend is single- or double-digit number

> (minuend)
> (subtrahend)
> (difference)

Change

Start with a set, take away from that set, count difference

$$
5-3=2
$$

Difference

Compare two sets, count difference

$$
5-3=2
$$

Change

An amount that increases or decreases

Bronwyn had 9 cookies. Then they ate 2 of the cookies. How many cookies does Bronwyn have now?

Difference

Greater and lesser amounts compared for a
difference

Rachel has 9 apples. Jodie has 2 apples. How many more apples does Rachel have? (How many fewer does Jodie have?)

$9-5=$

If you would chose beaches: What's a Change/Separate story to show addition?
If you would chose mountains: What's a Difference story to show addition?

100 multiplication facts

Multiplication of single-digit factors results in a single- or double-digit product

$$
\begin{aligned}
2 & \text { (factor) } \\
\times 3 & \text { (factor) } \\
\hline 6 & \text { (product) }
\end{aligned}
$$

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Equal Groups

Show the groups, show the amount for each group, count product
$3 \times 2=6$

Comparison

Show a set, then multiply the set

$$
3 \times 2=6
$$

Groups multiplied by number in each group for a product

Rhiannon has 2 boxes of crayons. There are 12 crayons in each box. How many crayons does Rhiannon have altogether?

Comparison

Set multiplied by a number of times for a product

Vivienne picked 12 apples. Jessica picked 2 times as many apples as Vivienne. How many apples did Jessica pick?

$2 \times 5=$

x_{4}

If you wear glasses: What's an Equal Groups story to show addition? If you don't wear glasses: What's a Comparison story to show addition?

Division

90 division facts

Divisor and quotient are single-digit numbers and dividend is single- or double-digit number

$$
\begin{array}{cccc}
8 & \div & 4 & 2 \\
\text { (dividend) } & \text { (divisor) } & \text { (quotient) }
\end{array}
$$

Equal Groups (Partitive Division)

Show the dividend, divide equally among divisor, count quotient

앙

0

아

$$
8 \div 2=4
$$

Show the dividend, make groups of the divisor, count groups

$$
8 \div 2=4
$$

Equal Groups

Groups multiplied by number in each group for a product
Stefanie has 12 apples. She wants to share them equally among her 2 friends. How many apples will each friend receive?

Nicole has 12 apples. She put them into bags with 6 apples each. How many bags did Nicole use?

$12 \div 4=$

If you watch Stranger Things: What's a Partitive story to show addition?

If you watch Ted Lasso:
What's a Quotative story to show addition?

Addition
 Subtraction

Multiplication
Division

Build fluency with math facts.

- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor

$$
\begin{array}{r}
5 \\
+\quad 8 \\
\hline
\end{array} \begin{array}{r}
6 \\
\times \quad 7 \\
\\
\hline
\end{array} \quad 56
$$

Addition	Subtraction
Multiplication	Division

What are five ways you help
students build fact fluency?

Build fluency with whole-number computation

$\begin{array}{r}1009 \\ -\quad 724 \\ \hline\end{array}$
7250
$\begin{array}{r}7 \quad 15 \\ \hline\end{array}$

Build fluency with rational-number computation

$$
\begin{array}{rr}
1.4 & \frac{2}{3} \times \frac{3}{4} \\
+\quad 3.9 & \\
\hline
\end{array}
$$

$\frac{9}{4}-\frac{3}{8}$
7.892
$\div 0.14$

Build fluency with integer computation

$$
\begin{array}{rr}
1.4 & 6 \\
+\quad-3.9 \\
\hline-12 \\
\hline
\end{array}
$$

$$
-14-(-7)=
$$

$-135 \div 2=$

Building Fluency with Computation
$|x A+|\cdot|$

Partial Sums

A.

$$
\begin{array}{r}
74 \\
+\quad 18 \\
\hline 80 \\
+12 \\
\hline 92
\end{array}
$$

8. 725

$$
\begin{array}{r}
365 \\
1,000 \\
+\quad 80 \\
+\quad 10 \\
\hline 1,090
\end{array}
$$

Opposite Change
A. $74 \xrightarrow{-4} 70$

$$
+18 \stackrel{+4}{\rightarrow+22} 92
$$

8. $\quad 725 \stackrel{+5}{\longrightarrow} 730$
$+365^{-5} \xrightarrow{\frac{5}{1,960}}$

227 $\begin{array}{r}227 \\ +\quad 185 \\ \hline\end{array}$

Partial Differences

$$
\text { A. } \begin{array}{r}
62 \\
-\quad 17 \\
\hline+50 \\
-\quad 5 \\
\hline 45
\end{array}
$$

в. 305
-96
-300
$+300$
-90
-1
209

232
 $\begin{array}{r}232 \\ -\quad 164 \\ \hline\end{array}$

Same Change

$$
\text { A. } \begin{array}{r}
62 \stackrel{+3}{\longrightarrow} 65 \\
-\quad 17 \xrightarrow{+3-20} \\
\hline 45
\end{array}
$$

8. $\quad 305 \xrightarrow{+4} 309$
$-96 \xrightarrow{+4}-100$

$\begin{array}{r}232 \\ -\quad 164 \\ \hline\end{array}$

Add Up

Partial Products

A.
24
$\times, 43$
$\times 800$
160
60
$\begin{array}{r}160 \\ +\quad 12 \\ \hline 1,032\end{array}$
B.
132
53
$\times \quad 0$
5000
1500
100
300
90
$\begin{array}{r}6 \\ +\quad 6 \\ \hline 6996\end{array}$

$\begin{array}{r}13 \\ \times \quad 47 \\ \hline\end{array}$

Area (Array)

Lattice

Partial Quotients
A. $12 \begin{array}{r}158 \\ -120 \\ \hline \begin{array}{r}38 \\ -36 \\ 2\end{array}+\frac{3}{13 R 2}\end{array}$

$$
\text { B. } \begin{array}{r}
4 \begin{array}{r}
8970 \\
-680 \\
\hline 290 \\
-170 \\
\hline 1720 \\
102 \\
\hline 18
\end{array} \\
\hline 20 \\
\hline 28 R 18
\end{array}
$$

Lattice

8. $3 4 \longdiv { 9 7 0 }$ R 18

Division as Fractions

Multiple

Representations:

 Fractions$x A+1$

LENGTH

SET

LENGTH

Fractions are appropriated by length

$\frac{2}{3}$| | | | |
| :--- | :--- | :--- | :---: |
| | | | |

Fraction tiles/bars

LENGTH

Fractions are appropriated by length

$\frac{2}{3}$

Cuisenaire rods
$x \mid A+H_{1}$

LENGTH
 Fractions are appropriated by length

Show fractions with the

 length model.
Shapes divided into equal sections

$\frac{2}{3}$

Fraction circles

MA+:

Shapes divided into equal sections

$\frac{2}{3}$

Geoboards
$\times \mathrm{x}+\dot{1}$

Shapes divided into equal sections

$\frac{2}{3}$

Pattern blocks

Shapes divided into equal sections

$\frac{2}{3}$

Legos

Show fractions with the area model.

SET

Individual shapes match the fraction

Two-color counters
$x \mathrm{~A}+\cdots$

SET

Individual shapes match the fraction

$\frac{2}{3}$

Show fractions with the set model.

Select a grade-level fractions task. Use representations to model the task.

Multiple

Representations:

Pre-Algebra
$x A+1$

Ways to Teach Addition and Subtraction

MAT and CUBES

-				+
	\square	\square		
	\square	\square	\square	
	\square			

TWO-COLOR COUNTERS

NUMBER LINE

$x A+H$

```
3+(-5)
```


Copyright 2022 Sarah R. Powell, Ph.D.

$3+(-5)$

$x A+1 \cdot 1$

Problem	Representation
$3+(-5)$	
$-2+6$	
$3+(-1)$	
$-3-4$	
$2-5$	
$-2-(-6)$	
$-3-2$	

Use representations to model the addition problems.

$-3-4$

Copyright 2022 Sarah R. Powell, Ph.D. \quad

Ax $A+\cdots$

$-3-4$

$-3-4$

$x \mathrm{~A}+\dot{1}$

Problem	Representation
$3+(-5)$	
$-2+6$	
$3+(-1)$	
$-3-4$	
$2-5$	
$-2-(-6)$	
$-3-2$	

Use representations to model the subtraction problems.

Ways to Teach Multiplication and Division

MAT and CUBES

ALGEBRA TILES/ALGEBLOCKS

(2) (-3)

MA+折

$x A+1 \cdot 1$

With Cups/Plates and Counters

Problem	Representations

$x+2=5$
$x+2=5$
$4+x=6$
$5=x-3$
$-2=x+3$

With Algebra Tiles

Problem	Representations
$\mathbf{x} \mathbf{2}$	

$x+2=5$
$4+x=6$
$x+3=7$
$y-4=2$
$5=x-3$
$y-2=5$

cups/plates and counters

algebra tiles

Algeblocks

zero pairs
 properties of equality

-1 and 1 equal 0
If you do something to one side of the equal sign, you do the same thing to the other side.

cups/plates and counters
 $x+2=5$

cups/plates and counters
 $x+2=5$

algebra tiles
 $x+2=5$

algebra tiles

$$
\begin{aligned}
& y-4=2 \\
& x+2=5
\end{aligned}
$$

$-1=y-4$

Problem	Representations

$x+2=5$
$x+2=5$
$4+x=6$
$5=x-3$
$-2=x+3$

With Algebra Tiles

Problem	Representations
$x+2=5$	
$4+x=6$	
$x+3=7$	
$y-4=2$	
$5=x-3$	
$y-2=5$	

Use representations to

 solve the problems.With Algeblocks

Problem	Representations

$x+2=5$
$4+x=6$
$-2=x+3$
$-1=y-4$
$2 x+2=6$
$x+4=3 x$
$2(x+3)=x+4$
$2 x-4=1+3 x$
$3 y-5=-y-1$
$1-x=x+1$

Algeblocks
 $2 x+2=6$

Algeblocks
 $2(x+3)=4$

Algeblocks Sentences Mat

With Algeblocks Problem $x+2=5$ $4+x=6$ $-2=x+3$ $-1=y-4$ $2 x+2=6$ $x+4=3 x$ $2(x+3)=x+4$ $2 x-4=1+3 x$ $3 y-5=-y-1$ $1-x=x+1$	

Use representations to solve the problems.

Multiple

Representations:

 Geometry$x A+1$

Select a grade-level geometry task. Use representations to model the task.

Schedule for Today

8:00-8:25	- Introductions - Trajectories in mathematics
8:25-9:15	- Critical math content - Evidence-based practices
$9: 15-9: 25$	BREAK
$9: 25-10: 25$	- Evidence-based practice: Systematic instruction
10:25-11:30	- Evidence-based practice: Fluency with facts - Evidence-based practice: Multiple representations
11:30-1:00	LUNCH
1:00-2:15	- Evidence-based practice: Fluency with computation - Multiple representations: Whole numbers
2:15-2:25	BREAK
2:25-4:00	- Multiple representations: Rational numbers - Multiple representations: Pre-algebra - Multiple representations: Geometry

Schedule for Tomorrow

8:00-9:30	Language of mathematics
9:30-9:40	BREAK
$9: 40-10: 15$	- Evidence-based practice: Word-problem solving
10:15-10:30	- Word-problem solving: Ineffective strategies
10:30-11:00	- Word-problem solving: Attack strategies
11:00-11:30	- Word-problem solving: Total problems
11:30-1:00	LUNCH
1:00-2:15	- Word-problem solving: Difference problems - Word-problem solving: Change problems - Word-problem solving: Equal groups problems - Word-problem solving: Comparison problems
2:15-2:25	BREAK
2:25-4:00	- Word-problem solving: Ratios/Proportions problems - Word-problem solving: Multi-step problems - Wrap-up

https://intensiveintervention.org/intensive-intervention-math-course

National Center on
INTENSIVE INTERVENTION
at American Institutes for Research ■

Intensive	Tools	Implementation	Intervention
Intervention -	Charts r	Support -	Materials

Intensive Intervention in Mathematics Course Content

NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction. This content is designed to support faculty and professional development providers with instructing preservice and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

[^0]

https://www.inclusionintexas.org/apps/pages/index.isp?uREC ID=2155039\&type=d\&pREC ID=2169859

$x \mathrm{~A}+\boldsymbol{j}$

Teaching Math

 in Middle SchoolUsing MTSS to Meet All Students' Needs

Leanne R. Ketterlin-Geller, Sarah R. Powell,

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

[^0]: Intensive instruction was recently identified as a high-leverage practice in special education匹, and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.

 NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Intervention and with support from the CEEDAR Center『, developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.

