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The Use of Sparse Inverse Covariance Estimation for Relationship Detection 

and Hypothesis Generation in Strategic Management 

ABSTRACT 

This paper uses Sparse Inverse Covariance Estimation (SICE) to advance strategic management 

research, focusing on an application of exploratory SICE techniques to generate novel, testable 

hypotheses. We demonstrate how SICE can identify intrinsic relationships among variables, 

especially within large, high dimension-low observation datasets. We also discuss the strengths 

and limitations of SICE, as well as the most appropriate uses of these techniques. We conclude 

with a detailed illustration of SICE analysis using the High Performance Manufacturing dataset.  

 

The process of generating new scientific knowledge is complex and uncertain. In most empirical 

research underpinned by assumptions of ontological and epistemological realism (Kilduff, 

Mehra, and Dunn, 2011), a crucial step in this process is the development of one or more 

hypotheses – falsifiable statements concerning the relationships among a set of variables 

(Popper, 1959). Researchers tend to approach this task in a number of different ways. Most 

simply, one can engage in deductive puzzle-solving within an established paradigm (Kuhn, 

1996). In this approach, the researcher begins with an existing theory and deduces novel 

hypotheses based on hitherto untested implications of the theory. Alternatively, researchers can 

identify new research opportunities through induction (Kilduff, 2006). In this approach, the 

researcher begins with specific real-world observations or phenomena and then postulates a more 

general relationship (Lakatos, 1970). Many qualitative techniques, such as grounded theory (e.g., 

Gioia and Chittipeddi, 1991), represent inductive approaches to building theory and/or 

hypotheses from observational data, often within the context of a small number of firms.  

However, to this point, little work provides guidance as to how strategic management 

researchers might systematically use the increasing amounts of quantitative firm-level data at 

their disposal to generate new hypotheses, while simultaneously avoiding the statistical and 

ethical pitfalls of “searching for asterisks” (Bettis, 2012). Although researchers have become 

increasingly sophisticated in the use of analytical techniques to evaluate causal hypotheses (e.g., 
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Bascle, 2008; Semadeni, Withers, and Certo, 2014), much less consideration has been devoted to 

the issue of generating suitable hypotheses in the first place. In other words, strategy researchers 

are getting better answers to their questions, but it is not clear that these are always the best 

questions to ask (Mahoney and McGahan, 2007).  

In our study we address this challenge by showing how researchers can use Sparse 

Inverse Covariance Estimation (SICE), a set of exploratory techniques drawn from the biological 

and physical sciences, to expand the range of original questions available to them. We discuss 

how SICE can be used to identify the fundamental (intrinsic) bivariate relationships among 

variables within a dataset, and thus assist researchers to generate novel, testable hypotheses. 

SICE is especially useful in situations where the dataset is very large and the number of potential 

variables of interest is substantially higher than the number of units being considered (i.e., p > n). 

In the following sections, we provide a description of SICE and its uses, followed by a 

detailed example of applying SICE techniques to the High Performance Manufacturing dataset (p 

= 1697; n = 197). Also, see Online Supplemental Material for a technical description of SICE 

and a mathematical proof, along with the MATLAB programming codes used in this study. 

SPARSE INVERSE COVARIANCE ESTIMATION 

SICE techniques are used to uncover the intrinsic connectivity among a particular network of 

variables (Friedman, Hastie, and Tibshirani, 2008, 2010; Huang et al., 2010; Jones et al., 2012; 

Weiss and Freeman, 2001). Originally developed by Dempster (1972), SICE techniques have 

been used in a range of populations, including brain regions (Huang et al., 2010; Valdes-Sosa et 

al., 2005), speech patterns (Zhang and Fung, 2013), equities (Fan, Lv, and Qi, 2011), genes 

(Dobra et al., 2004; Toh and Horimoto, 2002), people (Ahmed and Xing, 2009; Myers and 

Leskovec, 2010), and organizations (Kim et al., 2013).  
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 A simple example illustrates the aims and purpose of SICE analyses. Suppose we have a 

network of three variables: a firm’s overall vision for innovation, a firm’s policies relating to the 

hiring and promotion of innovative employees, and a firm’s incentives supporting innovation. A 

firm’s innovation vision is, separately, correlated with its selection practices and its incentive 

structure. However, in most samples, the observed relationships are likely to be reflected with an 

additional (spurious) relationship between selection and incentive structure. In large datasets, 

where the number of variables can be substantial, spurious relationships such as these make it 

challenging to determine the most important core relationships. SICE helps to eliminate the 

redundancies in relationship mapping and thereby uncover intrinsic patterns among variables. 

The working logic for SICE analysis is as follows. First, an empirical covariance matrix 

is computed based on the observed relationships among all variables within a dataset. Next, 

conditioned on the empirical covariance matrix, a likelihood function of the inverse covariance 

matrix is computed. Based on the assumption of sparsity (i.e., a large number of entries in the 

inverse covariance matrix could be set to 0 without losing much information), a set of penalty 

parameters are applied, forcing weak or redundant correlations among pairs of variables to zero. 

SICE techniques employ powerful algorithms such as the graphical lasso (Friedman et al., 2008), 

allowing the penalty parameters to be set at different levels. The higher the penalty, the more 

sparse the resulting inverse covariance matrix. The process of trimming conditional 

dependencies (weak correlations) allows the detection of intrinsic correlations within the data.  

Uses and Advantages of SICE 

Table 1 illustrates the uses and advantages of SICE via a comparison with several other well-

known analytical approaches. First, and most importantly, SICE is an exploratory technique. In 

common confirmatory models, such as linear regression or Structural Equation Modeling (SEM), 
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the model structure is specified based on domain theory, and data are used for estimating the 

unknown parameters and/or evaluating the model fit (Aguinis, 2004; Williams, Vandenburg, and 

Edwards, 2009). In contrast, in the SICE approach, data are used to specify the model structure 

itself, and the model structure produced is usually unique under very mild conditions (i.e., given 

the same penalty parameter and the same algorithm). With the recent advancement of 

computational and optimization techniques, this can be achieved by employing an optimization 

component which automatically explores the data to seek the best model, guided by a scoring 

mechanism that provides an index of the goodness-of-fit of each model. 

<<Insert Table 1 about here>> 

This approach is therefore especially useful in the early development stage of a theory or 

research domain. Unexpected findings from an SICE analysis can be used to motivate the 

creation of new hypotheses. These hypotheses, in conjunction with both new and existing theory, 

can then guide the specification of confirmatory models for future research. For example, 

Bullmore and colleagues (2000) provide an illustration of using SICE to help revise and improve 

a subsequent SEM model. However, we emphasize that SICE should not be seen as an 

alternative to existing confirmatory analytical tools. Rather, it can be viewed as a complement 

and a precursor to these tools, in that it can assist in selecting appropriate model parameters and 

deriving more parsimonious models. In line with recent best practice recommendations (Bettis, 

2012; Bettis et al., 2014), researchers using SICE results to build a testable model should be sure 

to evaluate this model using a separate dataset or an unused portion of the existing dataset. 

Second, SICE is used to detect relationships among individual pairs of variables. In 

contrast, alternative empirical approaches often have different primary uses and will therefore 

tend to be more appropriate in different situations (see Table 1). For instance, kernel density 
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estimation is used to visualize the underlying distributions of one or more variables (Jeon and 

Taylor, 2012; Rawley, 2010), cluster analysis uses the collective relationships among a set of 

variables to aggregate units of observation into related groups (Ketchen and Shook, 1996), while 

qualitative comparative analysis (QCA) (Greckhamer et al., 2008; Rihoux and Ragin, 2009) is 

used to assess multiple combinations of causal conditions on selected outcome constructs. 

Third, SICE analyses can readily handle thousands of variables simultaneously, and can 

therefore be used with very large datasets (Friedman et al., 2008). In contrast, most qualitative 

empirical techniques are more suited to detailed analysis of a small number of cases (Eisenhardt 

and Graebner, 2007). Additionally, recent developments in SICE optimization techniques also 

make it possible to detect intrinsic relationships in high dimension-low observation datasets 

(Huang et al., 2010; Meinshausen and Bühlmann, 2006). In contrast, researchers using standard 

confirmatory techniques usually have to select a small portion of the available variables and 

establish models based on this sub-set (Williams et al., 2009). And, although QCA is well-suited 

to small-to-medium-n samples, it is limited in its ability to handle high dimension-low 

observation samples. The nature of configuration analysis in QCA is such that the number of 

configurations is 2
n
, where n is the number of independent variables of interest (Greckhamer et 

al., 2008). Thus, the set of logical possible configurations rises exponentially with the number of 

variables considered, limiting the number of variables that can be considered at once. 

Limitations of SICE 

SICE also has several limitations, some of which can be mitigated. First, SICE techniques are 

typically not able to detect whether relationships among variables are directed, or causal 

(although see Spirtes et al. (2010) for possible exceptions). This reinforces our earlier point that 

SICE analyses should be used as a prelude to detailed theory building and subsequent hypothesis 
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testing. Second, SICE analyses do not reveal latent relationships among variables. However, if 

researchers believe that there are likely to be a number of important latent constructs in a dataset, 

one possibility is to first perform a factor analysis to identify the latent factors and then run SICE 

analyses using the latent constructs. Third, classic SICE approaches: 1) assumed that all 

variables were continuous and conformed to normality, and 2) were designed to detect linear 

relationships rather than curvilinear or moderating effects. Recent extensions of SICE have also 

been developed to relax these assumptions in order to detect nonlinear relationships between 

mixed type variables (e.g., some are continuous and some are discrete (Fellinghauer et al., 2013; 

Lee and Hastie, 2013)).  In addition, an alternative approach to detecting moderating effects is to 

divide data into multiple categories along one or more theoretical dimensions of interest, and 

then run SICE analyses separately on each individual group (similar to multiple-group SEM 

analysis). Results can then be compared across the groups to detect any discrepancies.   

In summary, the SICE approach offers strategic management researchers a powerful set 

of techniques for detecting intrinsic bivariate relationships within large, high dimension-low 

observation datasets. We now provide a detailed example of using SICE on the High 

Performance Manufacturing (HPM) dataset.  

APPLYING SICE TO A HIGH DIMENSION-LOW OBSERVATION DATASET  

Sample. The HPM dataset was compiled by a cross-national group of researchers interested in 

understanding which business practices drive firm performance (see Flynn et al., (1997) for more 

detail). Plant-level cross-sectional data were collected in several waves. In this study, we used 

data from wave three, which comprised 12 key categories of data collected from a range of 

respondents. The initial sample comprised 1705 variables and 197 plant-level observations. We 

then removed variables with 75% or more missing data, resulting in a sample of 1691 variables. 
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For those variables with less than 75% missing data, we imputed missing data using the nearest 

neighbor method (Wasito and Mirkin, 2005). Finally, we standardized all variables.   

Stage I: Exploring the intrinsic relationships among variables. Prior research has identified 

numerous factors that can impact firm performance, from human resource policies (e.g., Youndt 

et al., 1996) to manufacturing practices (e.g., Flynn, Sakakibara, and Schroeder, 1995) to 

organizational culture (Baird, Hu, and Reeve, 2011). We therefore expected to identify 

relationships consistent with existing theory, but were also interested in uncovering unexpected 

relationships that offered the potential for generating new hypotheses. 

After creating an inverse covariance matrix for the full sample, we used different levels 

of penalty parameters to trim conditional dependencies and discard the redundant correlations 

among the variables (see Figure 1). The larger the penalty value, the more sparse the graph 

appears, and the fewer intrinsic relationships remain (see Friedman et al., 2008, for further 

discussion of penalty parameters). We took 1000 equally spaced values as the input parameters 

and generated 1000 corresponding sparse inverse covariance matrices. Figure 1 depicts three 

representative matrices within this set. The horizontal and vertical axes in each graph represent 

the variables from 1 to 1691. A visible cell inside a graph represents an arc, which is a 

conditional dependency between the respective x and y variables when conditioning on all other 

variables. If there is no arc, there is no intrinsic relationship between two variables. Because the 

matrix is symmetric, the total number of cells is equal to twice the total number of arcs in the 

corresponding connectivity graph. The diagonal line (top-left to bottom-right in each graph) 

represents a variable’s correlation with itself and therefore has no meaning. The matrices 

depicted in Figure 1 contain 15,011, 10,003, and 3,999 arcs, respectively (out of 2,857,790 

possible variable pairs). Table 2 shows how the variable numbers within Figure 1 map on to the 
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corresponding variable categories from the HPM dataset. The first row of Table 2 contains the 

data categories, while the first column contains the data sources. For instance, variables 65-151 

relate to company strategy (S) and were supplied by plant managers (PM). 

<<Insert Figure 1 and Table 2 about here>>  

Figure 1 reveals several notable findings. First, there are a number of prominent square 

shapes along the diagonals. This indicates that a variable within one of these regions is strongly 

correlated with other variables whose numbers are slightly below or above that variable. Such a 

finding is understandable. For our analyses, we assigned variable numbers based on the order in 

which a variable appeared in the HPM data, so variables belonging to the same category (e.g., 

IT) were positioned close to each other and thus were more likely to show high correlations. 

Second, beyond the squares close to the diagonal, we also see prominent arcs in several 

other regions. For instance, in Figure 1a (penalty parameter = .428), there is an area of dense arcs 

in the region from around (500, 1000) to around (500, 1600) (coordinates based on X, Y axes). 

Based on Table 2, this suggests that variables related to the information technology categories 

are intrinsically related to a firm’s manufacturing strategy. An alternative way to explore Figure 

1a would be to look for prominent arcs along the path of (17-29), (379-382), and (1489-1526). 

These ranges represent firm performance from the perspective of plant managers, quality 

managers, and accounting managers, respectively. Any arcs along these three paths would 

represent intrinsic relationships with firm performance. Of course, these examples only provide a 

high-level view of relationship patterns across broad activity domains. Researchers could then 

drill down to the variable level in order to guide the development of specific hypotheses. 

One possible next step in multi-respondent data such as ours is to focus the analysis on 

data from a single source. Because strong correlations among multiple sources responding to the 
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same items could potentially complicate our results, we selected only those data provided by 

supervisors (SP). We ran a new SICE analysis based on this sub-sample (p=238, n=197). Figure 

2 represents the patterns of estimated sparse precision matrices under three different penalty 

values, while Table 3 shows the corresponding variable categories. We then used the matrix from 

Figure 2c to generate a network diagram (see Figure 3). This network includes those nodes in the 

subsample associated with one or more arcs. Figure 3 shows that several nodes were highly 

central in the network. For instance, node 75 reflects supervisors’ responses to the item “We 

work as a partner with our customers” (HR category). This node has intrinsic relationships with a 

range of nodes from different domains, including customer involvement (node 191), supply 

chain planning (node 179), and, interestingly, supplier lead time (node 167). A possible 

hypothesis might therefore be: “Supplier lead time is negatively associated with firm-customer 

relationship strength.” It would be then up to the researcher to build a compelling theoretical 

explanation for this hypothesis (perhaps by drawing in part from the “learning by supplying” 

literature (Alcacer and Oxley, 2014)), and subsequently test the hypothesis in a new dataset.  

<<Insert Figure 2, Table 3, and Figure 3 about here>> 

Stage II: Comparison of intrinsic relationships across high- and low-performing groups. We 

then examined whether there were differences in the relationship patterns among variables across 

high-performing and low-performing firms. We first divided our data into two groups based on 

whether a firm was on an upward or downward trajectory in annual sales. The high-performing 

group comprised 44 firms, while the low-performing group comprised 51 firms (the remaining 

firms had missing data or reported no change in annual sales). Figure 4 depicts the resulting set 

of estimated sparse inverse covariance matrices for these two groups. Figure 4a shows the 

relationship patterns when we created matrices with 10,000 arcs (using a penalty parameter of 
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0.723 for the high-performing group and 0.729 for the low-performing group), while Figure 4b 

shows the relationship patterns when we created matrices with 5,000 arcs (using a penalty 

parameter of 0.949 for the high-performing group and 0.945 for the low-performing group).  

<<Insert Figure 4 here>> 

In these analyses, we kept the number of arcs constant to ensure that the sparsity (i.e., the 

number of relationships that were set to zero) of comparable matrices was identical, which 

allowed us to contrast the structural differences in the inverse covariance matrices of the two 

datasets. This is preferable to the alternative approach of holding the penalty parameter constant 

and letting the number of arcs vary, because such an alternative would preclude meaningful 

comparisons across matrices. For different datasets (such as high- versus low-performing 

groups), different inverse covariance matrices will exist. Therefore, applying the same penalty 

parameter to different datasets will cause inconsistent effects. For example, a particular 

parameter (say, 0.1) may be insignificant to increase the sparsity for one dataset but have a 

significant effect in another dataset. Hence, we do not recommend this alternative approach. 

Analysis of these graphs revealed little variation in relationship density patterns as a 

function of firm performance. Many variables, such as respondents’ views on the commercial 

success of new products, were present in both sub-groups. We therefore conducted a more fine-

grained analysis by excluding all variables with common arcs in both high-performing and low-

performing groups, and re-running our SICE analyses using the remaining variables (N = 1256). 

Excluding common arcs allowed us to eliminate some of the shared statistical noise in the 

datasets and thus make the relationships among the remaining variable pairs more salient and 

detectable. This additional analysis revealed that there were indeed some notable cross-group 

differences. For instance, arcs linked with several variables, such as employees’ attitudes toward 
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firm-level outcomes (e.g., “most of our employees try to help our organization achieve its 

goals”) and whether a firm conducted technical analyses of major breakdowns, were prominent 

in the high-performing firms but not the low-performing ones. Researchers could use findings 

such as these to help develop contingent hypotheses predicting organizational performance.  

One possible concern when comparing differences in the correlation pattern across 

groups, especially in light of the very large number of potential correlations involved, is that 

such differences might simply be due to random chance. Although there is currently no specific, 

widely-used test to address this issue in the SICE literature, researchers can increase the 

likelihood of particular relationships being substantive by: 1) using higher penalty parameters, 

ensuring that selected relationships reflect moderate or large effect sizes (Kelley and Preacher, 

2012), and 2) formally testing the identified relationships in separate data sets.   

Stage III: Exploration of intrinsic relationships among latent factors. Finally, we conducted a 

further SICE analysis after aggregating the HPM data into a number of latent factors. We began 

by performing a principle components analysis on the existing 1691 variables, which resulted in 

a reduced sample of 286 components (i.e., p = 286; n = 197). Similar to the corresponding 

procedure at the individual variable level, this approach generated several notable findings. For 

example, there was a prominent arc between a component denoting certain internal HR practices 

of a firm and a component denoting how well a firm’s employees worked with their external 

suppliers. When we drilled down, we found that the variable exerting most influence in the 

former component was a firm’s employee screening practices. Human resource practices, such as 

employee screening, are a reflection of a firm’s internal policies, while an employee’s interaction 

with a supplier is more likely to be guided by a firm’s vendor management policy (i.e., an 

external policy). These two types of policies can differ significantly. For example, Hewlett-
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Packard (HP) places a heavy emphasis on internal employee collaboration. Teamwork is a 

central component of the “HP Way” (Kotelnikov, 2009) and is a part of employees’ annual 

performance evaluation. In contrast with HP’s more collaborative internal policies, though, the 

firm also has a reputation for keeping its external vendors at arm’s length (Bussey, 2011). Thus, 

within HP at least, there appears to be some separation between intra-firm and inter-firm 

collaborative practices. However, our SICE results suggest that these two types of practices may 

be linked in firms more generally, and that intra-firm collaborative orientations may be linked 

with inter-firm collaborative dynamics. 

To explore the implications of this result further, we tested a similar relationship using a 

different set of actors. Our idea was that, if this association holds for relationship dynamics 

between a buyer firm and a supplier firm, it should also hold for relationship dynamics between a 

firm and its end customers. We tested this idea using another segment of the HPM dataset and a 

partial least squares (PLS) analysis. The results of this analysis provided support for our general 

idea that intra-firm and inter-firm collaborative practices are linked (full analyses available on 

request). Although this is a simple example (and we recommend validating such a finding in an 

entirely separate dataset), it illustrates how researchers can use SICE to generate new hypotheses 

in one context and then test those and other related extensions in a different context. 

DISCUSSION 

In this paper, we introduced to the strategic management field a set of exploratory quantitative 

techniques known as Sparse Inverse Covariance Estimation (SICE). These techniques, which 

have been previously used mostly in the biological and physical sciences (e.g., Huang et al., 

2010; Valdez-Sosa et al., 2005), offer strategy researchers a rigorous means for identifying the 

fundamental relationships among a network of variables, and thereby generating novel and 
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interesting hypotheses. We discussed the uses, strengths, and limitations of SICE, and provided a 

detailed example of the application of SICE techniques to the High Performance Manufacturing 

(HPM) dataset. As noted above, we also direct interested readers to the Online Supplemental 

Material associated with this paper for a detailed discussion of the conceptual foundations of 

SICE, information on model structure identification and evaluation, a mathematical proof, and 

instructions for implementation of SICE, including MATLAB programming codes. 

Our study has implications for several avenues of existing work both within and outside 

strategic management. First, we believe that SICE techniques can help to build a bridge between 

strategic management and “big data” (George, Haas, and Pentland, 2014). The notion of using 

quantitative analyses to identify conceptual relationships and generate hypotheses is timelier now 

than ever before. Researchers interested in studying firms and their business practices – the 

preferred units of analysis within strategic management – are experiencing an exponential 

increase in data availability (George et al., 2014). In addition to the thousands of firm-level 

variables available via established databases, such as Compustat, CRSP, KLD, and Worldscope, 

large and growing pools of data provide millions more potential measures of interest, including 

an enormous range of company-, customer-, and stakeholder-generated measures of firms’ 

actions, processes, and outputs (McKinsey Global Institute, 2011). 

Current discussions of the use of big data in organizations address a multiplicity of 

issues, from its promise for providing answers to narrow customer-level purchasing decisions all 

the way up to its potential for transforming firm-wide operations and strategy (LaValle et al., 

2011). However, the opportunities of big data lie less in its quantity and more in the quality of its 

analysis, with a recent survey indicating over 60% of business executives felt that their 

organizations already had more data than they could use (LaValle et al., 2011). Researchers 
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dealing with big data face similar challenges, especially those relying on established metrics such 

as p-values to determine whether a conceptual relationship exists (George et al., 2014). In very 

large datasets, the question is not so much whether a particular relationship exists (a sufficiently 

high number of observations will make almost all relationships significant at conventional 

values), as which are the most important relationships (Mitchell and Leiponen, In Press). SICE 

techniques are especially useful for answering this question, thereby providing a crucial step 

toward developing theory to explain why particular relationships exist in the first place. 

Second, and relatedly, although we illustrated the use of SICE with the HPM dataset 

only, we want to emphasize that these techniques are likely to be of interest to researchers 

working in a wide range of sub-domains within strategic management. For instance, strategic 

leadership researchers (Finkelstein, Hambrick, and Cannella, 2009) now have access to a 

growing amount of information on senior executives’ backgrounds, experiences, values, and 

preferences because of the widespread and increasing use of unobtrusive measures to measure 

executives’ individual difference characteristics (e.g., Petrenko et al., In Press). Combining this 

with, say, governance data from BoardEx, compensation data from Execucomp, and strategic 

behavior and firm outcome data from Compustat, researchers could easily find themselves 

dealing with thousands of potential variables. The increasing availability of granular data on a 

wide variety of firm-level architectures and routines (e.g., Joseph and Ocasio, 2012) suggests 

that strategy process researchers must often deal with a related issue at the level of business 

practices, while researchers dealing with mergers and acquisitions, innovation, and corporate 

social responsibility (e.g., Godfrey, Merrill, and Hansen, 2009; Klingebiel and Rammer, 2014; 

Sears and Hoetker, 2014) all face similar challenges. In such situations, standard confirmatory 

research focuses on the impact of one or more variables within a small subset of the data. In 
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contrast, exploratory SICE techniques shift the focus to the intrinsic relationships within the 

dataset as a whole, with the goal of identifying novel associations and hypotheses. Finally, many 

strategy scholars are especially interested in the most powerful corporate actors. Thus, scholars 

often restrict their focus to the S&P 500 or 1500, but have access to thousands of potentially 

informative predictors. SICE techniques are well suited to identifying the important underlying 

relationships among variables in exactly these types of high dimension-low observation contexts. 
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Figure 1a: Estimated Sparse Precision Matrix when 
Penalty=0.428 

Figure 1b: Estimated Sparse Precision Matrix when 
Penalty=0.538 

Figure 1c: Estimated Sparse Precision Matrix when 
Penalty=0.9087 

Figure 1: SICE analysis based on the full HPM dataset (p=1691, n=197) 

 
  

Figure 2a: Estimated Sparse Precision Matrix when 
Penalty=0.521 

Figure 2b: Estimated Sparse Precision Matrix when 
Penalty=0.544 

Figure 2c: Estimated Sparse Precision Matrix when 
Penalty=0.591 

Figure 2: SICE analysis based on supervisor responses only (p=238, n=197) 
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Figure 3: Network structure based on the estimated sparse precision matrix depicted in Figure 2c (p=238, n=197) 
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Figure 4a: Number of arcs per graph = 10,000 (High-performers: penalty = 0.723; Low-performers: penalty = 0.729) 

 

Figure 4b: Number of arcs per graph = 5,000 (High-performers: penalty = 0.949; Low-performers: penalty = 0.945) 

Figure 4: Comparison of estimated sparse precision matrices across high-performing and low-performing groups of firms 
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Table 1: Comparison of SICE with other analytical techniques 

 Primary use Research focus Identifies 

relationships 

among 

variables  

Identifies 

relationship 

strength 

Suitable for 

large 

datasets 

Suitable for 

datasets 

where p>n* 

Linear regression 

 

Parameter estimation and 

model fit  

 

Confirmatory 

 

Yes Yes Yes No 

Structural 

Equation 

Modelling (SEM) 

 

Parameter estimation and 

model fit 

 

Confirmatory 

 

Yes Yes Yes No 

Kernel density 

estimation 

 

Nonparametric 

probability function 

estimation 

 

Exploratory or 

confirmatory 

 

No No Yes No 

Cluster analysis Data aggregation into 

groups 

 

Mostly 

exploratory 

 

No No Yes No 

Case study/ 

Grounded theory 

 

Theory building and 

hypothesis generation 

 

Exploratory 

 

Yes No No Yes 

Qualitative 

Comparative 

Analysis (QCA) 

 

Assessing multiple 

combinations of causal 

conditions 

Mostly 

exploratory 

 

Yes Yes Yes 

 

Limited 

Sparse Inverse 

Covariance 

Estimation (SICE) 

Intrinsic relationship 

detection and hypothesis 

generation 

Exploratory 

 

Yes Yes Yes Yes 

 

*Note: p denotes the number of variables (parameters) and n denotes the number of observations. 
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Table 2: Mapping of spaces on matrices in Figure 1 and corresponding variable categories 

 

 

C E G H I J Q S T M N P 

AC 

  

1489-1526 

         
DL 

   

1162-1187 

  

1188-1254 1255-1260 

    
HR 

 

1404-1409 

 

1410-1486 1487-1488 

       
IS 1006-1161 

           
PC 

 

524-527 

   

528-589 

      
IM 

 

1261-1266 

 

1267-1272 

 

1273-1333 1380-1391 1392-1394 1395-1403 

  

1334-1379 

PD 

        

1527-1554 

 

1555-1691 

 
PE 

 

590-613 

    

638-658 659-736 737-774 614-637 

  
PM 

 

1-16 17-29 30-52 

  

53-64 65-151 152-152 

   
QM 

  

379-382 383-388 

  

389-486 487-523 

    
SP 

   

153-218 

 

219-279 327-354 355-369 370-378 280-300 

 

301-326 

PS 

 

775-779 

 

780-841 

  

889-894 895-989 990-1005 842-862 

 

863-888 

Legend: The first row of the above table denotes data categories as follows: information systems/information technology (C), business environment (E), goals/performance 

indicators (G), human resources (H), improvements (I), just-in-time practices and theory of constraints (J), quality (Q), strategy (S), technology/mass customization (T), 

maintenance (M), new product development (N) and supply chain (P). The first column denotes information source as follows: plant accounting manager (AC), direct labor (DL), 

human resources manager (HR), information systems manager (IS), production control manager (PC), inventory manager (IM), member of product development team (PD), 

process engineer (PE), plant manager (PM), quality manager (QM), supervisor (SP) and plant superintendent (PS). Multiple sources provided data in each category.  

 

 

Table 3: Mapping of spaces on matrices in Figure 2 and corresponding variable categories 

 

Categories H J Q S T M P 

Variable Range 13-78 79-139 187-214 215-229 230-238 140-160 161-186 

Legend: The first row of the above table denotes data categories as follows: human resources (H), just-in-time practices and theory of constraints (J), quality (Q), strategy (S), 

technology/mass customization (T), maintenance (M), and supply chain (P). 

 

 


