OGUG Meeting August 18, 2023

"Uiser Based Low Distortion Projections
Utilizing Site Calibration/Localization Routines"

OREGON GNSS USERS GROUP SERVING SURVEY \& GIS PROFESSIONALS

GNSS Site Calibration/Localization 101

Bob Green, PLS Frontier Precision Bob@frontierPrecision.com

GNSS Site Calibration

GNSS
 Coordinates

Allows GNSS Geodetic Coordinates - Latitude, Longitude and Ellipsoid Height to Interface with your Local Project Grid Coordinates - North, East and Elevation

OREGON GNSS USERS GROUP

SERVING SURVEY \& GIS PROFESSIONALS

Project Settings

COGO Settings

Calibration Process

- Datum Transformation
- Define Projection
- Horizontal Adjustment
- Vertical Adjustment -Geoid Model (Optional)

Datum Transformation

- Two basic types
- 3 parameter
- 7 parameter

Some GNSS Manufactures Field/Office SW now incorporate 14 P Time Dependent Transformations

OREGON GNSS USERS GROUP
 SERVING SURVEY \& GIS PROFESSIONALS

Calibration Process

Datum Transformation

- Define Projection
- Horizontal Adjustment
- Vertical Adjustment
-Geoid Model (Optional)

Define Projection

- Mapping projections are used to represent positions on the curved surface of the earth as points on a flat surface or plane.

Commonly Used Mapping Projections

SERVING SURVEY \& GIS PROFESSIONALS

Calibration Process

Datum Transformation

Define Projection

- Horizontal Adjustment
- Vertical Adjustment
- Geoid Model (Optional)

Horizontal Adjustment

-At least 3 horizontal control points are required for a HZ adjustment

- Rotation for "Basis of Bearings" can be done with 2 points -Be Careful!!!! -1 st $^{\text {st }}$ D $/ 2^{\text {nd }} 2 \mathrm{D}$
- Minimum 5 points are recommended with Good Geometry Horz and Vert -Linear Projects
- The "Origin" of the

Rotation

 Rotation is the Mathematical Center of the Control- Rotation is the angular relationship between Geodetic North and your Grid North.

Translation

North and East "shift" to best align the Geodetic components (LLH) with the Grid values (NEE). Usually small values.

OREGON GNSS USERS GROUP
 SERVING SURVEY \& GIS PROFESSIONALS

Scale

OREGON GNSS USERS GROUP
 SERVING SURVEY \& GIS PROFESSIONALS

Horizontal Residuals

OREGON GNSS USERS GROUP

 SERVING SURVEY \&e GIS PROFESSIONALS
Calibration Process

Datum Transformation
Define Projection
Horizontal Adjustment

- Vertical Adjustment
-Geoid Model (Optional)

e = Orthometric Height H = Ellipsoid Height
 N = Geoid Height e = H-N

The Geoid

OREGON GNSS USERS GROUP

SERVING SURVEY \& GIS PROFESSIONALS

The Geoid Model

- A gridded surface that approximates the Geoid
- Some commonly used Geoid Models:
- Geoid 03
- Geoid 09
- Geoid 12B
- Geoid 18

Geoid 18 Converted .GRD File

24.000000	58.000000	-130.000000	-60.000000	0.016667	0.016667
-39.715	-39.737	-39.759	-39.780	-39.801	-39.820
-39.839	-39.856	-39.873	-39.890	-39.909	-39.930
-39.952	-39.974	-39.997	-40.019	-40.041	-40.063
-40.084	-40.106	-40.127	-40.148	-40.170	-40.192
-40.214	-40.235	-40.257	-40.277	-40.297	-40.316
-40.334	-40.352	-40.369	-40.388	-40.407	-40.428
-40.450	-40.472	-40.496	-40.519	-40.542	-40.564
-40.585	-40.605	-40.624	-40.641	-40.659	-40.677
-40.697	-40.720	-40.746	-40.775	-40.806	-40.840
-40.873	-40.906	-40.937	-40.966	-40.993	-41.017
-41.039	-41.060	-41.082	-41.104	-41.127	-41.151
-41.175	-41.199	-41.220	-41.237	-41.251	-41.262
-41.271	-41.280	-41.289	-41.300	-41.314	-41.331
-41.350	-41.371	-41.394	-41.418	-41.443	-41.468
-41.495	-41.523	-41.552	-41.582	-41.613	-41.643
-41.673	-41.701	-41.727	-41.751	-41.773	-41.794
-41.812	-41.830	-41.847	-41.863	-41.879	-41.894
-41.909	-41.923	-41.936	-41.949	-41.962	-41.975
-41.987	-42.001	-42.014	-42.028	-42.041	-42.055
-42.069	-42.083	-42.097	-42.111	-42.126	-42.143
-42.160	-42.179	-42.198	-42.219	-42.239	-42.260
-42.281	-42.300	-42.319	-42.336	-42.352	-42.367
-42.382	-42.396	-42.411	-42.426	-42.441	-42.455
-42.468	-42.481	-42.493	-42.504	-42.515	-42.527

Inclined Plane

Ellipsoid

SERVING SURVEY \& GIS PROFESSIONALS

Site Calibration Routine

SERVING SURVEY \& GIS PROFESSIONALS

Site Calibration Routine

Site Calibration Routine

SERVING SURVEY \& GIS PROFESSIONALS

Site Calibration Report

Site Calibration Report

Vertical Adjustment Parameters

Northing coordinate of origin point
Easting coordinate of origin point
Vertical separation at origin
Slope north
Slope east

First vertical point used in
Calibration
When using a Geoid Model these
PPM's Should be small.

Geoid Model Definition
GEOID18 (Conus) Fixed

Residual Differences Between GPS And Known Coordinates

Introduction to GNSS Surveying: FREE | Trimble RTX - The Next Utility: FREE | GNSS Modernization: FREE

Understanding \& Incorporating NGS OPUS Solutions: \$75.00 (1.5 hours) How to Prepare for the NGS 2022 Datum: \$75.00 (1.5 hours)

Capitalizing on RTK \& Infill in Trimble Access: $\$ 75.00$ (1.5 hours) GNSS Site Calibrations in Trimble Access: $\$ 125.00$ (2.5 hours)

Trimble Business Center - CAD Functions: $\$ 195.00$ (4.5 hours)
Feature Coding in Trimble Access \& Trimble Business Center: \$195.00 (4.5 hours)
Introduction to Baseline Processing \& Network Adjustments: \$195.00 (3 hours)
Trimble Business Center - Surface Models: $\$ 150.00$ (3 hours)
Trimble Business Center - Scanning Module: $\mathbf{\$ 2 5 0 . 0 0}$ (5 hours)

