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1 Introduction

Designers of policy interventions often must choose whether to target neighborhoods, schools,

or broader local or regional areas. They would like to know which policies are most effective for

each area, but research has been very slow in providing answers (Katz 2015). In this paper, we focus

on the more modest goal of measuring the overall importance of neighborhoods, schools, and local

areas for adult outcomes. Information about where inequality arises provides guidance about where

the most potential progress can be made, even if it does not provide a specific plan of action.

The efficacy of particular policies and the relative importance of neighborhood vs. school. vs.

broader local area factors is likely to vary across students. For example, school-level dropout pre-

vention policies may improve outcomes for struggling students but not stronger or better-supported

students, while opening a satellite campus of a flagship research university might benefit high

achieving low income students the most. Such considerations motivate us to work with a multi-

level mixed effects (MME) model in which individual characteristics interact with observed and

unobserved school and area characteristics.

The use of MME models (also known as hierarchical linear models and random coefficients

models) was stimulated by interest in the interplay among the student, classroom, and school factors

that determine educational outcomes.1 However, the MME literature is mindful of but does not

address sorting bias arising from school and neighborhood choice. As Durlauf (2004) and Graham

(2018) emphasize, differences in outcomes across neighborhoods combine the causal effects of

neighborhood with differences across neighborhoods in the observed and unobserved attributes of

children that matter for their outcomes. Sorting poses similar problems for assessing schools.

Our main methodological contribution is to address the sorting problem present in MME mod-

els. We do this by using a flexible production function specification and a rich but tractable model

of school and neighborhood choice to derive exact formulas relating the slope parameters and error

component variances of a standard MME specification to the corresponding production function pa-

rameters. We then use these formulas combined with MME estimates to characterize the importance

of school and location choices for students’ long-run education and labor market outcomes.

We postpone precise statements of our theoretical results and the assumptions, but the questions

about MME models that we address and the answers that we give may be summarized as follows.

Consider the following MME level regression model:

Ygi = XXX iBBB+XXXgGGG1 +ZZZ2gGGG2 +MiXXXgrrr1 +MiZZZ2grrr2 + vg +(vgi− vg). (1)

Here i denotes the student and g denotes the neighborhood, school, and associated local area

the student is exposed to. Ygi is a long-run student outcome, such as wages at age 25. XXX i is a

set of observed student characteristics such as mother’s education. XXXg is a set of observed peer

1Garner and Raudenbush (1991) is a good example. The early editions of Goldstein (2011) and Raudenbush and
Bryk (2002) became key references for empirical researchers.
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characteristics—averages of XXX i among the students in g. ZZZ2g is a set of observed characteristics

of the school and location that influence wages, such as student/teacher ratio. Mi is a student

characteristic that interacts with XXXg and ZZZ2g in influencing outcomes, such as minority status. vg

is a group specific error and (vgi− vg) is an idiosyncratic error. The error components are treated

as random effects and are defined to be uncorrelated with the explanatory variables. The slope

coefficients and error variances are defined to be what one recovers using a random effects estimator

with a very large sample.

The production function that actually determines the outcome Ygi is assumed to take the same

linear form with interaction terms as the above estimating equation. However, it also includes

unobserved (by the econometrician) counterparts to XXX i, XXXg, ZZZ2g, MiXXXg and MiZZZ2g. In general,

sorting-driven differences across school/locations in unobserved student characteristics as well as

other forms of omitted variables bias lead the parameters of (1) to differ from the production function

parameters.

We then build upon and extend to an interactive setting the control function approach of Altonji

and Mansfield (2018) (hereafter, AM). In particular, they show that even a flexible version of a

standard multinomial choice model implies a relationship between school/neighborhood averages of

observed student characteristics and averages of unobserved student characteristics. Consequently,

school/neighborhood averages of observed student characteristics (XXXg) can serve as controls for the

averages of unobserved student characteristics that would otherwise bias estimates of the importance

of school and neighborhood effects.

Under somewhat stronger assumptions (discussed below) we show that the coefficient vector rrr2

on the interaction between a student characteristic Mi such as mother’s education and a set of ob-

served “group” characteristics ZZZ2g is the sum of two components. The first is the causal effect of the

interaction between mother’s education and the observed group characteristics. The second is the

effect of the interaction between mother’s education and the part of the contribution of unobserved

group characteristics (e.g. the quality of a principal) that covary with the observed group charac-

teristics, holding observed and unobserved student characteristics fixed. Analogously, rrr1 combines

two components. The first is the causal effect of interactions between Mi and both observed and un-

observed peer characteristics (such as average mother’s education and average unobserved parental

motivation). The second is the causal effect of part of the interaction between Mi and unobserved

school and location characteristics. The key point is that under the assumptions of the model the

estimates of both rrr1 and rrr2 exclusively reflect interactions between the student and the environment

and not sorting.

We also show that AM’s expression for GGG2, the coefficient vector on the main effects of observed

school and area characteristics, remains unchanged when observed and unobserved interactions are

introduced to the production function. Specifically, it picks up the causal effect of the observed

school and area characteristics plus a second component that reflects their association with unob-

served school and area characteristics that affect outcomes. It is not contaminated by sorting bias or

unobserved interactions. AM’s result that school and neighborhood error components vg are simi-
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larly uncontaminated by the effects of sorting also carries over to the model with interaction effects.

Finally, we also justify a causal interpretation for a random slope coefficient on Mi that captures

the interaction of an observed student characteristic with an index of unobserved school and area

characteristics.

Taken together, these identification results reveal that even in the presence of endogenous sorting

of individuals to groups, multilevel mixed effects estimates can distinguish among four sources of

the variation in outcomes. The sources are individual contributions that are common across groups,

group contributions that are common across individuals, contributions that consist of interactions

between student and group inputs, and a set of ambiguous contributions (associated with XXXgGGG1)

that either reflect common group inputs or group-averages of individual inputs. We then show that

this decomposition is sufficient to generate meaningful (albeit conservative) answers to two key

questions. How much do the schools and locations we choose for our children matter for their

outcomes? And how much does the importance of schools and locations depend on the students’

and parents’ own inputs?

As in AM’s analysis, the use of school/location averages of observed student characteristics XXXg

to control for school/location averages of unobserved characteristics is likely to lead to an under-

statement of the importance of school and neighborhood. The main reason is that by treating the

averages as controls that absorb sorting bias, we are discarding the main effects of peers on out-

comes. A second reason is that the group averages will absorb a portion of the unobserved school

or area components that are uncorrelated with the observed components and are correlated with the

amenities that families sort on. Consequently, our analysis only places a lower bound on the overall

importance of school and area factors for student outcomes.

We use the above analysis as the theoretical foundation to interpret MME model estimates from

two cohort-specific panel surveys, the National Educational Longitudinal Survey of 1988 (NELS88)

and the Educational Longitudinal Survey of 2002 (ELS2002). These data sets provide a rich set of

student characteristics for samples of students from each of a large sample of schools. Students are

followed for several years, which permits investigation of longer run outcomes such as high school

graduation, attendance at a four year college, and attainment of a college degree. In addition, they

contain location of residence (ZIP code or block group) and school identifiers.

We use the multilevel model estimates to measure the consequences of exposure to a low-quality

school versus a high-quality school, and a low-quality commuting zone versus a high-quality com-

muting zone. Here we define “quality” narrowly as collections of attributes that contribute to the

outcomes we consider (educational attainment or log wages). Our main results concern the “treat-

ment effects” of 10th-to-90th percentile shifts in school quality, in commuting zone quality, and in

combined school and commuting zone quality. First, we consider average effects. We take the

average over the student population of the effect of a 10th-to-90th percentile shift in the combined

school/commuting zone environment. Such a shift increases the high school graduation probability

by 0.088 in NELS88 and by about 0.061 in ELS2002 (which has a higher baseline graduation rate–

0.92). The effect of the school treatment is 0.06 in NELS and about 0.044 in ELS. The values for
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the 10th-to-90th quantile shift in commuting zone quality are between 0.039 and 0.067.

For the college enrollment probability, the combined school and commuting zone treatment

effect is between 0.17 and 0.18 for both NELS and ELS. The values for the school treatment are

about 0.125, while the values for the commuting zone treatment are about 0.115 in each dataset.

The effects of the combined treatment, the school treatment and the commuting zone treatment on

the probabilility of completing a BA degree are somewhat smaller in both datasets (0.085, 0.077,

and 0.046 in NELS and around 0.085, 0.070, and 0.065 in ELS). For wage rates at age 25, the

combined school and commuting zone treatment ranges between 11 and 12 percent. The values for

the school treatment range from 6.2 to 7.1 percent. The commuting zone effects range from 7.8 to

10.7 percent. Overall, the results suggest that large changes in school and commuting zone inputs

can make a substantial difference for students’ educational attainment and wage rates.

We also present estimates of school and commuting zone “treatment” effects for particular pop-

ulation groups: blacks, Hispanics, whites with single mothers who did not attend college, whites

with two resident parents with college degrees, as well as for students at each percentile of an index

of student level variables that predict the outcomes. We do not find strong evidence that wages or

the latent indices governing the binary educational attainment outcomes depend on the interaction

between observed student characteristics and characteristics of the school and commuting zone,

although we cannot rule out modest interactions. Nevertheless, we do find important differences

in treatment effects across students. The heterogeneity is primarily due to the fact that the probit

function that we use for the education outcomes naturally imposes greater sensitivity to school and

location environment for students predicted to be close to the decision margin. Specifically, high

school graduation rates of subpopulations that tend to be disadvantaged are particularly sensitive to

the external environment, while few students from advantaged subpopulations are near the margin.

For college enrollment and college graduation, superior school and commuting zone inputs are im-

portant for all, but particularly important for students near or above the middle of the distribution of

student and family background.

Finally, we provide a richer picture of sorting than is possible with two level models featuring

individual and school (Coleman et al. 1966; Jencks and Brown 1975; Betts 1995; Altonji and

Mansfield 2011; Alexander and Morgan 2016) or individuals and neighborhood (Solon et al. 2000).

We find that segregation by student quality (defined by an index of characteristics that promote

education and wages) is primarily across schools and commuting zones rather then within ZIP code

or block group among schoolmates. Our variance decompositions of educational attainment and

wages consistently show that individual level factors account for the lion’s share of the variance,

with school and commuting zone level variation making modest contributions, and neighborhood

level factors playing a smaller role. For example, in ELS2002 for college attendance, the within-

neighborhood (block group) share is 71.4 percent, while the neighborhood share is 3.1 percent, the

school share is 15.9 percent, and the commuting zone share is 9.7 percent. School and commuting

zone account for about 9 and 6 percent of the variance in log wages respectively, and block group

within a school accounts for about 3%. Within a school there is very little clustering in any of our
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outcomes at the ZIP code level.

Our paper builds on and contributes to several literatures. The model of school and location

choice that we use to address sorting on unobserved student characteristics is essentially that of

AM, although we are more specific about the distinction between neighborhood choice, school

choice, and region.2 AM in turn draw on the rich theoretical and empirical literature on equilibrium

sorting and matching other contexts.3 Control function approaches are widely used in econometric

work.

On the empirical side, the literatures on the importance of families, neighborhoods, schools,

and region are each too vast to discuss meaningfully here. The most directly relevant are the large

number of studies that descend from the Coleman Report’s (Coleman et al. 1966) examination

of the importance of family background, peer characteristics, and school inputs using data with

a multilevel structure similar to the NELS88 and ELS2002.4 They found, in keeping with most

subsequent research, that family background is by far the most important determinant of education

success. Jencks and Brown (1975), Betts (1995), and Altonji and Mansfield (2011) are contributions

to the large literature in economics, sociology, and education that performs variance decompositions

separating the contribution of school- or neighborhood-level factors versus student-level factors for

test scores, educational attainment, and in a few cases wage rates. Focusing on neighborhood,

Jencks and Mayer (1990) provide a comprehensive review of earlier studies from economics and

sociology. They conclude that there is no strong evidence for neighborhood effects. However, some

of the studies they summarize do find effects. More recent reviews include Sampson et al. (2002),

Durlauf (2004), Durlauf and Ioannides (2010), Harding et al. (2011), Sharkey and Faber (2014),

and Graham (2018).5 Many of the papers emphasize that estimates of the impacts of particular

characteristics, such as percent minority, segregation measures, and poverty rates on socioeconomic

outcomes of children, often by racial group and poverty status, are subject to the problem of sorting

bias. A good example is Card and Rothstein (2007), who carefully address the issue in their analysis

of the effects of segregation on the test score gap between blacks and whites.

Meghir and Rivkin (2011) discuss alternative approaches to estimating school fixed effects and

the effects of particular school inputs, and highlight the problem of endogenous selection of schools

and neighborhoods, among other econometric issues.

There is also a small but growing experimental or quasi-experimental literature that attempts to

measure neighborhood or school effects. Oreopoulos (2003) and Jacob (2004) use quasi-random

assignment of neighborhood in the wake of housing project closings to estimate the magnitude of

neighborhood effects on student outcomes. They obtain small estimates, in contrast to Chyn (2018).

2The multinomial choice formulation that we use to characterize the school/location choice problem with heteroge-
nous preferences is standard in the consumer choice literature, drawing on McFadden (1984), Berry (1994), and many
subsequent papers, including Bayer et al. (2007)’s study of the demand for housing and location.

3These include marriage (eg., Browning et al. 2014), the labor market (eg., Rosen 1974; Ekeland et al. 2004; Lise
2016; Lindenlaub 2017), and neighborhoods and schools (eg., Epple and Platt 1998; Epple and Sieg 1999).

4See Alexander and Morgan (2016) and Lucas (2016) for a recent discussions of the legacy of the Coleman Report
and its influence on subsequent research.

5Kline and Moretti (2014) provide a recent analysis of placed based policies.
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A number of authors, including Kling et al. (2007), use the Moving to Opportunity experiment to

study effects of growing up in a low poverty neighborhood. Most of the work finds small effects.

However, Chetty et al. (2016) revisit the MTO experiment using Internal Revenue Service data on

young adult outcomes, including earnings, college attendance, and single parenthood. They find

substantial benefits for children who move before age 13 but not for older children.

Using a sibling differences approach that also exploits high quality tax data, Chetty and Hendren

(2018a; 2018b) identify county-level and commuting zone level neighborhood effects on earnings

that are larger than but qualitatively consistent with our results. Aaronson (1998) finds substantial

effects of the census tract-level poverty rate and high school dropout rate on dropout rates and years

of education using a sibling differences design and PSID data.6

Bergman (2016) finds that a lottery based opportunity to transfer from a predominantly minority

school district to a high income predominantly white district increases college enrollment by 10

percentage points. Deming et al. (2014) exploit randomized lottery outcomes from the school choice

plan in the Charlotte-Mecklenburg district and find large effects of attending a chosen public school

on high school graduation, college enrollment, and college completion for students coming from low

quality urban schools. Angrist et al. (2016) also use admissions lotteries. They find positive effects

of attending a Boston charter high school on performance on both high and low stakes exams and on

attendance at four-year colleges relative to two-year colleges. On the other hand, Cullen et al. (2006)

use a similar identification strategy with lotteries in Chicago Public Schools and do not find an effect

on the high school graduation probability. Dobbie and Fryer (2011) and Laliberte (2018) are rare

quasi-experimental attempts to distinguish neighborhood effects from school effects. Dobbie and

Fryer (2011) finds that the Harlem Children’s Zone has little effect on test scores, while Promise

Academy Charter schools have large effects that do not vary with residence in the zone. Laliberte

(2018) also finds that school effects are much more important than neighborhoods in determining

postsecondary enrollment and completion, at least in Montreal.

The paper continues in Section 2, which presents the model of location and school choice and

AM’s control function result. Section 3 presents the model of outcomes used in the paper. Section

4 specifies the MME estimating equation used in the paper and establishes key identification results

relating slope parameters and error terms of the estimating equation to the parameters of the un-

derlying production function. Section 5 discusses the data and variables used in the study. Section

6 presents the estimation methodology. Section 7 presents the model estimates and the variance

decompositions that are derived from them. Section 8 presents lower bound estimates of treatment

effects on various educational outcomes and on log wages generated by shifts in school and com-

muting zone quality, both on average and for particular subpopulations. Section 9 concludes.

6Using a sibling difference design, Altonji and Dunn (1996) find that higher teacher salaries and teacher/student
ratios (considered separately) increase wage rates.
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2 A Multinomial Model of School and Location Choice and Sorting

In this section we present AM’s model of how families choose school systems and associated

neighborhoods, recasted slightly to more explicitly consider neighborhood, school, and labor market

area.7 The presentation draws very heavily on AM, with small sections verbatim. We repeat some

of the discussion here so that the assumptions required for identification of the main effects of school

and location characteristics as well as their interactions with student characteristics (not considered

in AM) will be clear. We use the terms “area” or “location” to refer to the joint influence of

neighborhood and commuting zone inputs. Throughout the paper, matrices, vectors, and matrix- or

vector-valued functions are in bold. The “prime” symbol denotes matrix or vector transposes.

Parents choose a neighborhood n from the set N of neighborhoods. Due to attendance bound-

aries and travel costs, the choice of n then restricts the choice of school s to the subset S (n) of the

full set S . Since neighborhoods are embedded in labor market areas, the choice of neighborhood

also implicitly involves the choice of a commuting zone c. In our main specification we assume

parents choose among all available (n,s) pairs. To conserve notation, we introduce the subscript

g≡ (n,s,c) to denote the combined neighborhood-school-commuting zone combination or “group”

experienced by a given child.

We use a money-metric representation of the expected utility that the parents of student i receive

from choosing g, so that the utility function Ui(g) can be interpreted as the family’s consumer

surplus from their choice. We assume Ui(g) takes the following linear form:

Ui(g) =WWW iAAAg + εgi−Pg. (2)

AAAg ≡ [A1g, . . . ,AKg]
′ is a K×1 vector of underlying latent amenities that characterize the neighbor-

hood, the school and the commuting zone combination to which g refers. WWW i ≡ [W1i, . . . ,WKi] is

a 1×K vector of weights that captures the increases in family i’s willingness to pay for a neigh-

borhood and school per unit increase in each of its K amenity factors A1g, . . . ,AKg, respectively. Pg

is the price of living in n plus a fixed utility cost associated with the logistics of attending school

s from neighborhood n. The component εgi is an idiosyncratic taste of the parent/student i for the

particular location and school.

Next we specify an equation for willingness to pay (WTP) for particular amenities:

WWW i = XXX iΘΘΘ+XXXU
i ΘΘΘ

U +QQQiΘΘΘ
Q . (3)

where the row vectors XXX i, XXXU
i and QQQi have L, LU , and LQ elements, respectively. The coefficient

matrix ΘΘΘ is an L×K matrix whose `k-th entry captures the extent to which the willingness to pay

for the k-th element of the amenity vector AAAg varies with the `-th element of XXX i. The LU ×K matrix

ΘΘΘ
U and the LQ×K matrix ΘΘΘ

Q are the corresponding coefficient matrices for XXXU
i and QQQi. We define

XXXU
i so that [XXX i,XXXU

i ] represents the complete set of student attributes that determine Ysi. QQQi is a set

7AM model the choice of school attendance area, defining the choices of school and neighborhood to be synonymous.
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of variables that influence WTP for amenities but have no direct effect on student outcomes. It is

convenient to define QQQi, ΘΘΘ and ΘΘΘ
U so that QQQi is orthogonal to [XXX i,XXXU

i ].

Substituting equation (3) into equation (2), we obtain:

Ui(g) = (XXX iΘΘΘ+XXXU
i ΘΘΘ

U +QQQiΘΘΘ
Q)AAAg + εgi−Pg (4)

As AM discuss, this formulation of utility allows for a fairly general pattern of relationships between

different student characteristics (observable or unobservable) and tastes for different school/neighborhood

amenities, subject to the additive separability assumed in (2).

Expected utility is taken with respect to the information available when n and s are chosen.

The information set includes the price and the amenity vector in each school and neighborhood as

well as student/parent characteristics [XXX i,XXXU
i ,QQQi] and the values of εgi in each school and neighbor-

hood. The information set excludes any local shocks that are determined after the start of secondary

school. It also excludes components of neighborhood, school quality and commuting zone quality

that are not observable to families when a location is chosen. Some elements of AAAg may depend

on neighborhood and school characteristics that influence educational attainment and labor mar-

ket outcomes (denoted XXX∗g or ZZZ∗2g in the production function introduced later). The amenities may

also include or depend on aspects of the demographic composition of the neighborhood and school.

Thus, some of the amenities are influenced by the sorting equilibrium.

The parents of i choose g(i) = g if net utility Ui(g) is the highest among the options. Parents

behave competitively in the sense that prices Pg and amenities AAAg are taken as given, and choice is

unrestricted. In equilibrium the values of some elements of AAAg may in fact depend on the averages

of XXX i and XXXU
i for the parents who choose g. Parents ignore the externalities they are imposing on

others.

Proposition 1 of AM establishes that the expectation XXXU
g ≡ EEE[XXXU

i |g(i) = g] is linearly dependent

on the expectation XXXg ≡ EEE[XXX i|g(i) = g] if five assumptions hold. Decompose XXXU
i into its linear

prediction given XXX i and an uncorrelated residual vector X̃XXU
i :

XXXU
i = XXX iΠΠΠXXXU XXX + X̃XXU

i . (5)

Use (5) to rewrite (3) as WWW i = XXX iΘ̃ΘΘ+ X̃XXU
i ΘΘΘ

U +QQQiΘΘΘ
Q, where Θ̃ΘΘ = [ΘΘΘ+ΠΠΠXXXU XXX ΘΘΘ

U ].8 In the rewritten

form, the three components of WWW i are mutually orthogonal.

Proposition 1: (AM) Assume the following assumptions hold:

A1: Preferences are given by (4).

A2: Parents take Pg and AAAg as given when choosing location, and face a common choice set.

A3: The idiosyncratic preference components εgi have a mean of 0 and are independent of XXX i,

8Throughout the paper we use the symbol ΠΠΠHHHVVV to denote the vector or matrix of partial regression coefficients
relating the scalar or vector HHH to the explanatory variables VVV . In the case of ΠΠΠXU X , HHH === XXXU

i and VVV === XXX i.
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XXXU
i , QQQi , and AAAg for all g.

A4: EEE(XXX i|WWW i) and EEE(XXXU
i |WWW i) are linear in WWW i.

A5: (Spanning Assumption) The row space of the WTP coefficient matrix Θ̃ΘΘ spans the row space

of the WTP coefficient matrix ΘΘΘ
U relating tastes for AAA to XXXU

i . That is,

ΘΘΘ
U = RRRΘ̃ΘΘ (6)

for some LU ×L matrix RRR.

Then the expectation XXXU
g is linearly dependent on the expectation XXXg. Specifically,

XXXU
g = XXXg[ΠΠΠXXXU XXX +VVV aaarrr(((XXX i)))

−1RRR′VVV aaarrr(((X̃XXU
i )))] (7)

The proof is in AM. Proposition 1 states that the sorting model introduced in this section implies

that the vector XXXg can serve as a set of controls for XXXU
g . This is key to distinguishing the causal

effects of school and location on outcomes from sorting on unobservable student characteristics that

affect these outcomes. The intuition behind the proposition is that XXXU
g and XXXg are related across g

because both XXX i and XXXU
i influence tastes for AAAg. As a result the means XXXU

g and XXXg are both functions

of AAAg, and under A1-A5, the maps from AAAg to XXXg and from AAAg to XXXU
g determines a map from XXXg to

XXXU
g that takes form (7).9

AM provide a detailed discussion of the assumptions. We will not repeat that discussion here, but

a few words about A4 and A5 are in order. A sufficient condition for A4 is that the joint distribution

of [XXX i,,,XXXU
i ,,,QQQi] is a member of the continuous elliptical class. This class includes the normal, the

Laplace, and the multivariate exponential power family. In our application XXX i includes several

discrete variables, so the sufficient condition will not be satisfied. AM show that if the assumption

fails, an approximation error will appear in (7) that is likely to contribute to the error component vg

of (1) and lead to some upward bias in our estimator of the importance of school/location effects.

But AM also provide reasons to believe the approximation error will be small.

We consider the spanning condition A5 to be the key assumption for Proposition 1; it ensures

that XXXg fully determines XXXU
g . Roughly speaking, two conditions must hold for XXXU

g to be a function

of XXXg. The first is that the number of elements of XXX i must be greater than or equal to the number of

amenities that XXX i and/or XXXU
i affect tastes for. Otherwise, AAAg and thus XXXU

g will vary conditional on

XXXg.10

The second condition is that there cannot exist any elements of XXXU
i that are both uncorrelated

9Note that the proposition characterizes the relationship between expected values of observable and unobservable
student characteristics conditional on choice of school and neighborhood; the exact linear dependence need not hold
when samples of students are taken at each school. However, AM provide a monte carlo analysis suggesting that (7) is
a good approximation even with samples of 20 students at each school (around the number observed per school used to
construct XXX s in the samples we employ below).

10The plausibility of the first condition depends on the number and breadth of coverage of the variables in XXX i. The
condition implies that the number of factors that determine XXXg is less than or equal to L. AM formally test this restriction
and find that the number of factors is considerably less then L.
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with XXX i and that shift preferences for amenity factors that neither XXX i nor those elements of XXXU
i

that are correlated with XXX i shift preferences for. Otherwise such amenity factors will shift the

distribution of these remaining XXXU
i elements across schools in a way that XXXg cannot predict. While

this condition is untestable without further structure, we have struggled to find an example of an

unobserved variable that would cause its violation given the rich set of XXX i variables that we have.11

3 The Production Function for Education and Wages

In this section we present the model of outcomes. This is the “production function”, as dis-

tinct from the MME estimating equation presented in the introduction. The model is similar to its

counterpart from AM but 1) introduces potential interactions or complementarities between indi-

vidual inputs and each category of group-level inputs, and 2) allows for separate roles played by

neighborhood, school, and local area inputs.

Our outcomes are high school graduation, attendance at a four-year college, graduation from

a four-year college, and log wages. The outcome Yi of student i whose family has chosen the

neighborhood/school/commuting zone combination g(i) is determined according to

Yi = XXX∗i βββ
∗+ZZZ∗gΓΓΓ

∗∗∗+MiZZZ∗gρρρ
∗+ηgi +ξgi (8)

where we have dropped the dependence of the neighborhood, school, and commuting zone subscript

on the student subscript i to simplify the notation. The parameters of equation (8) also implicitly

depend on the outcome. For the education outcomes, Yi is the latent variable that determines the

binary outcome.

The row vector XXX∗i≡ [XXX i,XXXU
i ] denotes the exhaustive set of child and family characteristics. As

a reminder, the superscript U denotes “unobserved” throughout the paper. It indicates variables

that are unobserved to the econometrician and their associated parameters. The row vector ZZZ∗g≡
[XXXg,XXXU

g ,ZZZ2g,ZZZU
2g] contains four components. The vectors XXXg and XXXU

g consist of neighborhood,

school, and commuting zone averages of [XXX i,,,XXXU
i ] that capture peer influences. The vectors ZZZ2g

and ZZZU
2g consist of the set of other observed and unobserved location and school characteristics

that affect outcomes and are not mechanically related to peer characteristics. All are normalized

to have a population mean of 0. To simplify the derivation and presentation of our identification

results relating to interactions between individual-level and group-level inputs, we delay explicitly

distinguishing between the components of ZZZ∗g that represent neighborhood, school and commuting

zone inputs, respectively, until Section 4.5.

The parameter vectors βββ
∗= [βββ ′,βββU ′]′ and ΓΓΓ

∗≡ (ΓΓΓ′1g,ΓΓΓ
U ′
1g,ΓΓΓ

′
2g,ΓΓΓ

U ′
2g)
′ are the corresponding slope

coefficients or input productivities, some of which may be zero. By virtue of our normalization ΓΓΓ
∗

captures the effects of school and location variables at the mean of Mi.

11See AM for a more complete discussion, including a Monte Carlo analysis suggesting that (7) is quite robust to
violations of the spanning condition in which just a few outcome-relevant unobservables in XXXU

i affect WTP for just a few
additional amenities that are not weighted by any elements of XXX i.
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Mi is a scalar-valued linear function of XXX i. We focus on the scalar case to simplify the pre-

sentation and the proofs of identification results in Propositions 2 and 3 below. In the empirical

specification, Mi is replaced with a vector.

The parameter ρρρ∗ captures the extent to which students with different Mi values respond dif-

ferently to the same school and location inputs or policies. But it also captures how students with

different Mi values tend to receive different inputs within a school/location. For example, one might

expect a school variable such as tracking to influence the relationship between XXX i and the quality

of the teachers a student receives at the school. Thus, the relevant elements of ρρρ∗ are defined to

also capture the degree to which school and location variables affect which group g resources get to

allocated to students with higher Mi values relative to their group g peers.

The vector ρρρ∗ = [ρρρ ′1,ρρρ
U ′
1 ,ρρρ ′2,ρρρ

U ′
2 ]′ has four components. The vectors ρρρ1 and ρρρU

1 capture the

strength of interactions or complementarities between student characteristics and observed and un-

observed peer characteristics such as average family income. The vectors ρρρ2 and ρρρU
2 capture inter-

actions between student characteristics and observed and unobserved nonpeer school and location

characteristics, such the quality of law enforcement, average class size, and availability of a nearby

four-year college.12 Our current identification results and empirical analysis exclude interaction

variables that are functions of the unobservables XXXU
i . We leave the task of relaxing this restriction

to future work.

The unobserved scalar index ηgi captures the remaining random variation among students within

a neighborhood/school combination in the neighborhood and school inputs they experience, such

as the characteristics of immediate neighbors and characteristics of nearby children, and the luck of

the draw in teacher quality at the school. ηgi is defined to have a mean of zero within each g, and

given the definition of ρρρ∗, it is uncorrelated with the interaction terms in the production function.

The component ξgi is the sum of influences at the n, s, and c level that are determined after

secondary school and are unrelated to the other variables in the model, both within and across

groups. We use the g subscript to allow for shocks at all three levels, but we primarily have in mind

shocks at the commuting zone level. These might include the opening of a local college or local

labor demand shocks that occur after high school is completed. It will prove useful to write ξgi as

ξg+ξi, where ξg is common to all students in g and ξi is idiosyncratic. ξg is taken to be 0 for the high

school graduation outcome. Akin to ηgi, any systematic relationships between conditions after high

school and observed and unobserved student, location and school characteristics are not deemed

shocks and thus are properly reflected in the production function parameters, so that the “shock”

component ξgi should only contain an unpredictable residual uncorrelated with other inputs.

Note that the characteristics/inputs at each level of observation can represent non-linear func-

tions of other inputs from that level. For example, an element of XXX∗i can represent the square of

another element of XXX∗i or the product of two elements. Thus, the linear-in-parameters specification

for Yi is more general than it first appears.

12In the empirical work, we will place restrictions on the ρρρ1 and ρρρ2 vectors and will often use estimated parameter
vectors to construct the Mi values from XXX i...
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This production function yields a clear definition of the causal effect associated with group mem-

bership for a particular student type (indexed by Mi). Compared to a group featuring population-

average values of all school and location inputs (ZZZ∗g = 000), a randomly selected student with a partic-

ular value Mi = M
a

i who grows up in group g1 featuring external inputs ZZZ∗g1 can expect an increase

(or decrease) in outcome Yi of [ZZZ∗g1ΓΓΓ
∗ + Ma

i ZZZ∗g1ρρρ∗]. A student with the population mean value

Mi = 0 can expect an increase of ZZZ∗g1ΓΓΓ
∗. In the case of college attendance, college graduation, and

wage rates, the expected outcome from growing up in a particular school/location combination g1

will also reflect ξg1 , which is common to all individuals in group g but is determined after high

school.13 Expressions for school effects, commuting zone effects, and a particular neighborhood-

school-commuting zone combination are similar, and will be introduced later.

The productivity coefficients βββ
∗ do not have a straightforward causal interpretation. Some com-

ponents of XXX∗i associated with student inputs (for example, student aptitude) are determined by past

parental inputs such as family income (Todd and Wolpin 2003; Cunha et al. 2006). Consequently,

we do not attempt to tease apart the distinct influences of child characteristics, family characteris-

tics, and early childhood schooling and location inputs, respectively. We do not attempt to estimate

βββ .

Nor do we attempt to estimate the causal effects of particular neighborhood, school, or com-

muting zone inputs (and so we will not aim to separately identify particular elements of ΓΓΓ2 and

ρρρ2). This is because the control function variables only address sorting bias. They do not eliminate

omitted variable bias that arises because observed neighborhood, school, or region inputs may be

correlated with unobserved inputs. Instead, we aim to distinguish the combined outcome effects

of neighborhood factors, of school factors, and of commuting zone factors, respectively, from the

effects of student, family, and prior school and location factors.

4 Identification Results for the MME Model

We now return to the MME model (1) for the outcome Yi that we started with in the introduction,

versions of which serve as our estimating equation. We discuss the relationship between the slope

parameters and error components recovered from estimation and the parameters of the outcome pro-

duction function (8) presented in Section 3. In particular, we show that the regression coefficients

and error components estimated via a random effects procedure allow us to divide the contribu-

tion of student inputs and school/location inputs to Yi into four components. The first component

consists of the main effect of student inputs on the outcome. Its effect is common across groups

(school/location combinations). The second component consists of the main effect of group-level

inputs. These effects are common to all students. The third consists of interactions between stu-

dent inputs and group inputs. The fourth component is associated with the control function XXXg. It

captures a combination of group inputs (mostly peer influences) and group averages of student in-

13The outcomes of a specific student i will also differ across neighborhoods, schools and commuting zones because
the values of the idiosyncratic terms ηgi differ.
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puts that affect outcomes regardless of the school and location (reflecting sorting). In Section 8 we

show how to use the identification results to provide conservative estimates of the average impact

associated with “treatments” where group-level inputs are shifted. We also show how to estimate

the impact of group treatments on particular student types (allowing a characterization of the de-

gree of treatment effect heterogeneity). As we explain below, we are not able to fully distinguish

among the roles of unobserved neighborhood characteristics, unobserved school characteristics, and

unobserved commuting zone characteristics.

4.1 Distinguishing Observables and Unobservables

We start by rewriting the production function (8) to distinguish between observables and unob-

servables. This facilitates the analysis in subsections 4.2 and 4.3 of what estimation of the MME

model identifies. Let xU
i ≡≡≡ XXXU

i βββ
U denote the scalar index of unobserved student characteristics and

let zU
2g ≡ ZZZU

2gΓΓΓ
U
2 denote the scalar index of the unobserved location and school inputs. Using these

definitions and the subcomponents of the coefficient vectors βββ
∗, ΓΓΓ

∗, and ρρρ∗ and the variables XXX∗g
and ZZZ∗g, one may rewrite (8) as

Yi = XXX iβββ +XXXgΓΓΓ1 +ZZZ2gΓΓΓ2 +MiXXXgρρρ1 +MiZZZ2gρρρ2

+MiXXXU
g ρρρ

U
1 +MiZZZU

2gρρρ
U
2 + xU

i + zU
g +ηgi +ξgi . (9)

Recall that the superscript “U” denotes “unobserved” variables and parameters associated with

them.

Using the same notation, our estimating equation takes the form

Ygi = XXX iBBB+XXXgGGG1 +ZZZ2gGGG2 +MiXXXgrrr1 +MiZZZ2grrr2 +MgXXXgGGG3 +MgZZZ2gGGG4 + vg +(vgi− vg). (10)

The parameters refer to the coefficient vectors from the linear least-squares projection of Ygi on

the right hand side variables.

Including MgXXXg and MgZZZ2g ensures that identification of rrr1 and rrr2 is obtained exclusively from

within-group variation in MiXXXg and MiZZZ2g. We show below that Assumptions A1-A5 of the sorting

model plus assumptions A6 and A7 below imply that GGG3 and GGG4 are 0. So in the end we exclude

MgXXXg and MgZZZ2g from the models we estimate.

We now consider how the parameters of the estimating equation (10) relate to the production

function parameters in (9). We first consider the individual-level coefficients BBB and the interaction

coefficients rrr1 and rrr2. Next we turn to the group-level coefficients GGG1, GGG2, GGG3, and GGG4 and then to

the error components vg +(vgi− vg).
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4.2 Interpretation of Student-Level Coefficients and Interaction Coefficients

First we consider BBB, rrr1, and rrr2, which are identified from variation within g. Let D represent an

operator that subtracts group means, so that DYgi≡Ygi−E[Ygi|g(i) = g]≡Ygi−Yg. The within-group

counterpart of our estimating equation (10) can be written as:

DYgi = DDDXXX iBBB+[(DMi)XXXg]rrr1 +[(DMi)ZZZ2g]rrr2 +Dvgi. (11)

Given the presence in (10) of the group means XXXg, MgXXXg and MgZZZ2g, OLS estimation of BBB, rrr1, and

rrr2 using (10) is equivalent to OLS estimation using the within-group equation (11). Thus, we can

restrict attention to (11).

The statement of Proposition 2 below refers to the coefficients from the following projection

equations:

DDDXXXU
i = DDDXXX iΠΠΠDDDXXXU

i DDDXXX i
+ D̃DDXXXU

i (12)

Dηgi = DDDXXX iΠΠΠDηgiDDDXXX i +Dη̃gi. (13)

XXXU
g = XXXgΠΠΠXXXU

g XXXg
(14)

ZZZU
2g = XXXgΠΠΠZZZU

2gXXXg
+ZZZ2gΠΠΠZZZU

2gZZZ2g
+ Z̃ZZU

2g. (15)

Note that XXXU
g is perfectly predicted by XXXg under the assumptions A1-A5, with ΠΠΠXXXU

g XXXg
≡ [ΠΠΠXXXU XXX +

VVV aaarrr(((XXX i)))
−1RRR′VVV aaarrr(((X̃XXU

i )))]. This is why (14) does not have an error term. Let Dx̃U
i ≡ D̃DDXXXU

i βββ where

D̃DDXXXU
i is defined in (12).

Two additional assumptions are needed when the interaction terms are present.

Assumption A6: Cov(Dx̃U
i DMi,XXXg) = 0 and Cov(Dx̃U

i DMi,ZZZ2g) = 0

Assumption A7: Z̃ZZU
2g ⊥ (XXXg,ZZZ2g,DDDXXX i)

Assumption A6 says that Dx̃U
i DMi is uncorrelated with [XXXg,ZZZ2g]. It addresses a potentially

important identification problem. The variation that identifies interaction effects in our estimating

equation consists of differences in the strength of the relationship between individual characteris-

tics and outcomes across groups with different values of group characteristics (e.g. student-teacher

ratio). Suppose that the covariance between parental income (observed) and parental motivation

(unobserved) is larger in schools with smaller student-teacher ratios. In this case, parental income

may predict greater increases in outcomes at schools with smaller student-teacher ratios because

parental income better predicts parental motivation at such schools, even if students of richer par-

ents are not differentially sensitive to low student-teacher ratios. If one added the interaction term

Dincomei ∗(students/teachersg) to (11), it would enter with a negative coefficient. One can see that

if Mi was parental income, and student-teacher ratio was part of ZZZ2g, then the interaction coefficient

rrr2 would be affected. Such a mechanism would yield spurious “interaction” effects.
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Assumption A6 rules out this possibility. As a result, any differential impact of Mi across groups

with different values of XXXg or ZZZ2g can be interpreted as evidence of true student-group interactions

rather than evidence of differential sorting-induced joint distributions of [DDDXXX i,,,DDDXXXU
i ] across groups.

A6 is a statement about the residual component Dx̃U
i of the unobservable DxU

i , and so is not

directly testable. How plausible is it? Note first that since (12) is a projection equation, Dx̃U
i is

orthogonal to DDDXXX i. Thus the population mean of Dx̃U
i DMi is 0 because DMi is a linear function of

DDDXXX i. It is possible, however that the relationship between DDDXXXU
i and DDDXXX i and thus DMi varies across

g. If in addition, E(Dx̃U
i DMi|g) varies systematically with XXXg or ZZZ2g, A6 will fail.

The model of school/location choice implies that the distribution of XXXU
i and XXX i varies with the

amenities, which may be related to ZZZ2g. While Proposition 1 directly implies that the mean XXXU
g

varies linearly with XXXg, this need not imply a violation of A6, since A6 fully allows the means

of Mi, XXX i and XXXU
i to vary across g and even systematically with ZZZ2g. A6 can also accommodate

variation in the within-group variances of Mi and XU
i across groups, as long as DMi and DDDXXXU

i move

together in the same way in each group. Then any differential covariance between DMi and DDDXXXU
i

across groups is stripped out by DDDXXX iΠΠΠDDDXXXU
i DDDXXX , leaving no correlation between DMi and the residual

index Dx̃U
i .

We have not found sufficient conditions concerning the distribution of Ag and [XXX i,XXXU
i ,QQQi] such

that A6 is exactly satisfied. In Online Appendix B4 we describe and present results from monte

carlo simulations of the sorting equilibrium for a case in which [XXX i,XXXU
i ,QQQi] is jointly normally

distributed and AAAg is also jointly normally distributed. People choose from 100 groups, with 250

individuals per group. We show that departures from A6 are truly negligible in this example: the

mean correlation between DMiDX̃XXU
i and any element of XXXg is only .008.

A7 strengthens a zero correlation property to statistical independence. To see this, note that the

error component Z̃ZZU
2g in the projection equation (15) is uncorrelated with XXXg and ZZZ2g by definition

and DDDXXX i is uncorrelated with Z̃ZZU
2g by construction. Strengthening zero correlation to independence

rules out the possibility that XXXg or ZZZ2g might be predictive of the value of the average interaction

MgZZZU
2g, even conditional on MgXXXg and MgZZZ2g. It also rules out the possibility that higher moments

of the distribution of DDDXXX i for a given g predict the mean of the residual component Z̃ZZU
2g . Consider

the race indicator variable BLACKi and the group mean BLACKg. These variables are included in

XXX i and XXXg, respectively. A7 would fail if Z̃ZZU
2g is not independent of BLACKg and/or DBLACKi even

though it is uncorrelated with both. A7 seems likely to be a reasonable approximation in most

contexts. Furthermore, we show in Online Appendix B4 that A7 nearly holds in the sorting process

used in our monte carlo simulations, and the minor violations produce no discernable bias in the

estimates of the key coefficients.

We are now ready to present the relationship between BBB, rrr1, and rrr2 in the estimating equation

(11) (or equivalently (10)) and the production function parameters in (9).

Proposition 2:
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Suppose assumptions A1-A7 hold. Then:

BBB = βββ +ΠΠΠDDDXXXU
i DDDXXX i

βββ
U +ΠΠΠDDDηηηgiDDDXXX i (16)

rrr1 = ρρρ1 +ΠΠΠXXXU
g XXXg

ρρρ
U
1 +ΠΠΠZZZU

2gXXXg
ρρρ

U
2 (17)

rrr2 = ρρρ2 +ΠΠΠZZZU
2gZZZ2g

ρρρ
U
2 . (18)

The proof is in Online Appendix B1. Note that the coefficient vector BBB on XXX i is the same as

the coefficient vector in the model without interactions considered by AM. It captures a blend of

effects of observable and unobservable student characteristics that are common across groups as

well as differential treatments received by students that can be predicted based on XXX i. It does not

capture any true interaction effects nor any effects of group characteristics that are common to all

members. The coefficient rrr1 consists of the true coefficients ρρρ1 on the interaction between Mi and

the group averages of the observable student characteristics XXXg, plus two other terms. The second

term ΠΠΠXXXU
g XXXg

ρρρU
1 captures interactions between Mi and the group average of the unobservables XXXU

g .

(Recall that under Proposition 1, XXXU
g = XXXgΠΠΠXXXU

g XXXg
). Thus, the first two terms of rrr1 capture the fact

that the effect of XXX i on Yi depends upon the characteristics of the population in g. The third term

ΠΠΠZZZU
2gXXXg

ρρρU
2 is present because the unobserved school and area characteristics ZZZU

2g that interact with

Mi may vary with XXXg conditional on ZZZ2g. The coefficient vector rrr2 is the sum of ρρρ2, the effects of

the interactions between Mi and ZZZ2g, along with the effects of the interactions between Mi and the

portion of ZZZU
2g that is predictable by ZZZ2g holding XXXg constant. Importantly, both rrr1 and rrr2 exclusively

reflect interactions between XXX i and group-level characteristics, rather than individual contributions

that are common across groups or group-level contributions that are common across individuals.

We have assumed away interactions between components of XXXU
i and ZZZ2g and ZZZ2g. We speculate

that such interactions will be partially picked up by rrr2 to the extent that Mi predicts XXXU
i .

4.3 Interpretation of Group-Level Coefficients

This subsection presents Proposition 3, which establishes the relationship between the produc-

tion parameters in (9) and the group-level coefficients GGG1,GGG2,GGG3, and GGG4 identified by OLS es-

timation of the MME model (10). Note that just as BBB, rrr1, and rrr2 are identified exclusively from

within-group variation, GGG1, GGG2, GGG3, and GGG4 are identified exclusively from between-group varia-

tion. This fact means that the OLS coefficients GGG1, GGG2, GGG3, and GGG4 are numerically identical to the

coefficients of the projection of the adjusted group g mean of Ygi, Yg− [XXXgBBB+MgXXXgrrr1 +MgZZZ2grrr2]]],

onto XXXg, ZZZ2g, MgXXXg, and MgZZZ2g.

First we need to define additional projection coefficients that appear in Proposition 3. Let the

projection of the unobserved production function index zU
2g onto the space of group-level observables

[XXXg,ZZZ2g,MgXXXg,MgZZZ2g] be given by

16



zU
2g = XXXgΠΠΠzU

2gXXXg
+ZZZ2gΠΠΠzU

2gZZZ2g
+MgXXXgΠΠΠzU

2g,MgXXXg
+MgZZZ2gΠΠΠzU

2g,MgZZZ2g
+ z̃U

2g

Let xU
g ≡ XXXU

g βββ
U and note that the projection matrix ΠΠΠxU

g XXXg
= ΠΠΠXXXU

g XXXg
βββ

U .

Proposition 3:

Suppose assumptions A1-A7 hold. Then:

GGG1 = [(βββ −BBB)+ΠΠΠxU
g XXXg

]+ [ΓΓΓ1 +ΠΠΠXXXU
g XXXg

ΓΓΓ
U
1 +ΠΠΠzU

2gXXXg
]

GGG2 = ΓΓΓ2 +ΠΠΠzU
2gZZZ2g

GGG3 = 0

GGG4 = 0

The proof is in Online Appendix B2. Proposition 3 states that under A1-A7 the coefficients GGG1

and GGG2 on XXXg and ZZZ2g in the model with interactions are exactly the same as the corresponding

coefficients in the model without interactions considered by AM (See Proposition 2 in AM). GGG1

consists of the causal peer effects of XXXg and XXXU
g plus the part of the effect of unobserved group inputs

ZZZU
2g predicted by XXXg conditional on ZZZ2g. However, it also picks up the bias term (βββ−BBB) and the term

ΠΠΠxU
g XXXg

, which captures differences across school and location in xU
g . Since these last two components

represent student contributions to Yi rather than group-level contributions, we exclude XXXgGGG1 when

constructing lower bound estimates for school and location treatment effects. We are unable to

assign the variation in XXXgGGG1 exclusively to groups or individuals because XXXg also serves as a control

function for XXXU
g . This is the price of preserving meaningful assignment of other components of

variance in the absence of random group assignment.

GGG2 captures the causal effects of the observed group-level inputs ZZZ2g along with the causal

effects of associated variation in unobserved group-level inputs zU
g on the outcome of a student

at the population mean of MMMi. Thus, the index ZZZ2gGGG2 only reflects the contributions of group-

level inputs whose impacts are common across all students. It does not include student inputs or

interactions between student- and group-level inputs. This result is key to our ability to characterize

both average treatment effects associated with shifts in neighborhood quality as well as the degree

of treatment effect heterogeneity across types of students.

Finally, GGG3 and GGG4 are both zero. Consequently, we can drop both MgXXXg and MgZZZ2g from the

estimating equation (10).
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4.4 Interpretation of the Error Components

The final proposition establishes the relationship between the individual-level and group-level

error components in (9) and (10).

Proposition 4:

Suppose assumptions A1-A7 hold. Then:

vg = z̃U
2g +MgZ̃ZZU

2gρρρ
U
2 +ξg (19)

vgi− vg = D̃xU
i +Dηgi +Dξgi. (20)

We relegate the proof to a footnote.14 Equation (19) reveals that vg is the sum of group-level

effects that are common across students (z̃U
2g and ξg) and group-averages of interactions between

student inputs and group inputs (MgZ̃ZZ
U
2gρρρU

2 ). In principle, one could estimate the distribution of

MgZ̃ZZ
U
2gρρρU

2 by incorporating random neighborhood-, school-, and commuting zone-specific slopes

with respect to Mi into an MME procedure. This would complete the full separation of the contribu-

tions of interaction components from the common impacts of group-level inputs that we discuss in

the introduction. However, we have had trouble identifying such random slopes in our application.

Finally, (20) shows that vgi−vg reflects only student level inputs and perhaps (via Dηgi) differen-

tial treatments within groups (e.g. the sequence of assigned teachers), rather than interactions with

group-level inputs that would reflect heterogeneity in the impact of the same group-level treatments.

4.5 Explicitly Incorporating Multiple Group Levels

To this point we have lumped neighborhood-level, school-level, and CZ-level variables together

to simplify the notation, but we wish to assess the relative importance of these different categories

of external inputs in the empirical work. Thus, we now break up XXXg, XXXU
g , ZZZ2g, ZZZU

2g, the interaction

terms, and the associated parameters into their n level, s level, and c level subcomponents and rewrite

the production function and estimating equation in the expanded notation. Let XXX∗g ≡≡≡ [[[XXX∗n,,,XXX
∗
s ,,,XXX

∗
c ]]],

ZZZ∗g ≡≡≡ [[[ZZZN∗
n ,,,ZZZS∗

s ,,,ZZZC∗
c ]]], with corresponding notation for the level-specific subvectors of ΓΓΓ

∗ and ρρρ∗.

Then define the subcomponents of these level-specific subvectors analogously to those defined in

Section 3 (e.g. ρρρN ≡≡≡ [[[ρρρN′
1 ,,,ρρρNU ′

1 ,,,ρρρN′
2 ,,,ρρρNU ′

2 ]]]
′
). Also, replace the scalar Mi with the vector MMMi. Then

14Proposition 4 can be proved simply by (1) substituting into the estimating equation (10) the expressions from
Propositions 2 and 3 for BBB, rrr1, rrr1, GGG1, GGG2, GGG3, and GGG4, (2) subtracting off all the observed regression indices from
the production function for Yi given by (9), and (3) taking group means and within-group deviations of the production
function components that remain. To obtain z̃U

2g in (19) we also use the fact that by definition zU
g , which appears in (9), is

equal to XXXU
g ΓΓΓ

U
1 + zU

2g, where zU
2g = ZZZU

2gΓΓΓ
U
2 .
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the production function (9) becomes

Yi = XXX iβββ +XXXnΓΓΓ
N
1 +XXX sΓΓΓ

S
1 +XXXcΓΓΓ

C
1 +ZZZN

2nΓΓΓ
N
2 +ZZZS

2sΓΓΓ
S
2 +ZZZC

2cΓΓΓ
C
2c

+MMMi⊗⊗⊗XXXnρρρ
N
1 +MMMi⊗⊗⊗XXX sρρρ

S
1 +MMMi⊗⊗⊗XXXcρρρ

C
1 +MMMi⊗⊗⊗ZZZN

2nρρρ
N
2 +MMMi⊗⊗⊗ZZZS

2sρρρ
S
2 +MMMi⊗⊗⊗ZZZC

2cρρρ
C
2

+XXXU
n ΓΓΓ

NU
1 +XXXU

s ΓΓΓ
SU
1 +XXXU

c ΓΓΓ
CU
1 +ZZZNU

2N ΓΓΓ
NU
2 +ZZZSU

2s ΓΓΓ
SU
2 +ZZZCU

2c ΓΓΓ
CU
2

MMMi⊗⊗⊗XXXU
n ρρρ

NU
1 +MMMi⊗⊗⊗XXXU

s ρρρ
SU
1 +MMMi⊗⊗⊗XXXU

c ρρρ
CU
1 +MMMi⊗⊗⊗ZZZCU

2n ρρρ
NU
2 +MMMi⊗⊗⊗ZZZSU

2s ρρρ
SU
2 +MMMi⊗⊗⊗ZZZCU

2c ρρρ
CU
2

+xU
i +ηnsci +ξnsci, (21)

where⊗⊗⊗ is the Kronecker product. Note that by decomposing ZZZ∗g into distinct neighborhood, school,

and commuting zone subcomponents, we have implicitly assumed away cross-level interactions of

neighborhood, school and commuting zone characteristics, such as average teacher salary with the

availability of local four year colleges.15

The corresponding MME model (10), becomes

Ygi = XXX iBBB+XXXnGGGN
1 +XXX sGGGS

1 +XXXcGGGC
1 +ZZZN

2nGGGN
2 +ZZZS

2sGGG
S
2 +ZZZC

2cGGGC
2

+[MMMi⊗⊗⊗XXXn]rrrN
1 +[MMMi⊗⊗⊗XXX s]rrrS

1 +[MMMi⊗⊗⊗XXXc]rrrC
1

+[MMMi⊗⊗⊗ZZZN
2n]rrr

N
2 +[MMMi⊗⊗⊗ZZZS

2s]rrr
S
2 +[MMMi⊗⊗⊗ZZZC

2c]rrr
C
2

+(vn− vs)+(vs− vc)+ vc +(vi− vn), (22)

where we have imposed the fact that Proposition 3 implies that GGG3 and GGG4 are zero.

4.5.1 The Challenge of Separately Identifying Unobserved Neighborhood, School and Com-
muting Zone Influences

The expanded notation facilitates discussion of an important limitation on our ability to fully

identify the relative contributions of neighborhood, school, and commuting zone inputs. The prob-

lem stems from the unobservables ZZZU
2g. While the school component ZZZS

2sGGG
S
2 will not include any

peer effects or individual-level contributions, Proposition 3 implies that it may include unobserved

neighborhood inputs if they cluster at the school (but not CZ) level. To see this, note first that

GGG2 = ΓΓΓ2 +ΠΠΠzU
2gZZZ2g

from Proposition 3. Next, note that zU
2g ≡ ZZZNU

2n ΓΓΓ
NU
2 +ZZZSU

2s ΓΓΓ
SU
2 +ZZZCU

2c ΓΓΓ
CU
2 , and

that ZZZS
2s is the school subvector of ZZZ2g. If ZZZNU

2n ΓΓΓ
NU
2 is clustered at the school level and predictable

by ZZZS
2s, this will be reflected in the columns of ΠΠΠzU

2gZZZ2g
corresponding to ZZZS

2s. As a result, Proposition

3 says that the school component GGGS
2 of GGG2 will pick up part of ZZZNU

2N ΓΓΓ
NU
2 . Similarly, if ZZZNU

2n ΓΓΓ
NU
2 or

ZZZSU
2s ΓΓΓ

SU
2 is clustered at the commuting zone level, it may be reflected in the CZ component GGGC

2 . For

example, if the commuting zones that feature many colleges have schools with better principals on

average, and this advantage is not predictable based on the observed school characteristics XXX s and

15One could define a school effect for a particular type of commuting zone, or an effect of the marginal distribution of
commuting zone characteristics. We lack the statistical power to identify such effects, especially given the large number
of possibilities and the lack of guidance from prior literature, so we do not pursue this here.
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ZZZS
2s, then it will be reflected in GGGC

2 if ZZZ2c includes a variable capturing the number of colleges in the

CZ.

Furthermore, vs−vc and vc will include the part of ZZZNU
2n ΓΓΓ

NU
2 that varies across schools or across

CZs (respectively) that is not predictable by XXXg and ZZZ2g. Analogous problems occur with unob-

served school inputs that cluster at the CZ level. For example, if the commuting zone containing

Boston has schools with better average principal quality than would be predicted by XXXg and ZZZ2g,

then vc will be higher for the Boston CZ.

Similar issues also affect interpretation of the interaction coefficients rrrS
2 and rrrC

2 . Proposition 3

states that rrr2 = ρρρ2 +ΠΠΠZZZU
2gZZZ2g

ρρρUUU
222 , where ΠΠΠZZZU

2gZZZ2g
is defined in (15). The CZ subvector rrrC

2 of rrr2 will

capture not just interactions involving ZZZCU
2c , but also part of interactions involving ZZZNU

2n and ZZZSU
2s to

the extent that ZZZ2c predicts ZZZNU
2n and ZZZSU

2s conditional on XXXg, ZZZN
2n, and ZZZS

2s.

What about CZ-level unobservables represented by ZZZCU
2c ΓΓΓ

CU
2c ? If the full set of commuting zone

averages of ZZZN
2n and ZZZS

2s were included in ZZZC
2c, then we could rule out the possibility that any unob-

served commuting zone inputs could project onto either ZZZS
2n or ZZZS

2s and be captured by GGGN
2 or GGGS

2.

This is because neighborhoods and schools are nested within commuting zones. More generally,

with nested levels, one can prevent unobservable inputs from being captured by regressors (includ-

ing interactions) associated with lower levels of aggregation by including the appropriate higher

level averages of lower-level characteristics. Thus, with nested levels one could in principle place a

lower bound on the relative importance of inputs at the lowest level (neighborhoods in our empirical

work) and an upper bound on the relative importance of inputs at the highest level (CZs). We seek

to approximate this approach, though we cannot fully implement it due to concerns about overfitting

given limited numbers of units at each level.

5 Data, Variable Selection, and Specification of Interactions

5.1 Overview of Data Sources

We use two panel data sets, the National Educational Longitudinal Survey of 1988 (NELS88)

and the Educational Longitudinal Survey of 2002 (ELS2002).16 These data sources possess a num-

ber of common properties that make them well-suited for our analysis. First, each samples an entire

cohort of American students. The cohorts are students who were 8th graders in 1988 for NELS88,

and 10th graders in 2002 for ELS2002. Second, each source provides a representative sample of

American 8th grades and high schools, respectively, and samples of students are selected within

each school. Public, private, and parochial schools are represented.17 Enough students are sam-

pled from each school to permit construction of estimates of the school means of a large set of

16The section draws heavily on Section 5 of AM, with some material verbatim.
17We include private schools because they are an important part of the education landscape. The model in Section 2

implies that we should include group averages for the neighborhood/school pairs to control for sorting on unobservables,
but that is not practical, because sample sizes are too small. We include XXX s for the school and census-based demographic
variables at the ZIP code or block group level, which we denote XXXn even though they include characteristics of residents
who are not students or parents.
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student-specific variables and to provide sufficient within-school variation to support the variance

decomposition described below. Third, each survey administered questionnaires to school adminis-

trators in addition to sampling individuals at each school. This provides us with a rich set of both

individual-level and school-level variables to examine, allowing a meaningful decomposition of ob-

servable versus unobservable variation at both levels of observation. Fourth, each survey contains

information on the student’s location of residence. In the case of NELS, we observe the student’s

ZIP code in grade 8. In ELS, we observe the student’s census block and ZIP code of residence in

grade 10. Observing residential location is critical for characterizing the relative contributions of

neighborhood versus school inputs as well as the relative importance of neighborhood versus school

amenities in driving student sorting. Finally, each survey collects follow-up information from each

student past high school graduation, facilitating analysis of the impact of high school environment

on outcomes economists and policymakers particularly care about: educational attainment and wage

rates.

While there is considerable overlap in the survey questionnaires associated with NELS88 and

ELS2002, we chose not to restrict attention to the set of variables that are available and measured

consistently across the two datasets. This is because the efficacy of the control function approach

depends on the richness and diversity of our student-level measures, and using the intersection of

the two datasets limits the diversity of student characteristics. In practice, the variables lists are

similar, as one can see in Appendix A1. Section 5.3 describes the process by which we chose

which variables to include in XXX i, XXXn, XXX s, XXXc, ZZZS
2s, and ZZZC

2c. Unfortunately, the panel surveys do

not contain neighborhood-level variables, though we do merge in Census-based and LODES-based

neighborhood-level demographic averages to bolster the control function.

Coding of most of the variables is straightforward, but in some cases variables are the first

principal components constructed from the responses to batteries of questions about topics such as

the home environment, school policies for reducing dropout rates, and quality of school facilities,

among others.

As AM discuss, a drawback of the surveys is that the number of students sampled per school is

only about 24 for NELS and 20 for ELS.18 Simulation results in AM indicate that samples of this

size may reduce to a small degree the ability of sample school averages of observable characteristics

to serve as an effective control function for variation in average unobservable student contributions

across schools. In Online Appendix B4 we present additional simulations featuring estimates of GGG2

and rrr2 from specifications in which XXXg is formed using only 10, 20, or 40 individuals per group. We

show that the estimates are close to the corresponding true values unless the correlation between the

amenity factors and the elements of ZZZ2g is quite high. In this case the use of small samples causes

slight underestimates of the magnitude of the interaction coefficients rrr2 and overestimates of the

magnitude of the main effects GGG2.

We restrict our samples to those individuals whose school administrator filled out a school sur-

18School averages are computing using all students in the base year surveys of NELS and ELS, respectively, not just
those in the estimation samples.
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vey, and who have non-missing information on the outcome variable and the following key charac-

teristics: race, gender, SES, test scores, region, and urban/rural status. We then impute values for

the other explanatory variables to preserve the sample size, since no other single variable is critical

to our analysis.19

5.2 Outcome Measures and Weighting

HSGRAD is an indicator for whether a student has a high school diploma (not including a GED)

as of two years after the high school graduation year of his/her cohort. ENROLL is an indicator for

whether the student is enrolled in a four year college in October of the second year beyond the high

school graduation year of his/her cohort. COLLBA is an indicator for whether the student has a

four-year degree at around age 25. Log wages are hourly and in 2009 dollars. They are reported at

about age 25.

Use of COLLBA and log wage results in a loss of sample, because it requires use of the NELS 4th

follow-up and the ELS 3rd follow-up. High school graduation rates and four year enrollment rates

in the previous follow-up surveys are somewhat higher among respondents who are also observed

in the final followups.20 Summary statistics for the outcome measures are in Table 1-1.

We do not use panel weights because we experienced convergence problems when we attempted

to estimate the variance components of the mixed level models using weights. One might want to

use weights for three reasons. The first is to account for the stratified sampling regime used by the

sample designers. The second is differential attrition associated with the explanatory variables. The

third is because follow-up probabilities are based on outcomes. The slope parameter estimates are

not sensitive to weighting, but we do not know whether weighting would affect the estimates of the

error component variances.

5.3 Selection of XXX i, XXXn, XXX s, ZZZN
2n, ZZZS

2s, and ZZZC
2c

AM discuss the principles governing variable selection. XXX i should include variables that directly

affect the outcome and/or are correlated with unobserved student level characteristics that affect the

outcome. We focus attention on a “full” specification which includes in XXX i measures of student

behavior, parental expectations, and student academic ability (standardized test scores). Such mea-

sures may be influenced directly by school and location inputs, so including them could cause an

underestimate of the contribution of school and location inputs. As a result, our lower bound esti-

mates will be too conservative. On the other hand, excluding such measures could instead cause an

overestimate of the contribution of location- and school-level inputs if the more limited set of student

19We include mother’s education combined with a missing indicator for mother’s education when performing impu-
tation, along with school averages of all the key characteristics above.

20This partly contributes to the higher mean of COLLBA than ENROLL in NELS: the mean of ENROLL among
sample members of the 3rd follow-up survey in NELS is 0.353 vs. 0.327 among those in the 2nd follow-up (when
the outcome is determined), suggesting some differential attribution is taking place. However, transfers from two-year
colleges and other delayed entrants to four year college could also account for a higher graduation than enrollment rate,
given the way these outcomes are defined.
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observables no longer satisfies the spanning condition A5 stated in Proposition 1. In that case, there

would exist differences in average unobservable student contributions to outcomes across schools

that are not predicted by the vector of school averages of observable characteristics. We also discuss

results for a “basic” specification that only includes student-level characteristics that are unlikely to

be affected by the neighborhood and high school the child attends.

For purposes of the control function, XXXg should contain aggregates of XXX i at the (n,s) school/neighborhood

level. In practice, due to sample size limitations we include XXX s as well as XXXn variables, but not av-

erages over (n,s) pairs. The XXXn variables are census-based measures of the demographic makeup

of the neighborhood.21

ZZZN
2n, ZZZS

2s, and ZZZC
2c should include observed neighborhood, school and commuting zone charac-

teristics that could plausibly influence the socioeconomic outcome of interest, including school and

location policies that may be partially affected by student composition. ZZZN
2n and ZZZS

2s should exclude

variables that are simple aggregates of parent/student traits that might also affect willingness to pay

for neighborhood characteristics and thus lead to sorting. These are XXXn or XXX s variables regardless

of whether the source is aggregates of the student micro data, Census data, or administrative data

from the schools. Unfortunately, we do not observe any neighborhood-level variables that are not

population aggregates, so we do not include any ZZZN
2n variables in our empirical work. As a result,

below we primarily focus attention on the impact of shifts in school- and commuting zone-level

treatments. If the composition variables included in XXXn and XXX s are sufficiently rich to plausibly sat-

isfy the spanning assumption A5, then the coefficients on commuting-zone demographic averages

that would otherwise belong in XXXc should not capture any student sorting on unobservables under

the assumptions of the model. In this case such averages may be considered part of ZZZC
2c, since they

are likely to only absorb the impacts of unobserved causal commuting zone characteristics.

As AM discuss, group-level variables such as a school’s frequency of fights or average test

scores that capture earlier outcomes that were jointly produced by both individual- and group-level

variables fall in a grey area. We exclude such variables entirely from the baseline specification on

the grounds that they are determined by other observed and unobserved variables in the model. We

include them in the control function XXXg in the full specification. To the extent that school policy

and the skill of teachers and the administration have a large effect on fighting and/or test scores,

assigning these measures to the control function leads to conservative estimates of group effects.

Appendix A1 lists the final choices of individual-level and school-level explanatory measures

used in each dataset.22 Online Appendix table B2 provides the mean, standard deviation, and percent

21As AM discuss, in principle the control function variables can be augmented with aggregates of outcome-irrelevant
characteristics QQQi or even directly observed amenities in AAAg, since its purpose is to span the space of amenities that drive
sorting on XXXU

i .
22In preliminary work we experimented with a grouped backward stepwise regression procedure to pare down the

variable sets at each unit level. One could also consider other procedures, such as group lasso (Meier et al. 2008; Yuan
and Lin 2006). Ultimately, we chose not to use these procedures because of uncertainty about how to do statistical
inference, about the computational feasibility, about statistical properties of a bootstrap procedure that accounts for both
variable selection and sampling error given variable choice, and about how to correct for finite sample bias in the variance
estimates. The three step estimation method we use is computationally demanding.
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of observations imputed for each individual-level and school-level characteristics for each of our

data sets.

Table 1-2 provides the number of neighborhoods, schools, and commuting zones for each com-

bination of dataset and outcome. While the number of commuting zones and schools is substantial,

the demands of estimating our model are also substantial given the lack of prior information about

which school and commuting zone variable are likely to have large effects. The precision of our

estimates is reduced by the need to work with a fairly large number of ZZZS
2s and ZZZC

2c variables, along

with large numbers of variables in the control functions XXXn and XXX s.

6 Estimation Methods

6.1 Restricting the Estimating Equation

We estimate the following restricted version of the MME estimating equation (22):

Ygi = XXX iBBB+XXXnGGGN
1 +XXX sGGGS

1 +ZZZS
2sGGG

S
2 +ZZZC

2cGGGC
2

+(((XXX iBBB)))(((XXXnGGGN
1 )))r

N
1 +(((XXX iBBB)))(((XXX sGGGS

1)))r
S
1 +MMMi⊗⊗⊗ (((ZZZS

2sGGG
S
2)))rrr

S
2 +MMMi⊗⊗⊗ (((ZZZC

2cGGGC
2 )))rrr

C
2

+(vi− vn)+(vn− vs)+(vs− vc)+ vc, (23)

where Ygi is a latent index for the binary education outcomes. Several restrictions merit mention.

First, we have excluded ZZZN
2nGGGN

2 and (MMMi⊗⊗⊗ZZZN
2n)rrr

N
2 because our only neighborhood-level variables

are demographic means that belong in XXXn. Second, we have also excluded XXXcGGGC
1 because average

student characteristics at the neighborhood and school levels should fully control for sorting bias.

This is because CZ is implicitly a part of the choice of n and s. Thus, to prevent overly conserva-

tive treatment effect estimates, CZ composition variables are placed in ZZZC
2c. We also exclude the

interaction term (MMMi⊗⊗⊗XXXc)rrrC
1 .

Third, to retain sufficient precision, we have to reduce the dimensionality of the interactions

between student characteristics and peer characteristics as well as between student characteristics

and neighborhood, school, and commuting zone characteristics. We set MMMi to consist of the index

XXX iBBB and indicators for whether the student is female, a member of an underrepresented minority

group (denoted 1(URM) below and coded as Hispanic or non-Hispanic black), and whether the

student’s family is in the bottom quartile in our sample of the ratio of family income to average rent

in the commuting zone (1(LOWINC)). Thus, using the definition of the Kronecker product ⊗⊗⊗,

MMMi⊗⊗⊗ZZZS
2sGGG

S
2 === [(XXX iBBB)ZZZS

2sGGG
S
2, 1(Female)ZZZS

2sGGG
S
2, 1(URM)ZZZS

2sGGG
S
2, 1(Low Income)ZZZS

2sGGG
S
2],

and MMMi⊗ (ZZZC
2cGGGC

2 ) has the same form. Including XXX iBBB in MMMi imposes the restriction that for white

males from high income families, the strength of interactions depends upon components of XXX i in

proportion to their direct effects on the outcome. Including the three additional indicator variables in

MMMi allows a somewhat more general pattern of interactions for particular subpopulations for whom
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differential interactions have often been posited in the literature.

In addition, to keep the main specification parsimonious, we only allow student characteristics to

interact with the indices XXXnGGGN
1 , XXX sGGGS

s , ZZZS
2sGGG

S
2, and ZZZC

2cGGGC
2 . 1(Female), 1(URM), and 1(LOWINC)

are further restricted to interact only with ZZZS
2sGGG

S
2 and ZZZC

2cGGGC
2 and not with XXXnGGGN

1 or XXX sGGGS
s . We

experimented with additional interactions, but did not find sufficiently compelling evidence for them

given the loss of precision they required.23

Finally, as discussed in section 4.5.1, to improve the allocation of school-level factors to esti-

mates of the school treatment effects and the allocation of community-level factors to the estimates

of CZ-level effects, we also include school and commuting zone averages of the index XXXnĜGG
N
1 as

well as the commuting zone averages of the indices XXX sĜGG
S
1 and ZZZS

2sĜGG
S
2 with separate coefficients.

The school and commuting zone averages of XXXnĜGG
N
1 and the commuting zone average of XXX sĜGG

S
1 are

treated as control function variables and are excluded from the estimates of school and commuting

zone treatment effects described below. The commuting zone average of the index ZZZS
2sĜGG

S
2 is treated

as a commuting zone characteristic that is contained in ZZZC
2c in (23). It contributes to our estimates

of the variance in commuting zone treatment effects described below. Since its coefficient should

not be affected by sorting bias under assumptions A1-A7, and is identified purely from between-

commuting zone variation, it is likely to capture unobserved commuting zone inputs.

6.2 Estimating the Model Parameters

For estimation of (23), we assume that the random effects are all normally distributed. Our anal-

ysis of the importance of neighborhood, school and commuting zone depends heavily on estimating

the student-weighted standard deviations and covariances of the indices XXXnGGGN
1 , XXX sGGGS

2, ZZZS
2sGGG

S
2, and

ZZZC
2cGGGC

2 as well as the standard deviations of vc, vs− vc, vn− vs, and vi− vn. In principle, one could

estimate (23) in one step by maximum likelihood with index restrictions imposed. Due to the com-

putational burden, we estimate the slope parameters BBB, GGGN
1 , GGGS

1, GGGS
2, GGGC

2 , rN
1 ,r

S
1, rrrS

2, and rrrC
2 and obtain

initial estimates of sd(XXX iBBB))), sd(XXXnGGGN
1 ))), sd(XXX sGGGS

s ))), sd(ZZZS
2sGGG

S
2))), sd(ZZZC

2cGGGC
2 ))) and sd(vc), sd(vs− vc),

sd(vn− vs), and sd(vi− vn) in two steps. First, we estimate the slope parameters with nonlinear

restrictions imposed, but treat the error term as a composite. We use nonlinear least squares for log

wages and MLE probit (given the normality assumption) for the binary education outcomes. In both

cases we ignore the error correlation structure. In the second step we estimate sd(vc), sd(vs− vc),

sd(vn− vs), and sd(vi− vn) and update rN
1 ,r

S
1, rrrS

2, and rrrC
2 . We also implicitly allow the elements of

B̂BB to update by a common factor of proportionately, and we do the same for ĜGG
N
1 , ĜGG

S
1, ĜGG

S
2, ĜGG

C
2 (in

practice, this made little difference). We experienced computational difficulties when using max-

imum likelihood in the second step. Instead, we adopt a Bayesian approach, which we treat as a

23We considered specifications in which 1) all of the variables in Mi interact with XXXnGGGN
1 and XXX sGGGS

s , 2) 1(Hispanic)
and 1(Non−Hispanic Black) entered with separate interactions with the indices of external inputs, and 3) interactions
between 1(Female) ∗ 1(Black) and ZZZS

2sGGG
S
2 and ZZZC

2cGGGC
2 were introduced to allow race-by-gender specific sensitivity to

external inputs. Unfortunately, such interactions were so noisy that even large effects were statistically insignificant.
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computational device that we use to compute MLE estimates.24 Appendix B3.1 provides a more

detailed description of the two-step procedure.

The third step of the estimation procedure is to adjust the updated estimates of sd(XXX iBBB), sd(XXXnGGGN
1 ),

sd(XXX sGGGS
s ), sd(ZZZS

2sGGG
S
2), sd(ZZZC

2cGGGC
2 ) and the estimates of sd(vc), sd(vs− vc), sd(vn− vs), and sd(vi−

vn) from step 2 for finite sample bias. This would be necessary even if we had estimated the model

via MLE in one step. Consider sd(ZZZS
2sGGG

S
2). The initial estimate corresponds to sd(ZZZS

2sĜGG
S
2), the stan-

dard deviation of the index based on the estimate ĜGG
S
2. It will be biased upward by sampling error

in ĜGG
S
2. The same problem affects sd(XXXnĜGG

N
1 ))), sd(XXX sĜGG

S
s ))), and sd(ZZZC

2cĜGG
C
2 ))). The bias arises for the

same reason R2 overstates the explanatory power of a linear regression in finite samples. Because

the hierarchical nature of the model and the control function strategy we adopt requires the use of

a large number of variables at four different levels, finite sample bias from sampling error is not

negligible given our sample sizes. Keeping in mind that all variables are mean zero, we separate the

signal and noise subcomponents of the initial estimate sd(ZZZS
2sĜGG

S
2s))) using the equation

[sd(ZZZ2sĜGG
S
2)]

2 =
1
N ∑

i
(ZZZS

2s(i)GGG
S
2GGGS′

2 ZZZS′
2s(i))+

1
N ∑

i
ZZZS

2s(i)[ĜGG
S
2−−−GGGS

2][ĜGG
S
2−−−GGGS

2]
′ZZZS′

2s(i), (24)

where N is the sample size. The expectation of the second (sampling variance) term, conditional on

ZZZS
2s(i), is

1
N ∑

i
ZZZS

2s(i)vvvaaarrr(ĜGG
S
2)))ZZZ

S′
2s(i) (25)

Using (25) the bias-adjusted estimator of sd(ZZZS
2sGGG

S
2))) is

ŝd(ZZZ2sGGGS
2) = [sd(ZZZ2sĜGG

S
2)

.5− [
1
N ∑

i
ZZZS

2s(i)V̂VV aaarrr(((ĜGG
S
2)))ZZZ

S′
2s(i)]]]

.5.

However, we do not adjust the r coefficients on the interaction terms (where we conjecture that the

sampling error in the indices might bias estimates of interaction effects toward zero).25

Since the sampling error in the regression indices reflects true contributions of the error compo-

nents to Yi, the flip side of upward bias in Var(XXXnĜGG
N
1 ))), Var(XXX sĜGG

S
s ))), Var(ZZZS

2sĜGG
S
2))), and Var(ZZZC

2cĜGG
C
2 )))

is downward bias in the estimates of Var(vc), Var(vs−vc), Var(vn−vs), and Var(vi−vn), which do

not account for degrees of freedom used in estimation.26 We discuss how we allocate the bias ad-

24Specifically, we assign prior distributions from which our slope parameters and random effect variances are drawn,
and use Markov-chain Monte Carlo methods to estimate the means of the posterior distributions governing these parame-
ters. We use these posterior means in place of the fixed parameters defined in (23) when reporting results and computing
estimates of the impact of alternative group-level treatments below. The estimates are not very sensitive to modest changes
in the priors for Var(vc), Var(vs− vc), Var(vn− vs).

25We estimate V̂VV aaarrr(((ĜGG
S
2))) using the formula for the asymptotic variance of the Step 1 estimates. We account for

clustering at the commuting zone level but not for the use of imputed data. We perform similar adjustments to the Step 2
estimates of the other index standard deviations.

26The same issue arises in linear regression with one normally distributed error component. In this case, the MLE
estimator of the error variance is the sum of squared residuals divided by the sample size. The unbiased estimator adjusts
for degrees of freedom by dividing by the sample size minus 1 plus the number of regressors. This is a restricted maximum
likelihood estimator (REML). Unfortunately, the REML estimator does not exist for multilevel probit models. AM use
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justments across these error components to remove this downward bias in Online Appendix B3.2.27

In the case of the log wage outcome, vi contains the age 25 or 26 error component and thus

includes both permanent and transitory variation. We lack the wage panel data necessary to isolate

the permanent component. Consequently, we estimate the variance of the permanent component

of vi under the assumption that the transitory component of the wage makes up the same 52.3%

share of cross-sectional wage variance at age 25 in the ELS and NELS samples as it did for the high

school class of 1972 cohort (sampled in NLS72) examined in Altonji and Mansfield (2011).

The standard errors in the paper are based on a bootstrap approach encompassing the entire

estimation procedure, including the construction of XXX s, imputation of missing data, and the bias

corrections to the standard deviations of the regression indices. In particular, they account for the

fact that the coefficients that define the index variables used in the second step are estimated.28

Across outcome variables, data sets, and specifications, we find that the means of the bootstrap

replications of ŝd(XXXnGGGN
1 ))), ŝd(XXX sGGGS

s ))), ŝd(ZZZS
2sGGG

S
2))), ŝd(ZZZC

2cGGGC
2 ))) are above the point estimates. Not

surprisingly, the disparity is even greater for the variance component estimates based on them, which

underlie the variance decompositions in Tables 2 and 3. The distribution of the bootstrap estimates

display a right skew as well as a mean shift. For this reason, we report 5th and 95th percentile values

of the bootstrap distribution of our estimated variance components. The distribution of the estimates

of the treatment effects of a 10th-90th percentile shift in school and/or commuting zone quality are

less sensitive to the issue. More work on the best way to implement bias corrections and perform

related statistical inference is needed.

6.3 Variance Decomposition Methodology

Here we describe the simple variance decomposition procedure that we use to 1) provide an

initial, descriptive sense of the relative importance of inputs at each level (individual, neighborhood,

school, commuting zone) in determining the outcomes of interest, and 2) assess the degree to which

amenities at the neighborhood, school, and commuting zone level are driving student sorting.

the ML estimator for the two level random effects probit and then correct for bias based on the formulas relating the
unbiased estimators and the ML estimators in the case of a continuous outcome. We explored the possibility of extending
AM’s approach to the four level case, but were not able to find (or derive) the necessary formulas for four-level ML and
REML variance component estimators.

27If the bias-adjusted estimate of a variance is negative, we set it to 0. The bias-adjusted estimate of the covariance
between two terms is set to 0 if the estimate of the variance of one of the terms is 0. If the correlation between two terms
implied by bias-adjusted estimates exceeds 1 in absolute value, we adjust the covariance to make the correlation 1 in
absolute value.

28The standard error estimates are based on re-sampling commuting zones with replacement. To preserve the size
distribution of the samples of students from particular commuting zones, we divide the sample into ten CZ sample size
classes and resample CZs within class. For CZs in the largest size class, we break the CZs into two groups, each containing
half the schools. We sample these half CZs instead to prevent any one bootstrap cluster from accounting for too large a
share of the sample. Due to the considerable computational burden of the model estimation and the simulations relative
to the computer resources available for use with the restricted-use versions of ELS and NELS, we use 200 replications
to form the bootstrap estimates. Furthermore, we use fewer (8) MCMC chains of length 500 rather than the 30 chains
of length 1000 that we use to compute the point estimates after first verifying that estimates are not very sensitive to this
choice. This might lead to an overstatement of the standard errors.
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To simplify the empirical analysis we define neighborhoods to be nested within schools, which

are themselves nested within commuting zones.29 We use a version of our estimating equation with

interaction terms excluded.30

Yi = XXX iBBB+XXXnGGGN
1 +XXX sGGGS

1 +ZZZS
2sGGG

S
2 +ZZZC

2cGGGC
2 +(vi− vn)+(vn− vs)+(vs− vc)+ vc. (26)

One can then write the outcome as the sum of orthogonal components:

Yi = (Yi−Yn)+(Yn−Ys)+(Ys−Yc)+Yc. (27)

Because the components in (27) are mutually orthogonal, Var(Yi) is:

Var(Yi) =Var(Yi−Yn)+Var(Yn−Ys)+Var(Ys−Yc)+Var(Yc) (28)

We are not able to fully characterize sorting on both observed and unobserved student level char-

acteristics because group averages of XXX i absorb not only the unobserved group averages of XXXU
i but

also part of the group treatment effect. Instead, we use an analogous four-component decomposition

to analyze the structure of sorting on the index of observable characteristics XXX iBBB that best predicts

the outcome:

Var(XXX iBBB) =Var((((XXX i−−−XXXn)))BBB)+Var((((XXXn−−−XXX s)))BBB)+Var((((XXX s−−−XXXc)))BBB)+Var(XXXcBBB) (29)

To our knowledge, we are the first to perform such a decomposition based on commuting zone,

school and census block group combinations.

6.4 Measuring the Effect of Shifts in School and Commuting Zone Quality

Decompositions of variance provide an overall sense of the relative importance of individ-

ual, neighborhood, school, and commuting zone inputs in determining later educational outcomes.

However, they do not permit one to easily gauge the impact that a substantial improvement in exter-

nal environment can have on a student’s expected educational attainment. Consequently, we extend

to models with student-specific slopes AM’s methodology for converting variance components into

expected impacts on outcomes of particular shifts in school and/or community input quality. Here

we describe the three distinct treatments we consider.

29In the empirical work our narrowest definition of neighborhood is the census block group. In a few cases, students
from the same block group choose different schools. We treat students from the same block group who attend different
schools as if they live in different block groups by using school-block group combinations as our definition of a neigh-
borhood. Nesting neighborhood within school is required by the routine we use to estimate the variances of the error
components. But it may diminish the precision of our estimates of neighborhood and school effects on outcomes. The
same issue arises when ZIP code is the neighborhood definition. Note that the choice model in Section 2 allows families
who live in a given neighborhood to choose different schools.

30When interactions are included in the model, the within-neighborhood variance will differ across neighborhoods
based on the degree to which students sensitive to environment are located in neighborhoods/schools offering more
supportive environments, preventing a simple decomposition.
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6.4.1 The Combined School and Commuting Zone Treatment

First, we evaluate the expected change in outcomes associated with moving a randomly cho-

sen student from a school/commuting zone combination at the 10th percentile of the combined

school/commuting zone quality distribution to the 90th percentile. From our production function (8),

the true distribution of combined school/commuting zone quality may be defined as the distribution

of ZZZS∗
s ΓΓΓ

S∗+ZZZC∗
c ΓΓΓ

C∗. We approximate this combined school/commuting zone quality distribution

using the distribution of T = ZZZS
2sGGG

S
2 +ZZZC

2cGGGC
2 +(vs−vc)+vc, where we use T to denote the particu-

lar “treatment” chosen. Because we exclude the control function XXXnGGGN
1 +XXX sGGGS

1, which may capture

peer effects and other unobserved school and commuting zone inputs in addition to student sort-

ing, our estimated impacts of 10th-to-90th percentile shifts in school/commuting zone quality will

likely understate the impact of the corresponding 10th-to-90th percentile shifts in ZZZS∗
s ΓΓΓ

S∗+ZZZC∗
c ΓΓΓ

C∗.

On the other hand, as the discussion in subsection 4.5.1 made clear, to the extent that unobserved

neighborhood inputs are clustered in particular schools and commuting zones, such inputs could

contribute to GGGS
2, GGGC

2 , vs− vc, and vc.31

Building an estimator of the impact of these quantile shift “treatments” is complicated by the

interaction terms in (10). First, we assume that the treatment distribution T ≡ ZZZS
2sGGG

S
2 + ZZZC

2cGGGC
2 +

(vs− vc)+ vc is normally distributed, so that the q-th treatment quantile (denoted T q) is given by

T q = ˆVar(T ).5Φ−1(q) where Φ−1(∗) is the inverse CDF of the standard normal distribution. Next,

note that the interaction terms MMMi⊗ (ZZZS
2sGGG

S
2)rrr

S
2 and MMMi⊗ (ZZZC

2cGGGC
2 )rrr

C
2 depend separately on the sub-

components ZZZS
2sGGG

S
2 and ZZZC

2cGGGC
2 of the full treatment T . We handle this by integrating over the

joint conditional distribution f (ZZZS
2sGGG

S
2,ZZZ

C
2cGGGC

2 |T = T q). We do this by taking P draws of the vector

[ZZZS
2sGGG

S
2,ZZZ

C
2cGGGC

2 ] from the appropriate joint multivariate normal conditional distribution and averag-

ing our predicted outcomes over these P draws. The parameters of that distribution are based on the

estimates of the variances and covariances of the components of the vector. In our main results we

also integrate over the distribution of student and neighborhood inputs. We use the empirical joint

distribution of observed student and neighborhood inputs from our sample by averaging over the

observed [XXX iB̂BB,XXXnĜGG
N
1 ,XXX sĜGG

S
1] vectors of all I students in the sample.

Thus, our estimator of the expected outcome at a chosen quantile q of the “treatment effect”

distribution is:

E[Ŷ q] =
1
P ∑

p

1
I ∑

i
Φ([XXX iB̂BB+XXXnĜGG

N
1 +XXX sĜGG

S
1 +T q

+(XXX iB̂BB)(XXXnĜGG
N
1 )r̂

N
1 +(XXX iB̂BB)(XXX sĜGG

S
1)r̂

S
1 +MMMi⊗ (ZZZS

2sGGG
S
2)pr̂rrS

2

+MMMi⊗ (ZZZC
2cGGGC

2 )pr̂rrC
2 )]/[1+Var(vn− vs)]) (30)

where (ZZZS
2sGGG

S
2)p and (ZZZC

2cGGGC
2 )p represent the p-th draws of these regression indices from the condi-

tional joint distribution f (ZZZS
2sGGG

S
2,ZZZ

C
2cGGGC

2 |T = T q). Note that Var(vi− vn) has been normalized to 1

31Even if such clustering is significant, one could interpret our estimates instead as lower bound estimates of the
impact of a shift in the combined neighborhood/school/commuting zone quality index ZZZN∗

n ΓΓΓ
N∗+ZZZS∗

s ΓΓΓ
S∗+ZZZC∗

c ΓΓΓ
C∗.
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in the denominator, because the scale of the latent index for binary outcomes is not identified.

We then compute the difference E[Ŷ 90]−E[Ŷ 10] to estimate the change in expected outcome

(e.g. the increase in the probability of high school graduation) for a randomly chosen high school

student from a 10th-to-90th percentile shift in school/commuting zone quality. Alternatively, this

quantity can be thought of as the increase in the population average outcome if we placed every stu-

dent in a 10th percentile school/commuting zone, and then moved each of them to a 90th percentile

school/commuting zone, but held the distribution of peer effects fixed. We refer to this counterfac-

tual as the “School and CZ” counterfactual in our tables and discussion.

6.4.2 The School Treatment and the Commuting Zone Treatment

The school counterfactual thought experiment or “treatment” consists of replacing each student’s

school inputs with those of the school at the 10th percentile versus 90th percentile of the school

quality distribution (defined by ZZZS
s ΓΓΓ

S∗), holding neighborhood and commuting zone inputs fixed.

We approximate the distribution of true school quality with the distribution of T ≡ ZZZS
2sGGG

S
2+(vs−vc).

This variable excludes the peer effects components XXX sΓΓΓ
S
1 and XXXU

s ΓΓΓ
SU
1 and also part of ZZZSU

2s ΓΓΓ
SU
2s and

so is likely to understate school effects. But as we discussed in 4.5.1, it may capture unobserved

neighborhood inputs that are clustered in particular schools.

The commuting zone counterfactual “treatment” replaces each student’s commuting zone inputs

with those of the commuting zone at the 10th percentile versus 90th percentile of the CZ qual-

ity distribution defined by ZZZC
c ΓΓΓ

C∗, holding neighborhood and school inputs fixed. Importantly,

this treatment does not include the subcomponent of school inputs that varies across commuting

zones (given by the commuting zone average of ZZZS∗
s ΓΓΓ

S∗). Thus, this counterfactual is designed to

gauge the importance of commuting zone-level inputs in their own right, rather than the impor-

tance of the choice of commuting zone in which to live (which combines commuting zone inputs

with differences in the distributions of neighborhood and school inputs across commuting zones).

We approximate the distribution of true commuting zone quality ZZZC
c ΓΓΓ

C∗ with the distribution of

T ≡ ZZZC
2cGGGC

2 +vc (and we do not include the between-CZ component of ZZZS
2sGGG

S
2, since GGGS

2 is identified

using between-school/within-CZ variation and is designed to capture school effects).32 This is again

an approximation due to the possibility that ZZZC
2cGGGC

2 and vc could partly reflect unobserved school or

neighborhood inputs. We refer to this counterfactual as the “CZ only” counterfactual in our tables

and discussion.

Computation of the school and CZ treatments are similar to the combined school and CZ treat-

ment. The formulas are in Online Appendix B3.3.

32Recall that the commuting zone average of ZZZS
2sGGG

S
2 enters our estimating equation as a separate commuting zone

variable with its own coefficient. Because the coefficient on this index is identified purely from between-commuting zone
variation, we include this index as part of our commuting zone treatment.
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6.4.3 Estimating Impacts of Shifts in School and Commuting Zone Quality for Particular
Subpopulations

In contrast to AM, the introduction of interaction terms in the estimated production function (10)

in this paper allows us to characterize the degree to which the outcomes of specific subpopulations

are particularly sensitive to the quality of external inputs at the neighborhood, school, or commuting

zone levels.33

The most straightforward approach is simply to restrict the sample used for the counterfactual

treatments to members of a particular subpopulation. We report results for the following subpopu-

lations: Hispanic students, non-Hispanic black students, white students in a single-mother house-

hold where the mother has a high-school education or less, and white students in a two-parent-

college-educated household. We use the empirical distribution of individual and neighborhood in-

puts XXX iB̂BB+XXXnĜGG
N
1 +XXX sĜGG

S
1, so restricting the sample naturally imposes the chosen sample’s joint

distribution of observed individual and neighborhood inputs. All elements of MMMi take on the values

for i, so that the results for Hispanic students, for example, reflect not only the interaction terms

involving the minority (non-Hispanic black or Hispanic) indicator but also the subgroup-specific

distribution of the other elements of MMMi, such as low income status, weighted by the corresponding

elements of the interaction coefficients r̂rrS
2 and r̂rrC

2 .

Our rich set of observed individual characteristics also allow us to investigate the degree to

which school and CZ treatment effects vary with the individual’s own contribution to the outcome,

as summarized by XXX iBBB. To do this, we fix XXX iBBB at each ventile dividing point [.05, . . . , .95] in its em-

pirical distribution in the sample, and compute the change in expected outcome for each of our three

counterfactual quality shifts (“School and CZ”, “School only”, and “CZ only”, described above) for

randomly chosen individuals at the chosen ventile of XXX iBBB. We do not hold fixed the kind of neigh-

borhood such students tend to experience, but are instead randomly assigning a neighborhood from

the full population distribution for both the low (T 10) and high (T 90) treatment values.

See Online Appendix B3.3.2.

As we discuss in detail in Section 8.1.1, part of the differential sensitivity for binary outcomes

arises from the nonlinearity of the probit function. Even if each of the interaction parameters

{rN
1 ,r

S
1,rrr

S
2,rrr

C
2} were equal to zero, we should expect heterogeneity in outcome sensitivity. This

is because some subpopulations have more students near the decision margin (as evidenced by dif-

ferent mean outcome values).

7 Results

We begin by presenting in Section 7.1 the decompositions of variance described in Section 6.3.

Section 7.2 then presents estimates of the interaction coefficients and the standard deviations of

the regression indices and random effects from the interactive specification (23). We focus on the

33The only non-linearity in AM comes from the probit function for binary outcomes.
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estimates for the “full” set of XXX i variables. Model estimates and variance decompositions for the

“basic” set are in the online appendix. As expected, they usually imply a more important role

for school and commuting zone factors in education and wages. We present the treatment effect

estimates based on them in Section 8.

7.1 Decompositions of Variance

7.1.1 The Extent of Neighborhood-, School-, and Commuting Zone-Level Clustering in Out-
comes

Table 2 decomposes the variance of log wages and the latent probit indices Yi that determine the

three education outcomes into components at the individual, neighborhood, school, and commuting

zone levels. These are based on results for the linear version of (26) in which the interaction param-

eters {rN
1 ,r

S
1,rrr

S
2,rrr

C
2} have been restricted to zero. We report 5th and 95th quantile confidence interval

estimates in brackets in the text in a few instances. The NELS, ELS block group and ELS ZIP code

results are in the columns labeled NELS, ELSbg and ELSz. We sometimes report pooled estimates

that place half of the weight on the NELS estimate and half on the ELS ZIP code and block group

estimates. These are not reported in Table 2.

The main finding across data sets and outcomes is that individual-level factors account for the

lion’s share of the variance, with school and commuting zone level variation making modest con-

tributions, and neighborhood level factors playing a smaller role. In the case of HSGRAD, the

individual-level component accounts for 81.9% [77.5, 85.0] of the outcome variance for NELS,

81.6% [75.2, 85.0] for the ELS block group specification, and 85.6% [77.2, 87.1] for the ELS

ZIP code specification. The percentage of variance at the individual level is similar for wages and

slightly lower for college graduation. Interestingly, individual level factors are somewhat lower for

enrollment in a four-year college, averaging 72.3% across NELS and the two ELS specifications.

We do not have a good explanation for this.34

The school level accounts for a substantial fraction of the variance in education outcomes. The

average of the NELS and the ELS estimates is 9.7% for high school graduation, 15.9% for 4 year

enrollment, and 10.8% for COLLBA. For wages, the estimates are about 9.0% for ELS but only

3.1% for NELS.

Variation at the commuting zone level accounts for between 3.9% and 6.6 of the latent variable

for high school graduation, about 10% for college enrollment, between 6.2% and 7.9% for college

graduation and between 6.2% and 7.6% for wages.

We were surprised to find that differences across neighborhoods among students attending the

same schools do not account for much variation, even at the census block level. In the ZIP code case,

the percentage varies between 0.6% and 1.3% across education outcomes. For wages the estimates
34It bears repeating that we are not using sampling weights due to computational difficulties in the second step and

so are not accounting for differences in designs of the ELS and NELS samples. This could contribute to differences in
the estimates across ELS and NELS, although we noted earlier that the first step estimates of parameters involving the
observables are not sensitive to weighting.
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are 0.7% for NELS and 1.1% for ELS. The ELS block group estimates are larger: 2.2% for HS-

GRAD, 3.1% for ENROLL, and 2.4% for COLLBA and 3.2% for wages. While the relatively small

neighborhood component is surprising, this does not necessarily mean that neighborhood effects

and neighborhood-level sorting are unimportant. Alternatively, the high and low quality neighbor-

hoods might be sufficiently grouped within school attendance zones that most of the variation in

neighborhood inputs is across schools. As discussed in sections 4.5.1 and 6.3, the variance decom-

positions are crafted to prevent higher-level inputs (eg., commuting zone) from being reflected in

lower-level variance components, but between-school variation in neighborhood quality will still be

captured by the between-school variance components. This may be reinforced by the fact that the

ELS and NELS samples are clustered at the school level rather than at the neighborhood level. In

addition, ZIP code may be too coarse a measure of neighborhood, with many ZIP codes containing

a mix of both good and bad neighborhoods (so that the bulk of neighborhood variation is assigned

to the “within-neighborhood” category in Table 2). But the estimates are still relatively small when

we use block group. Clustering is clearly much stronger across schools.

7.1.2 The Extent of Student Sorting at the Neighborhood, School, and Commuting Zone
Levels

The decompositions in Table 2 convey the degree to which outcomes are clustered at each level

of aggregation, but they combine group-level differences that are attributable to student sorting with

true group-level inputs. Table 3 examines the degree to which neighborhood, school, and commut-

ing zone amenities and job opportunities segregate the population on the observable individual char-

acteristics that best predict educational outcomes and wages. Note that the individual observables

XXX i have a fair amount of predictive power for Yi, especially for postsecondary education (bottom

row). Across NELS and the two ELS specifications, the average of the estimates of the share of

outcome variance attributable to XXX iBBB is 23.9% for HSGRAD and considerably larger for ENROLL

(38.6%) and COLLBA (35.6%). For wages, the share is 13.9% for NELS and about 23.3% for ELS.

The row labeled “Individual Share of Var(XB)” reports the fraction of var(XXX iBBB))) that is within

neighborhood. The estimates average 70.5% for both HSGRAD and for the wages, but are some-

what smaller for ENROLL (65.0%) and COLLBA (63.1%). The individual shares are about 3%

lower when the neighborhood definition is block group rather than ZIP code.

We also find substantial sorting across schools both within and across commuting zones. The

school level share estimates average 17.2% for HSGRAD, 20.8% for ENROLL, 22.3% for COLLBA

and 17.6% for wages. The corresponding commuting zone shares are 10.8% for HSGRAD, 12.6%

for ENROLL, 13.2% for COLLBA and 10.2% for wages. The substantial amount of sorting on

XXX iBBB underscores the need for econometric techniques to distinguish the contribution of school and

commuting zone inputs from sorting. A large portion of differences in raw outcome means across

schools and commuting zones is directly attributable to differences in the kinds of students these

schools and areas attract.
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Consistent with the results in the previous section, there is not much evidence of outcome-

relevant sorting across ZIP codes within school attendance zones. In the case of HSGRAD, the

neighborhood-level shares of Var(XXX iBBB))) are 1.5% for NELS and 0.5% for ELS ZIP code. They

average less than 1% for each of the other three outcomes. This might simply indicate that ZIP codes

are poor proxies for neighborhoods. The ELS block group estimates are substantially larger: 2.3%

for HSGRAD, about 3.5% for ENROLL, 3.6% for COLLBA, and 4.6% for wages, underscoring the

importance of finer neighborhood designations.35

7.2 Model Estimates

7.2.1 Regression Indices and Random Effects

Because we do not seek to interpret the particular elements of the coefficient vectors BBB, GGG1,

or GGG2, we focus on characterizing the relative importance of student and family, neighborhood,

school, and commuting zone levels in determining outcomes. To this end, the columns of Panels A,

B, and C of Table 4 present estimates from (23) of the effects of a one standard deviation change

in XXX iBBB, XXXnGGGN
1 , XXX sGGGS

1, ZZZS
2sGGG

S
2, and ZZZC

2cGGGC
2 on the latent probit indices that determine the education

outcomes, as well as the corresponding standard deviations of the random effects. Panel D presents a

corresponding set of estimates for ln(wage) at about age 25. Zero values for point estimates of these

standard deviations indicate that the bias correction led to a negative value. The estimates of the

interaction coefficients are somewhat noisy, so we also present the average of the point estimates

for the NELS sample and the ELS ZIP code sample in the columns labeled “N + E”, along with

standard errors for this average.

The results reconfirm that the observed individual-level factors are powerful determinants of

educational attainment. The neighborhood, school and commuting zone level components of the

model have quite small standard deviations relative to sd(vi− vn), which is normalized to 1, and

ŝd(XXX iBBB), which averages about 0.60 for high school, 0.90 for ENROLL and about 0.86 for COLLBA.36

As we will demonstrate in Figure 1a below, the NELS results indicate that one can predict educa-

tional attainment quite well using observed student and family characteristics even in 8th grade. A

one standard deviation increase in XXX iBBB raises the permanent wage by 0.163 (0.006) in the case of

ELS and 0.134 (0.007) in the case of NELS, while ŝd(vi− vn) is around twice as large, ranging

from 0.274 (.008) to 0.318 (.007). These values are substantial relative to the estimated standard

deviations of the permanent wage, which are 0.338 for ELS and 0.361 for NELS. The mid-20’s

wage used here does not fully capture the divergence that will occur later in life.

The estimates for the observed neighborhood index, ŝd(XXXnGGGN
1 ), indicate that the ZIP code and

block group characteristics taken from Census Bureau and LODES data have relatively little pre-

35The differences in across-neighborhood means of XXX i and xU
i of students drawn to a given school from different

quality neighborhoods may understate differences in the mean of XXX i and xU
i of the full set students from the neighborhoods

they come from. We do not have a good way to quantify this sample design effect.
36We obtain similar estimates of these parameters when we exclude interaction terms (see Online Appendix Table

B5).
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dictive power across outcomes and datasets. Indeed, once the bias correction has been applied, in 5

of the 12 education cases the estimated variance of the neighborhood index is less than one would

expect due to sampling variance (so ŝd(XXXnGGGN
1 ) is set to 0). ŝd(vn− vs) is typically modest in size.

For all three outcomes, it lies between 0.153 and 0.181 at the block group level in ELS and between

0.096 and 0.134 at the ZIP code level for both ELS and NELS. For the wage, ŝd(vn− vs) is .049

(.006) log points in the ELS block group case. It is around .03 (.004) at the ZIP code level for both

ELS and NELS.

In contrast to the neighborhood component of the control function, the index XXX sGGGS
1 exhibits

sizable and statistically significant standard deviations between .1 and .2 for all education outcomes

and datasets (except for COLLBA in ELS, where it is around .07), showing that the school-level

demographic averages are absorbing a meaningful share of the outcome variation. They are similar

in relative magnitude for the wage.

Next, we turn to the indices of observed group-level inputs that are not averages of individual

inputs, ZZZS
2s and ZZZC

2c. The ability of these indices to predict outcomes, along with the standard

deviations of vs− vc and vc, form the core of our counterfactual shifts in school- and commuting

zone-level inputs presented in the next section.

The estimates of sd(ZZZS
2sGGG

S
2))) are concentrated around 0.10 for HSGRAD and ENROLL. They

are about 0.08 for COLLBA. The ELS estimates tend to be slightly smaller when using block

group rather than ZIP code to define neighborhoods. The estimates of sd( vs − vc) are around

0.1 across data sets and specifications for HSGRAD, around 0.14 for ENROLL, and around 0.065

for COLLBA. We do not have strong priors as to whether to expect a larger value for the lower-level

education outcomes than for COLLBA.

The estimates of sd(ZZZC
2cGGGC

2 ) are relatively robust across datasets, alternative neighborhood def-

initions, and inclusion/exclusion of interaction terms for both high school graduation and four-year

college enrollment. They are concentrated between .11 and .16, with slightly larger NELS88 values

for college enrollment. Standard deviations for college graduation are somewhat smaller, between

.062 and .091. Standard errors are typically around .03. The estimates are typically about one quar-

ter larger than the estimates of sd(ZZZS
2sGGG

S
2))). The standard deviation of vc is typically half to two thirds

as large as ŝd(vs− vc). Overall, observed and unobserved school inputs are slightly more important

for education outcomes than CZ inputs. But as we will see in Section 8, ŝd(ZZZC
2cGC

2 ) and ŝd(vc)

are large enough to imply that shifting from low to high quality commuting zone environments

substantially increases educational attainment.

Neither ZZZS
2s nor ZZZC

2c predicts log wages particularly well, with ŝd(ZZZS
2sGGG

S
2))) generally between .01

and .02 and ŝd(ZZZC
2cGGGC

2 ))) between .02 and .04. In comparison the values of ŝd(XXX iBBB) are between

0.134 and 0.163. The values of ŝd(ZZZS
2sGGG

S
2))) are only reach statistical significance when NELS and

ELS are pooled. The estimates of sd(vs− vc) and sd(vc) are also relatively small—about .02 (.002)

and 0.013 (.002) respectively. This may reflect the early age at which log wages are measured in

both NELS and ELS.
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7.2.2 Estimates of the Interaction Coefficients

Table 4 also reports estimates of the coefficients rN
1 , rS

1, rS
2, and rrrC

2 on interactions between

student-level variables and the standardized regression indices XXXnĜGG
N
1 /sd(XXXnĜGG

N
1 ))), XXX sĜGG

S
1/sd(XXX sĜGG

S
1))),

ZZZS
2sĜGG

S
2/sd(ZZZS

2sĜGG
S
2))), and ZZZC

2cĜGG
C
2/sd(ZZZC

2cĜGG
C
2 ))). In the case of the interactions between XXX iBBB (also in

standard deviation units) and the neighborhood composition index XXXN
n GGGN

1 , the estimates of rN
1 are

almost always negative, suggesting that disadvantaged students disproportionately benefit from liv-

ing in a stronger neighborhood. For ENROLL and COLLBA, the pooled estimates are negative and

significant at the 0.15 and 0.01 levels, respectively. However, we do not make too much of this result

because the bias corrected estimates of the main effect of XXXN
n GGGN

1 are weak, making identification

of interaction effects suspect. Furthermore, the negative interaction is not present for high school

graduation or for ELS log wages.

The coefficient rS
1 capturing interactions between XXX iBBB and XXX sGGGS

1 varies in sign. The pooled

estimates and standard error are each around .02 for the three education outcomes. The estimate is

essentially 0 for log wages.

The estimates of the interactions between XXX iBBB and the non-peer school inputs and policies cap-

tured in ZZZS
2sĜGG

S
2/sd(ZZZS

2sĜGG
S
2))) show consistent negative signs across all educational outcomes. The

pooled estimates are -0.048 (0.023) and -0.059 (0.024) for ENROLL and COLLBA, respectively. In

the case of ENROLL, the pooled estimate implies that the effect on the probit index of a one stan-

dard deviation increase in ZZZS
2sĜGG

S
2 is -0.048 (0.023) lower for a student 1 standard deviation above

the mean of XXX iBBB than for a student at the mean. This difference is small compared to the pooled

estimate of 0.901 (0.020) of the main effect of XXX iBBB, although one could not rule out a difference

of -0.063 at the 90% level. This value is about half of the main effect of ZZZS
2sGGG

S
2. The estimates

do suggest increased sensitivity to external inputs for disadvantaged students. The relatively low

predictive power of ZZZS
2sGGG

S
2 in the case of wages inhibits identification of interactions with ZZZS

2sGGG
S
2.

The pooled estimates of the interactions between XXX iBBB and the commuting zone index ZZZC
2cĜGG

C
2/sd(ZZZC

2cĜGG
C
2 )))

are positive for the education outcomes and negative for log wages, and always small and statisti-

cally insignificant.

The interactions between the indicators for female, minority status, and low income with ZZZS
2sGGG

S
2

or ZZZC
2cGGGC

2 tend to be statistically insignificant as well as inconsistent in sign across datasets and

outcomes. In the case of minority status and low income status, none of the pooled estimates are

significant at the 10% level, and the point estimates are typically small relative to the main effects

of ZZZS
2sGGG

S
2 and ZZZC

2cGGGC
2 .

Overall, we do not find strong evidence of interaction effects. The standard errors are sufficiently

large that we cannot rule out moderately important interactions. But we can rule out interactions

that would substantially alter the relationship between XXX iBBB and the latent variables for education

and for log wages. In the education case, the non-linearity of the probit function may be enough

to capture the differential sensitivity of students with higher versus lower observed inputs to group-

level inputs. We investigate this further in Sections 8.1.1 and 8.2.1.
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8 The Impact of Shifts in School and Commuting Zone Quality

This section reports estimates of the effects of the three types of counterfactual shifts in school

and commuting zone quality described in Section 6.4, both for the full population and for partic-

ular subpopulations. We organize the discussion by outcome. We focus on the treatment effects

estimates for the full set of XXX i variables but briefly discuss estimates using the basic set, which are

typically larger.

8.1 High School Graduation

The row labeled “School only” in Panel A of Table 5 reports the average treatment effect for

the full student population of attending a 90th quantile school instead of a 10th quantile school. The

rows labeled “CZ only” and “School+CZ” report the impact of a 10th to 90th quantile shift in the

commuting zone environment and a 10th to 90th quantile shift in combined school and commuting

zone quality, respectively. Standard errors are in parentheses. As in prior tables, NELS, ELS block

group, and ELS ZIP code results are denoted by the column headings NELS, ELSbg, and ELSz

respectively.

Focusing first on the NELS results, we see that shifting from a 10th to a 90th quantile school/commuting

zone increases the high school graduation probability from 0.816 to 0.904, an increase of 0.088

(0.014). This is very large relative to the dropout rate. A corresponding shift in the school en-

vironment only (while receiving a random draw from the distribution of commuting zone inputs)

changes the graduation probability from 0.831 to 0.891, an increase of 0.06 (0.014). The effect of a

10th-to-90th quantile shift in commuting zone inputs is 0.067 (0.017).

The estimates for ELS are somewhat smaller. In the ELS block group case, the “School and

CZ” treatment raises the graduation probability by 0.062 (0.011), from 0.896 to 0.958. The school

treatment raises it by 0.045 (0.010), and the CZ treatment raises it by 0.041 (0.009). The values are

slightly smaller when we use ZIP code as the neighborhood measure. One reason for the smaller

ELS estimates is that the unweighted high school graduation probability in the sample is very high:

0.92. Thus, there is not much room for increases in the graduation probability. Online Appendix

Table B7 displays estimates of the impacts of 10th-to-50th quantile shifts for the same treatments.

Despite the nonlinearity in the probit function, the estimates are only slightly more than half as large

as the corresponding 10th-to-90th shifts, so the shift from the 50th-to-90th quantile matters almost as

much as the shift from the 10th-to-50th quantile.

The estimates for the combined “School and CZ” treatment for ELS are essentially identical to

the school-level estimates from the full specification in AM that implicitly incorporate CZ inputs as

well. The NELS estimates are about .04 smaller than the corresponding estimates in AM, indicating

some sensitivity to the changes in specification introduced in this paper: the exclusion of weights,

the addition of interactions, and the addition of neighborhood-level control function variables Xn

and CZ-level observables ZC
2c.
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While the estimates are somewhat noisy, taken together the results for HSGRAD indicate that

large shifts in school and commuting zone inputs could generate socially significant impacts on

graduation probabilities. Note that this is true even though the components (ZZZS
2sGGG

S
2,ZZZ

C
2cGGGC

2 ,(vs−
vc),vc) that we ascribe to school and commuting zone inputs comprise relatively small fractions of

the outcome variance. Row 8 of Appendix Table A1 reports that the variance of ZZZS
2sGGG

S
2 +ZZZC

2cGGGC
2 +

(vs− vc)+ vc, which drives the “School and CZ” treatment, comprises just 2.2 percent of the full

latent index variance in NELS, and only 3.0 percent in the ELS block group specification.37 Rows 9

and 10 report that the school inputs that matter for the “School Only” treatment and the commuting

zone inputs that matter for the “CZ Only” treatment each account for only about 1 to 1.5 percent of

the latent index variance in NELS.

Why do 10th-to-90th quantile shifts in distributions featuring such small variances generate such

substantial outcome changes? One reason is that variance components, by virtue of squaring devia-

tions, tend to exacerbate differences in the relative importance of various inputs; standard deviations

of these components are considerably closer in size to those corresponding to individual-level in-

puts. The second reason is that for binary outcomes even a small shift in the underlying propensity

to graduate can have a significant impact on graduation outcomes if many students are near the

decision margin.

The ELS estimates using the basic set of XXX i variables in Online Appendix Table B9 are typically

larger by less than 1 percentage point for each treatment. The NELS estimates are each around 1

percentage point larger. As we have discussed in Section 5.3, the estimates based on the full set are

more conservative. Both estimates exclude peer effects captured by XXX sĜGG
S
1 and XXXnĜGG

N
1 .

8.1.1 Subpopulation Results for High School Graduation

We now examine heterogeneity in treatment effects. Treatment effect heterogeneity across

groups arises through three pathways. First, the model includes interactions involving female, un-

derrepresented minority, and low income indicator variables. As we discussed in Section 7.2.2, the

coefficients on the interactions between female, minority status, or low income and either ZZZS
2sGGG

S
2

or ZZZC
2cGGGC

2 tend to be statistically insignificant as well as inconsistent in sign across datasets and

outcomes.

The second and third pathways both arise from differences in the distributions of XXX iBBB across sub-

populations. The second pathway arises because the model contains interactions between XXX iBBB and

ZZZS
2sGGG

S
2 and ZZZC

2cGGGC
2 . As we have already discussed, the interactions between XXX iBBB and the non-peer

school inputs and policies captured in ZZZS
2sĜGG

S
2/sd(ZZZS

2sĜGG
S
2))) show consistent negative signs across all

educational outcomes but are small for high school graduation. The interactions between XXX iBBBand

ZZZC
2cĜGG

C
2/sd(ZZZC

2cĜGG
C
2 ))) are typically too small to matter much, regardless of the outcome. Conse-

37Note that these variance components are computed based on the specification in Columns 1-3 of Table 4. In com-
puting variance fractions, we ignore the variance contribution of the interaction terms because a simple variance de-
composition does not exist for the model with interactions. The interactions are accounted for in the 10-90 estimates.
The corresponding table for the linear specification is available upon request. The values are close for all outcomes and
samples.
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quently, the interaction terms are not a primary source of differences across groups in treatment

effects, at least for HSGRAD.

The third pathway arises because differences in the locations of the XXX iBBB distribution across sub-

groups produces treatment effect heterogeneity for binary outcomes even in the absence of explicit

interaction terms. Due to the nonlinearity of the probit function that links Yi to the binary outcome

indicators for education, the sensitivity to school and commuting zone quality is higher for subpop-

ulations with values of XXX iB̂BB that place them closer to an outcome probability of 0.5. Consequently,

HSGRAD is more sensitive to school or commuting zone quality for disadvantaged subpopulations

and less sensitive for advantaged subpopulations. The opposite tends to be true for ENROLL and

COLLBA. In the extreme case, if every member of the subpopulation had a sufficiently high XXX iBBB

value, they would all attain the positive outcome regardless of their school/commuting zone envi-

ronment. We think this is main source of heterogeneity in the treatment effects, to which we now

turn.

Table 6 displays the impacts on high school graduation of the 10th-to-90th quantile shifts in

quality for each of our three counterfactuals for six subpopulations, which are indicated by the

column headings. We consider Hispanic students, non-Hispanic black students, non-Hispanic white

students, non-Hispanic white students with a single mother with a high school education or less,

and non-Hispanic white students living with two biological parents with four-year college degrees

or above.

We start with NELS. White students dominate the sample, and so estimates are similar to but

a bit smaller than those for the full sample. Black students are moderately more sensitive to each

of the three treatments than the population at large. Hispanic students and non-Hispanic white

students with a single mother with a high school education or less have the lowest mean XXX iBBB values

and are the most sensitive. For non-Hispanic blacks, the “School and CZ” 10th-to-90th quality shift

increases the predicted high school graduation probability by 0.095 (0.017), from 0.806 to 0.901.

For children of less-educated white single mothers, the increase is 0.140 (0.021), from 0.669 to

0.810. In contrast, non-Hispanic white students with two college-graduate parents can only expect

a 0.040 (0.007) increase in graduation probability from the same shift in school/commuting zone

inputs. We obtain similar estimates of NELS 10th-90th treatment effects using the models without

interactions38 This suggests that the chief source of treatment effect heterogeneity is the nonlinearity

of the probit function rather than the estimated interactions, though the interaction effects do cause

the estimates to diverge from the mean by less than the probit function alone would predict.

The ELS results with either block group or ZIP code as the neighborhood are smaller. The

“School and CZ” effects are 0.087 (0.015) and 0.076 (0.015), respectively, for Hispanic and non-

Hispanic black students using the block group estimates, and only about 0.021 (0.004) for white

students with two college-graduate parents. The smaller ELS results are primarily due to fact that

the ELS sample average for HSGRAD is 0.92.

38The values are 0.088 for blacks, 0.130 for white students with less-educated single mothers, and 0.038 for white
students with two college-graduate parents. The table is available upon request.
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Differences across subpopulations in the effects of the “School only” and “CZ only” treatments

follow a similar pattern. For these counterfactuals, the 10th-90th treatment effects for the subpopula-

tions vary by a few percentage points around the “School only” and “CZ only” 10th-90th treatment

effects for the full sample.

Figures 1a and 1b and Figure 2 illustrate more generally how the predicted outcome changes

as the quantile of the XXX iBBB index increases. The solid dark line in Figure 1a (1b) shows how in the

NELS (ELS block group) case the probability of high school graduation (vertical axis) varies with

the quantile of XXX iBBB for a student who receives the median value of the “School and CZ” treatment.

It provides a yard stick for thinking about the magnitude of treatment effects. Figure 2 graphs 10th-

to-90th treatment effects against the XXX iBBB quantile. We exclude confidence intervals to reduce clutter,

but Online Appendix Table B8 reports both estimates and standard errors of treatment effects for

students at the 10th, 50th and 90th quantiles of XXX iBBB.

The impact of each 10th-to-90th treatment decreases monotonically with the XXX iBBB quantile. Specif-

ically, students in NELS (light grey line) at the 10th quantile of the XXX iBBB distribution move from a

0.592 chance of graduating to a 0.762 chance when the quality of the combined school/commuting

zone environment shifts from the 10th to the 90th quantile, whereas students at the 90th quantile

only move from a 0.970 graduation rate to a 0.991. So 8th grade school and commuting zone en-

vironment seems to be very important for high school graduation for particularly disadvantaged

populations, and essentially irrelevant for particularly advantaged populations. The ELS results for

both neighborhood definitions display a similar pattern of sensitivity to school and CZ inputs, but

with proportionately smaller impacts over the range of XXX iBBB.

8.2 Enrollment in a Four-Year College

Panel B of Table 5 reports the impacts of the corresponding counterfactual shifts in school and/or

commuting zone environment for whether the student enrolls in a four-year college within two years

of expected high school graduation.

A 10th-to-90th quantile shift in combined school/commuting zone quality raises the enrollment

probability by 0.171 (0.018) (0.236 to 0.407) for 8th graders in NELS. The corresponding shifts

in school inputs only and commuting zone inputs only raise enrollment by 0.125 (0.017) and 0.114

(0.017). The estimates based on ELS ZIP code and ELS block group specifications are quite close

to the NELS estimates. Both the NELS and ELS “School and CZ” estimates are within .01 of the

corresponding full specification estimates from AM. Estimates of the impact of 10th-to-50th quantile

shifts in Online Appendix Table B7 are only slightly less than half of the corresponding 10th-to-90th

shift estimates.

Note that the impacts of school and commuting zone on this outcome are considerably larger

than those for high school graduation. For NELS a partial explanation lies in the fact that the

fraction of the variance in Yi (the latent index) that is attributed to school and commuting zone

inputs is 0.033 for ENROLL and 0.022 for HSGRAD (Appendix Table A1). However, the variance
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components underlying the ELS block group and ELS ZIP code counterfactuals are very similar in

magnitude to those used for the high school graduation counterfactuals (0.030 of Var(Yi) in each

case). Instead, the larger estimated impacts for college enrollment primarily reflect the fact that the

college enrollment probability (0.327 in NELS and 0.422 in ELS, from Table 1-1) is much closer to

0.5 than for high school graduation (0.853 in NELS and 0.919 in ELS). The probit model assumes a

normal distribution of unobserved inputs, so that an outcome mean of .5 suggests that many students

are near the decision margin. Thus, the same change in the latent probit index translates to a much

greater shift in outcome probability for college enrollment.

Treatment effects for the basic specification of XXX i are about 0.04 larger in ELS and about 0.02

larger in NELS (Online Appendix Table B9, columns 4-6).

8.2.1 Subpopulation Results for College Enrollment

Panel B of Table 6 reports the impacts of our counterfactual shifts for particular subgroups of

NELS 8th graders. Because the population mean for college enrollment is below 0.5, the probit

model implies that more disadvantaged subpopulations have fewer students near the decision mar-

gin, so that the largest impacts occur for the most advantaged subgroup (in this case, white students

with two college-graduate parents) and the lowest value is for the most disadvantaged subgroup

(children of single white mothers with education less than or equal to high school). The impacts

of the “School and CZ” treatment on the enrollment probability range from 0.116 to 0.213. The

“School only” treatment displays slightly higher effects than the “CZ only” treatments with similar

degrees of heterogeneity: impacts range from 0.086 to 0.154 for “School only” and 0.075 to 0.142

for the “CZ only” treatment. The estimates of the treatment effects for the ELS ZIP code and block

group specifications follow the same pattern as in NELS, although the subgroup estimates fall in a

narrower range.

Figure 3 shows the relationship between the treatment effects on college attendance probability

and the quantiles of XXX iBBB. The impact of the counterfactual treatments is non-monotonic in XXX iBBB,

increasing and then decreasing as one moves through the distribution of XXX iBBB. For example, for the

“School and CZ” counterfactual in NELS, the estimated impact for the 10th, 75th (near the maximum

impact), and 90th quantiles of XXX iBBB are 0.062, 0.253, and 0.218, respectively.

The pattern occurs despite the fact that in the NELS case the coefficient on the interaction be-

tween XXX iBBB and ZZZS
2sGGG

S
2 is substantial: -0.069 (0.034). Part of the decline at the top of the XXX iBBB

distribution may be due to this. However, the pattern is primarily due to a striking fact about the

variation in predicted outcome probabilities across XXX iBBB quantiles that is established in Figure 1a.

In NELS (solid light line) for a school/CZ combination of median quality, the predicted enrollment

rates for a student at the 10th, 30th, 70th and 90th quantiles of XXX iBBB are 0.042, 0.136, 0.429, and

0.703, respectively. The figure demonstrates just how strongly observed family background and

student aptitude measures (as of 8th grade) predict enrollment at a four-year postsecondary insti-

tution. Consequently, very few students near the bottom of the XXX iBBB distribution are in a position

41



where higher quality school inputs would be enough to push them over the decision margin, even if

they are slightly more sensitive to school quality than the average student.

In fact, the ELS ZIP code specification provides a good opportunity to assess the importance

of the interaction terms in the model. First, ŝd(ZZZC
2cGGGC

2 ))) is substantial, so that there is more signal

contained in this regression index with which to identify true interactions. Second, the interaction

coefficients on 1(LowInc)× ZZZC
2cGGGC

2 and 1(URM)× ZZZC
2cGGGC

2 are seemingly non-negligible in size

(albeit still noisily estimated): 0.050 and 0.054 respectively (Table 4 Panel B). This suggests greater

sensitivity of students from modest backgrounds and minority students to CZ inputs. Third, the

variance components for the “CZ only” treatment, Var(ZZZC
2cGGGC

2 + vc), contribute 1.26% of Var(Yi)

when interactions are included and 1.24% of Var(Yi) when they are excluded. This means that we

can directly compare treatment effects based on the models with and without interactions essentially

holding fixed the importance of the main effects. Indeed, the mean impact of the 10th-90th “CZ only”

treatment on ENROLL is 0.118 for both specifications.

As it turns out, none of the subgroups we consider displays more than a 0.002 difference in

treatment effects between the linear and non-linear specification. While the imprecision of our

interaction estimates cautions against overinterpreting the results, our limited evidence suggests

that the probit function seems to be doing an effective job of capturing heterogeneity in sensitivity

to higher quality school and commuting zone inputs.

8.3 Graduation from a Four-Year College

Panel C of Table 5 reports the estimated impacts of the same counterfactual treatments on a

randomly selected student’s probability of graduating college by age 25. The NELS results indicate

that replacing a combined school/commuting zone at the 10th quantile of the quality distribution

with one at the 90th quantile increases the college graduation probability by 0.085 (0.016) (from

0.309 to 0.394). Shifting only school inputs or only CZ inputs from their respective 10th to 90th

quantiles increases the graduation probability by 0.077 (0.18) and 0.046 (0.019), respectively. The

small increase in impact from shifting school and CZ quality together relative to the impact of the

separate shifts is partly due to an estimated small negative covariance between ZZZS
2sGGG

S
2 and ZZZC

2cGGGC
2 .

It also reflects the fact that doubling a variance only increases the standard deviation by a factor of√
2.

The ELS block group estimates are only 0.090 (0.012), 0.071 (0.015), and 0.073 (0.017), respec-

tively, with the ELS ZIP code estimates displaying slightly smaller magnitudes. Switching from the

full specification to the basic specification (displayed in Online Appendix Table B9) increases the

estimates for each dataset by about 0.015.

The three treatments have a smaller effect on the college graduation probability than the enroll-

ment rate. We do not have a complete explanation for this, but three possibilities are worth mention-

ing. First, School and CZ inputs may play a bigger role in inducing students to attend a four-year

college than to successfully complete college. The second and related point is that marginal students
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who are induced to enroll in a four-year college as a result of superior school and CZ inputs may

graduate at lower rates. Finally, there is considerable attrition in the sample between the survey in

which ENROLL is measured (2nd and 3rd Follow-ups for NELS and ELS, respectively) and the

survey in which COLLBA is measured (3rd and 4th follow-ups). Differential attrition could lead

the sample of students remaining when COLLBA is measured to be less sensitive to school and CZ

inputs than in earlier samples.39

8.3.1 Subpopulation Results for College Graduation

Table 6 reveals moderate heterogeneity in estimated impacts from the counterfactual treatments

across subgroups for NELS 8th graders. A 10th-to-90th shift in combined school/CZ input quality

increases the probability of college graduation by between 0.056 (0.011) and 0.101 (0.018) with the

smallest impacts occurring for white students with a single mother with a high school degree or less

and the largest for white students with two parents with bachelor’s degrees.

The variance components attributed to school inputs (Var(ZZZS
2sGGG

S
2) and Var(vs−vc)) are substan-

tially larger in NELS than those attributed to CZ inputs (Var(ZZZC
2cGGGC

2 ) and Var(vc)). As a result,

the counterfactual impacts are substantially larger for the “School only” specification than the “CZ

only” specification, particularly for subgroups featuring high values of XXX iBBB. For example, a 10th-

to-90th quantile shift in the quality of school inputs increases enrollment by 0.081 for the white

subpopulation, while the corresponding shift in the quality of commuting zone inputs only pro-

duces a 0.049 increase. The “School Only” and “CZ Only” treatment effects are much more similar

to another in ELS.

Once again, examining the variation in treatment impacts across XXX iBBB quantiles reveals a greater

degree of heterogeneity (Figure 4). For NELS, the “School and CZ” impacts for the 10th, 75th,

and 90th quantiles of XXX iBBB are 0.031, 0.124, and 0.098, respectively, demonstrating the same non-

monotonicity of treatment effects across the XXX iBBB distribution as was observed for the college en-

rollment outcome. Figure 1a shows that in NELS the probability of college graduation is 0.046 for

a student at the 10th quantile of XXX iBBB and 0.754 at the 90th (evaluated at the median value of the

“School and CZ” treatment).

8.4 Log Wage Rates

Columns 10-12 of Table 5 report the estimated impacts of the same counterfactual treatments on

a randomly selected student’s log wage as of about age 25. The NELS results (col. 10) indicate that

the effect of the 10th-90th quantile combined school/commuting zone treatment is 0.111 (0.025) log

points (which corresponds to an 11.7% wage increase). A one standard deviation improvement in

the treatment would raise log wages by 0.045 (a 4.6% wage increase). In comparison, the standard

deviation of the permanent component of the wage is 0.361. The values for ELS are slightly smaller.

39As discussed in Section 5, the mean of ENROLL among sample members of the 3rd follow-up survey in NELS
is .353 vs. .327 among those in the 2nd follow-up (when the outcome is determined), suggesting some differential
attribution is taking place.
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The estimate of the combined school/community 10th-90th treatment effect is only .104 (0.024)

log points in the block group specification (an 11% wage increase). Estimates using the basic

specification in Online Appendix Table B9 are very similar.

The effect of the 10th-90th commuting zone treatment is larger than the school treatment in both

NELS and in ELS, in contrast to what we found for education. One would expect commuting zone

characteristics to be particularly important for wages, where opportunities in the local labor market

are paramount.

Since the wage model is linear, the only source of treatment effect heterogeneity consists of the

interaction terms between MMMi and ZZZS
2sGGG

S
2 and ZZZC

2cGGGC
2 . The coefficients on the interactions terms are

small, so we do not find important subgroup differences.

8.5 Summary of Results from Counterfactual Shifts

There are several broad takeaways from the estimated impacts of counterfactual 10th-to-90th

quantile shifts in school and/or commuting zone inputs. First, large changes in school and commut-

ing zone inputs can make a substantial difference in students’ educational attainment.

Second, the impact of these inputs is quite heterogeneous across disadvantaged vs. advantaged

students. The dropout rates of disadvantaged students are particularly sensitive to the external en-

vironment, while few advantaged students are near the margin. In contrast, for college enrollment

and graduation, superior school and commuting zone inputs are important for all, but particularly

consequential for students near (or above) the middle of the distribution of student and family back-

ground.

Third, the more general model featuring interactions between student and school/commuting

zone inputs produces predicted impacts of shifts in school and commuting zone environment that

differ little from the results using the simpler probit specification without interactions. This suggests

that the nonlinearity inherent in the probit function does a fairly good job of capturing differential

sensitivity to school and region-level inputs, and that a linear specification for the probit index may

suffice in similar contexts. But this need not be true in other applications and the estimates of the

interaction coefficients are imprecise.

Finally, both school and commuting zone inputs seem to be important, and with comparable

magnitudes. However, this conclusion is more tentative, because we cannot fully distinguish be-

tween unobservable school inputs and unobservable commuting zone inputs.

9 Conclusion

Educational attainment and wages, like many adult outcomes, are influenced by factors that are

specific to the individual as well as aspects of the broader social environment. In this paper, we build

on the rich literature on sorting, school and neighborhood effects, and multilevel modeling to assess

the relative importance of neighborhood, school, and broader local area factors in shaping student’s
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educational attainment and early career wages, and the degree to which this relative importance

differs across students from different backgrounds. We extend the identification results of Altonji

and Mansfield (2018) to models with multiple group levels and with interactions between observed

individual factors and both observed and unobserved group level factors. The identification results

are based on the idea that group averages of individual-level observables can fully control for sorting

bias from group averages of individual-level unobservables. A natural but challenging extension to

our analysis would be to incorporate interactions with unobserved individual characteristics.

Our theoretical results demonstrate the existence of a structural decomposition of variation in

educational and labor market outcomes of interest into four components: (1) individual contribu-

tions that are common across groups, (2) group contributions that are common across individuals,

(3) contributions that consist of interactions between student and group inputs, and a (4) set of

ambiguous contributions, absorbed by our control function of group-level averages, that reflect a

combination of common group inputs and group-averages of individual inputs.

We implement this structural decomposition using a multilevel mixed effects model, and use the

results to generate lower bound estimates of the average impact among the student population of

“treatments” consisting of shifts in school, commuting zone, and combined school/commuting zone

quality from the 10th to the 90th quantile of their respective distributions. We also produce estimates

for particular student subpopulations that exploit the treatment effect heterogeneity accommodated

by our model.

Despite accounting for a small share of the total variance in the latent indices that generate our

binary outcomes, our population average estimates suggest that school and commuting zone inputs

play an important role in determining educational attainment. Moving from a school/commuting

zone combination at the 10th quality quantile to a 90th quantile combination increases the probability

of high school graduation by at least 0.06-0.09 across datasets and specifications, the probability of

enrollment at a four-year college by at least 0.17-0.18, and the probability of college graduation by at

least 0.08-0.09. School and commuting zone inputs seem to play a roughly equal role in producing

educational attainment, though the model’s ability to distinguish between the two is more limited.

A 10th-90th quantile shift in school/commuting zone quality increases wages by 10-11 percent, with

commuting zone factors playing a somewhat larger role relative to school inputs and policies.

High school graduation rates of disadvantaged populations are considerably more sensitive to

school and commuting zone inputs, while college graduation rates are more sensitive to group-

level inputs for advantaged populations. However, the heterogeneity in treatment effects is driven

by the share of the subpopulation near the decision margin in our probit models, rather than by

fundamental differences in input sensitivity. Our estimated interaction effects are usually small

(though somewhat imprecise), suggesting that the inherent nonlinearity in the probit model well-

approximates the heterogeneity in school and commuting zone treatment effects.

Our analysis of a regression index of student-level observables suggests that most outcome-

relevant sorting takes place at the level of school attendance zones, with a modest role for commut-
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ing zone-level sorting and a very small role for neighborhood sorting. It is possible, of course, that

the neighborhood component may be understated by the use of block group or ZIP code to define

neighborhood boundaries.

While the panel surveys we use offer many advantages, a multilevel mixed effects model fea-

turing interactions among multiple combinations of levels places strong demands on the data. This

leads some of our estimates (particularly interactions) to be imprecise, and highlights the value of

increasingly available linked administrative data that offer both many groups at each hierarchical

level and large numbers of individuals per group, along with rich sets of observable characteris-

tics at each level. Obtaining observed neighborhood characteristics that are plausible sources of

neighborhood-level causal effects would be particularly valuable.
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TABLE 1-1

SUMMARY OF OUTCOME VARIABLES

NELS ELS
Outcome Variable Mean Std. Dev. Mean Std. Dev.
Education outcome:

1(HSGRAD) 0.853 0.354 0.919 0.272
1(ENROLL) 0.327 0.469 0.422 0.494
1(COLLBA) 0.353 0.478 0.376 0.484

Log hourly wage (2009 $) 2.544 0.534 2.666 0.500

NOTE.—Statistics calculated on respective regression samples based on the “full” specification. The
dependent variables are indicators for high school graduation (HSGRAD), enrollment in a 4 year
college within 2 years after graduation 1(ENROLL), attainment of a BA degree (COLLBA), and the
log hourly wage rate, which is measured at about age 25 and adjusted to 2009 dollars.

51



TABLE 1-2

THE NUMBER OF INDIVIDUALS, ZIP CODES OR BLOCK GROUPS, SCHOOLS, AND

COMMUTING ZONES IN THE SAMPLES (BY OUTCOME AND DATA SET)

Sample Size Block Groups ZIP Codes Schools CZs
NELS specification:

HSGRAD 13300 · · · 3080 930 300
ENROLL 12900 · · · 3050 930 300
COLLBA 10800 · · · 2800 910 300
LOG WAGE 8800 · · · 2470 880 300

ELS specification:
HSGRAD 14600 9130 4140 700 260
ENROLL 13400 8630 3970 700 260
COLLBA 12400 8110 3810 700 260
LOG WAGE 11600 7720 3670 700 260

NOTE.—Statistics calculated on respective regression samples based on the “full” specification.
The dependent variables are high school graduation (HSGRAD), enrollment in a 4 year college
within 2 years after graduation (ENROLL), and attainment of a BA degree (COLLBA). The log
hourly wage rate is for about age 25 and adjusted to 2009 dollars. All values are rounded to the
nearest 10.
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TABLE 2

FRACTION OF THE VARIANCE OF EDUCATION AND WAGES AT THE INDIVIDUAL, NEIGHBORHOOD,

SCHOOL, AND COMMUTING ZONE LEVELS (FULL SET OF STUDENT VARIABLES)

A. HS Grad B. College Enroll
NELS ELSbg ELSz NELS ELSbg ELSz

(1) (2) (3) (4) (5) (6)
Total Individual: (1) 0.819 0.816 0.856 0.744 0.714 0.710

Var(Yi−Yn)/Var(Yi) [.775, .85] [.752, .85] [.772, .871] [.709, .768] [.675, .753] [.68, .761]
Total neighborhood: (2) 0.013 0.022 0.012 0.013 0.031 0.008

Var(Yn−Ys)/Var(Yi) [.005, .016] [.013, .034] [.008, .017] [.008, .018] [.02, .045] [.004, .012]
Total School: (3) 0.102 0.098 0.093 0.146 0.159 0.174

Var(Ys−Yc)/Var(Yi) [.071, .132] [.056, .132] [.053, .134] [.125, .172] [.119, .187] [.131, .196]
Total CZ: (4) 0.066 0.064 0.039 0.098 0.097 0.107

Var(Yc)/Var(Yi) [.057, .093] [.051, .104] [.046, .098] [.084, .124] [.082, .121] [.087, .136]
C. College Grad D. Log Wage

NELS ELSbg ELSz NELS ELSbg ELSz
(7) (8) (9) (10) (11) (12)

Total Individual: (1) 0.791 0.817 0.824 0.886 0.814 0.836
Var(Yi−Yn)/Var(Yi) [.706, .787] [.733, .828] [.767, .844] [.819, .913] [.736, .836] [.735, .862]

Total neighborhood: (2) 0.010 0.024 0.006 0.007 0.032 0.011
Var(Yn−Ys)/Var(Yi) [.004, .012] [.018, .043] [.004, .012] [.005, .01] [.023, .044] [.007, .015]

Total School: (3) 0.120 0.098 0.107 0.031 0.089 0.091
Var(Ys−Yc)/Var(Yi) [.099, .177] [.064, .142] [.069, .142] [.004, .06] [.066, .141] [.064, .146]

Total CZ: (4) 0.079 0.062 0.062 0.076 0.065 0.062
Var(Yc)/Var(Yi) [.081, .127] [.059, .09] [.062, .091] [.056, .128] [.054, .101] [.054, .123]

NOTE.—ELSbg represents the ELS data set with the neighborhood specification of block group. ELSz represents the ELS data set with the
neighborhood specification of ZIP code. This table reports the fractions of the variance of log wage and of the latent variables for high school
graduation, enrollment at a 4-year college, and a 4-year college degree that is person-specific within a neighborhood (total individual), neighborhood-
specific within a school (total neighborhood), school-specific within a commuting zone (total school) and commuting-zone-specific (total CZ). They
are computed using the model estimates reported in Appendix Table B5, which exclude interaction terms and are for the full set of XXX i variables. The
estimates in Table 2 also involve estimates of cov(XXX sGGGS

1,ZZZ
S
2sGGG

S
2), which is not reported. The 5th and 95th percentile values of the bootstrap replications

are reported in brackets.
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TABLE 3

FRACTION OF THE VARIANCE OF XXX iBBB AT THE INDIVIDUAL, NEIGHBORHOOD, SCHOOL,

AND COMMUTING ZONE LEVELS (FULL SET OF STUDENT VARIABLES)

A. HS Grad B. College Enroll
NELS ELSbg ELSz NELS ELSbg ELSz

(1) (2) (3) (4) (5) (6)
Individual Share of var(XXX iBBB) (1) 0.703 0.698 0.715 0.645 0.640 0.670

[.674, .817] [.674, .738] [.689, .756] [.616, .676] [.615, .667] [.643, .697]
Neighborhood Share of var(XXX iBBB) (2) 0.015 0.023 0.005 0.013 0.035 0.003

[.000, .023] [.005, .043] [.000, .016] [.006, .022] [.015, .053] [.000, .013]
School Share of var(XXX iBBB) (3) 0.159 0.186 0.187 0.203 0.212 0.212

[.114, .175] [.154, .204] [.155, .206] [.175, .222] [.187, .233] [.187, .233]
CZ Share of var(XXX iBBB) (4) 0.123 0.092 0.093 0.138 0.114 0.114

[.082, .149] [.08, .109] [.08, .109] [.115, .167] [.102, .133] [.103, .135]
XXX iBBB Share of Var(Yi) (5) 0.243 0.229 0.237 0.369 0.409 0.397

[.223, .36] [.215, .265] [.213, .269] [.345, .395] [.378, .453] [.377, .442]
C. College Grad D. Log Wage

NELS ELSbg ELSz NELS ELSbg ELSz
(7) (8) (9) (10) (11) (12)

Individual Share of var(XXX iBBB) (1) 0.614 0.633 0.664 0.727 0.665 0.700
[.59, .641] [.595, .663] [.631, .691] [.695, .779] [.629, .704] [.666, .738]

Neighborhood Share of var(XXX iBBB) (2) 0.009 0.036 0.002 0.007 0.046 0.011
[.001, .017] [.012, .058] [.000, .012] [.000, .017] [.024, .066] [.000, .021]

School Share of var(XXX iBBB) (3) 0.229 0.217 0.218 0.161 0.191 0.190
[.206, .243] [.186, .242] [.191, .243] [.121, .181] [.159, .213] [.159, .213]

CZ Share of var(XXX iBBB) (4) 0.148 0.114 0.116 0.105 0.098 0.099
[.127, .177] [.098, .134] [.101, .136] [.086, .125] [.08, .119] [.081, .118]

XXX iBBB Share of Var(Yi) (5) 0.325 0.386 0.388 0.139 0.232 0.234
[.375, .445] [.345, .415] [.354, .425] [.124, .177] [.211, .272] [.222, .275]

NOTE.—ELSbg represents the ELS data set with the neighborhood specification of block group. ELSz represents the ELS data set with the
neighborhood specification of ZIP code. The rows of Table 3 report the fractions of the variance of XXX iBBB that is within a neighborhood (individual
share), neighborhood-specific within a school (neighborhood share), school-specific within a commuting zone (school share), and commuting-zone-
specific (CZ share). XXX iBBB is the index of student characteristics that affect the outcome indicated in the column headings. BBB is estimated separately for
each outcome and sample as part of the estimation of models without interaction terms reported in Appendix Table B5. The results are for the full set
of XXX i variables. The 5th and 95th percentile values of the bootstrap replications are reported in brackets.
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TABLE 4

ESTIMATES OF THE EDUCATION AND WAGE PROBIT

MODEL PARAMETERS (FULL SET OF STUDENT VARIABLES)

A. High School Graduation B. College Enrollment
NELS ELSbg ELSz N+E NELS ELSbg ELSz N+E

(1) (2) (3) (4) (5) (6) (7) (8)
Variables:

sd(XXX iBBB) 0.619*** 0.588*** 0.580*** 0.600*** 0.856*** 0.946*** 0.945*** 0.901***
(.072) (.028) (.025) (.038) (.026) (.025) (.03) (.02)

sd(XXX1nGGGN
1 ) 0.000 0.000 0.100** 0.050* 0.000 0.060* 0.000 0.000

(.044) (.044) (.034) (.028) (.032) (.031) (.034) (.023)
sd(XXX1sGGGS

1) 0.162*** 0.148*** 0.117*** 0.140*** 0.155*** 0.173*** 0.186*** 0.171***
(.041) (.038) (.032) (.026) (.034) (.028) (.033) (.024)

sd(ZZZS
2sGGG

S
2) 0.096*** 0.101** 0.113*** 0.105*** 0.123*** 0.088*** 0.117*** 0.120***

(.036) (.04) (.031) (.024) (.029) (.029) (.031) (.021)
sd(ZZZC

2cGGGC
2 ) 0.134*** 0.132*** 0.111*** 0.123*** 0.165*** 0.121*** 0.136*** 0.151***

(.042) (.035) (.032) (.026) (.027) (.031) (.032) (.021)
XXX iBBB x XXX1nGGGN

1 (rN
1 ) -0.025 0.024 0.040* 0.008 -0.028 -0.030 -0.049 -0.038

(.035) (.033) (.023) (.021) (.035) (.03) (.031) (.024)
XXX iBBB x XXX1sGGGS

1 (rS
1) 0.031 0.012 0.018 0.025 0.054** -0.036 -0.028 0.013

(.033) (.028) (.028) (.022) (.024) (.035) (.035) (.021)
XXX iBBB x ZZZS

2sGGG
S
2 (rS

21) -0.007 -0.008 -0.015 -0.011 -0.069** -0.017 -0.028 -0.048**
(.036) (.034) (.033) (.024) (.034) (.033) (.032) (.023)

XXX iBBB x ZZZC
2cGGGC

2 (rC
21) 0.014 0.008 -0.014 0.000 -0.010 0.023 0.017 0.004

(.025) (.029) (.029) (.019) (.027) (.026) (.025) (.018)
Female x ZZZS

2sGGG
S
2 (rS

22) 0.013 -0.063 -0.070 -0.028 -0.012 -0.020 -0.010 -0.011
(.043) (.054) (.054) (.035) (.031) (.029) (.03) (.022)

Minority x ZZZS
2sGGG

S
2 (rS

23) -0.075 0.122** 0.125** 0.025 0.041 -0.058 -0.052 -0.005
(.047) (.055) (.053) (.035) (.05) (.041) (.038) (.031)

LowInc x ZZZS
2sGGG

S
2 (rS

24) 0.055 0.028 0.007 0.031 -0.013 0.048 0.054 0.020
(.054) (.06) (.064) (.042) (.051) (.04) (.039) (.032)

Female x ZZZC
2cGGGC

2 (rC
22) -0.012 -0.010 0.038 0.013 -0.041 -0.035 -0.039 -0.040*

(.039) (.042) (.042) (.029) (.029) (.03) (.032) (.021)
Minority x ZZZC

2cGGGC
2 (rC

23) 0.060 0.008 0.009 0.034 -0.024 0.070 0.054 0.015
(.062) (.06) (.062) (.044) (.042) (.043) (.04) (.029)

LowInc x ZZZC
2cGGGC

2 (rC
24) -0.015 -0.046 -0.042 -0.028 -0.079*** 0.019 0.050 -0.015

(.046) (.044) (.043) (.031) (.03) (.049) (.048) (.028)
(Intercept) 1.337*** 1.794*** 1.778*** 1.557*** -0.640*** -0.279*** -0.279*** -0.459***

(.037) (.046) (.046) (.029) (.043) (.038) (.039) (.029)
Random effects:

sd(vn− vs) 0.123*** 0.181*** 0.134*** 0.128*** 0.122*** 0.158*** 0.111*** 0.117***
(.017) (.03) (.017) (.012) (.018) (.03) (.018) (.013)

sd(vs− vc) 0.083*** 0.118*** 0.097*** 0.090*** 0.142*** 0.146*** 0.147*** 0.145***
(.013) (.017) (.016) (.01) (.021) (.027) (.022) (.015)

sd(vc) 0.060*** 0.057*** 0.059*** 0.059*** 0.046*** 0.104*** 0.101*** 0.073***
(.011) (.012) (.011) (.008) (.01) (.03) (.028) (.015)
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TABLE 4, CONT’D

ESTIMATES OF THE EDUCATION AND WAGE PROBIT

MODEL PARAMETERS (FULL SET OF STUDENT VARIABLES)

C. College Graduation D. Log Wage
NELS ELSbg ELSz N+E NELS ELSbg ELSz N+E

(9) (10) (11) (12) (13) (14) (15) (16)
Variables:

sd(XXX iBBB) 0.890*** 0.835*** 0.839*** 0.864*** 0.134*** 0.163*** 0.163*** 0.148***
(.027) (.026) (.027) (.019) (.007) (.006) (.006) (.005)

sd(XXX1nGGGN
1 ) 0.040 0.095*** 0.048 0.044* 0.042*** 0.015 0.032** 0.037***

(.042) (.028) (.032) (.026) (.014) (.011) (.015) (.01)
sd(XXX1sGGGS

1) 0.139*** 0.072*** 0.071** 0.105*** 0.055*** 0.037*** 0.029*** 0.042***
(.035) (.027) (.028) (.022) (.012) (.009) (.01) (.008)

sd(ZZZS
2sGGG

S
2) 0.088*** 0.073*** 0.074*** 0.081*** 0.017 0.012 0.018 0.018*

(.03) (.024) (.026) (.02) (.013) (.011) (.012) (.009)
sd(ZZZC

2cGGGC
2 ) 0.062** 0.091*** 0.073*** 0.067*** 0.037*** 0.028*** 0.027** 0.032***

(.026) (.026) (.026) (.018) (.01) (.01) (.011) (.007)
XXX iBBB x XXX1nGGGN

1 (rN
1 ) -0.070* -0.079*** -0.068* -0.069** -0.016 0.005 0.003 -0.006

(.04) (.026) (.04) (.028) (.01) (.007) (.007) (.006)
XXX iBBB x XXX1sGGGS

1 (rS
1) 0.060** -0.023 -0.021 0.019 -0.004 0.000 -0.002 -0.003

(.027) (.028) (.029) (.02) (.009) (.008) (.008) (.006)
XXX iBBB x ZZZS

2sGGG
S
2 (rS

21) -0.042 -0.073** -0.075** -0.059** 0.006 0.002 0.002 0.004
(.034) (.033) (.033) (.024) (.008) (.006) (.007) (.005)

XXX iBBB x ZZZC
2cGGGC

2 (rC
21) 0.058* -0.013 -0.025 0.016 -0.017* 0.002 0.003 -0.007

(.03) (.03) (.038) (.024) (.01) (.007) (.007) (.006)
Female x ZZZS

2sGGG
S
2 (rS

22) -0.043 0.032 0.034 -0.004 0.009 0.003 -0.004 0.002
(.039) (.03) (.03) (.024) (.014) (.015) (.014) (.01)

Minority x ZZZS
2sGGG

S
2 (rS

23) -0.020 0.028 0.021 0.001 -0.024 0.005 0.001 -0.011
(.05) (.046) (.044) (.033) (.016) (.012) (.012) (.01)

LowInc x ZZZS
2sGGG

S
2 (rS

24) -0.001 0.056 0.031 0.015 0.007 -0.003 -0.005 0.001
(.046) (.061) (.058) (.037) (.015) (.013) (.014) (.01)

Female x ZZZC
2cGGGC

2 (rC
22) -0.033 0.006 0.017 -0.008 0.017 0.026 0.020 0.018

(.032) (.03) (.031) (.023) (.016) (.016) (.017) (.011)
Minority x ZZZC

2cGGGC
2 (rC

23) -0.034 0.002 -0.005 -0.020 -0.026 -0.002 0.004 -0.011
(.046) (.049) (.049) (.034) (.02) (.013) (.013) (.012)

LowInc x ZZZC
2cGGGC

2 (rC
24) -0.040 0.118** 0.107* 0.033 0.020 0.016 0.011 0.016

(.051) (.049) (.056) (.038) (.015) (.012) (.013) (.01)
(Intercept) -0.525*** -0.426*** -0.432*** -0.478*** 2.545*** 2.664*** 2.666*** 2.606***

(.042) (.035) (.036) (.028) (.008) (.009) (.009) (.006)
Random effects:

sd(vi) 0.318*** 0.274*** 0.278*** 0.298***
(.007) (.008) (.009) (.006)

sd(vn− vs) 0.096*** 0.153*** 0.103*** 0.099*** 0.029*** 0.049*** 0.031*** 0.030***
(.012) (.023) (.014) (.009) (.004) (.006) (.004) (.003)

sd(vs− vc) 0.070*** 0.065*** 0.059*** 0.064*** 0.021*** 0.020*** 0.020*** 0.020***
(.008) (.01) (.009) (.006) (.003) (.002) (.002) (.002)

sd(vc) 0.025*** 0.042*** 0.039*** 0.032*** 0.014*** 0.011*** 0.013*** 0.013***
(.005) (.006) (.006) (.004) (.002) (.002) (.002) (.001)

NOTE.—Bootstrap standard errors are in parentheses. The dependent variables are high school
graduation (HSGRAD) in Panel A, enrollment in a 4 year college within 2 years after expected high
school graduation (ENROLL) in Panel B, attainment of a BA degree (COLLBA) in Panel C and
the log hourly wage rate at about age 25 in Panel D. Panels A, B, and C refer to the latent index of
an MME probit specification. Panel D is based on an MME regression specification. The model is
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equation (23). The column heading NELS refers to the NELS data. ELSbg represents the ELS data
set with the neighborhood specification of block group. ELSz represents the ELS data set with the
neighborhood specification of ZIP code. Column 4 (8) report the average and standard error of the
average of the NELS and ELSz estimates in columns 1 and 3 (5 and 7). The parameter vectors BBB,
GGGN

1 , GGGS
1, GGGS

2, and GGGC
2 that define the explanatory index variables XXX iBBB, XXX1nGGGN

1 , ZZZS
2sGGG

S
2 and ZZZC

2cGGGC
2 are

estimated in a first step. The first 4 rows report the estimated standard deviations of these indices.
The model includes the “full” set of XXX i variables (student level) and the corresponding “full” set
of XXX s variables (school means). See Appendix A1 for a list of XXX i, XXX1n, XXX s, ZZZS

2s,and ZZZC
2c variables

and Appendix table B2 for summary statistics. The index variables in the interaction terms are
standardized to be mean 0 and sd 1. Standard deviation of vi is 1 in probit specifications. Names
of interaction coefficients are next to the variables. See Section 6.2 for details about the estimation
and bootstrap standard error procedures.
* p < 0.1
** p < 0.05
*** p < 0.01
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TABLE 5

SAMPLE AVERAGES OF THE TREATMENT EFFECTS ON EDUCATION AND

WAGES OF A 10TH TO 90TH PERCENTILE SHIFT IN SCHOOL QUALITY AND

COMMUTING ZONE QUALITY (FULL SAMPLE)

A. HS Grad B. College Enrollment
NELS ELSbg ELSz NELS ELSbg ELSz

School+CZ 0.088 0.062 0.060 0.171 0.173 0.183
(.014) (.011) (.011) (.018) (.019) (.019)

School only 0.060 0.045 0.043 0.125 0.120 0.133
(.014) (.01) (.011) (.017) (.019) (.019)

CZ only 0.067 0.041 0.037 0.114 0.112 0.118
(.017) (.009) (.01) (.017) (.022) (.021)

C. College Grad D. Log Wage
NELS ELSbg ELSz NELS ELSbg ELSz

School+CZ 0.085 0.090 0.083 0.111 0.104 0.103
(.016) (.012) (.015) (.025) (.024) (.027)

School only 0.077 0.071 0.068 0.069 0.060 0.069
(.018) (.015) (.016) (.027) (.023) (.024)

CZ only 0.046 0.073 0.060 0.102 0.078 0.075
(.019) (.017) (.016) (.024) (.024) (.026)

NOTE.—The row School+Cz reports the average effect of moving students from a school and
commuting zone at the 10th percentile of the distribution of the sum of school and commuting zone
quality to the 90th percentile value. The row School only (CZ only) reports the average effect of
a shift from the 10th percentile of school (commuting zone) quality to the 90th. The estimates are
based on the model estimates in Table 4, which are for the full set of XXX i variables. See Section
6.4 and Online Appendix B3.3 for the details of the treatment effect calculations. Column heading
indicate the outcome, the data set, and whether the neighborhood definition is block group or ZIP
code. ELSbg represents the ELS data set with the neighborhood specification of block group. ELSz
represents the ELS data set with the neighborhood specification of ZIP code. Bootstrap standard
errors are in parentheses.
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TABLE 6

THE TREATMENT EFFECTS ON EDUCATION AND WAGES OF A

10TH TO 90TH PERCENTILE SHIFT IN SCHOOL QUALITY AND COMMUTING

ZONE QUALITY, BY POPULATION SUBGROUP (FULL SAMPLE)

A. HS Grad B. College Enrollment

white black Hispanic
sg mother,
hs deg

both par
wh, col deg

white black Hispanic
sg mother,
hs deg

both par
wh, col deg

i. NELS / ZIP Code:
Sch+CZ 0.086 0.095 0.113 0.140 0.040 0.177 0.167 0.138 0.116 0.213

(.013) (.017) (.019) (.021) (.007) (.018) (.018) (.017) (.014) (.02)
Sch only 0.058 0.066 0.077 0.093 0.027 0.129 0.121 0.101 0.086 0.154

(.014) (.016) (.02) (.022) (.007) (.017) (.018) (.015) (.013) (.018)
CZ only 0.066 0.071 0.085 0.106 0.031 0.118 0.110 0.091 0.075 0.142

(.017) (.019) (.021) (.027) (.007) (.017) (.017) (.016) (.012) (.02)
ii. ELS / Block Group:

Sch+CZ 0.053 0.076 0.087 0.094 0.021 0.183 0.166 0.145 0.158 0.184
(.01) (.015) (.015) (.015) (.004) (.02) (.019) (.017) (.021) (.019)

Sch only 0.039 0.056 0.062 0.067 0.016 0.127 0.115 0.101 0.112 0.127
(.009) (.013) (.014) (.014) (.004) (.02) (.019) (.017) (.021) (.018)

CZ only 0.035 0.050 0.058 0.062 0.014 0.118 0.106 0.093 0.103 0.120
(.008) (.013) (.013) (.011) (.003) (.023) (.021) (.019) (.022) (.021)

iii. ELS / ZIP Code:
Sch+CZ 0.051 0.074 0.083 0.089 0.020 0.193 0.177 0.153 0.167 0.194

(.01) (.015) (.015) (.015) (.004) (.02) (.019) (.017) (.02) (.019)
Sch only 0.043 0.037 0.054 0.060 0.065 0.140 0.129 0.111 0.120 0.139

(.01) (.014) (.015) (.015) (.004) (.02) (.019) (.017) (.02) (.017)
CZ only 0.031 0.045 0.052 0.055 0.013 0.125 0.112 0.097 0.106 0.126

(.009) (.014) (.015) (.013) (.004) (.022) (.02) (.018) (.022) (.021)
C. College Grad D. Log Wage

white black Hispanic
sg mother,
hs deg

both par
wh, col deg

white black Hispanic
sg mother,
hs deg

both par
wh, col deg

i. NELS / ZIP Code:
Sch+CZ 0.090 0.074 0.067 0.056 0.101 0.111 0.112 0.111 0.111 0.110

(.017) (.015) (.014) (.011) (.018) (.025) (.026) (.025) (.026) (.025)
Sch only 0.081 0.067 0.061 0.051 0.090 0.069 0.068 0.069 0.067 0.069

(.018) (.016) (.015) (.012) (.019) (.027) (.027) (.027) (.027) (.027)
CZ only 0.049 0.039 0.036 0.029 0.056 0.102 0.104 0.102 0.104 0.101

(.02) (.017) (.015) (.012) (.023) (.024) (.025) (.024) (.025) (.023)
ii. ELS / Block Group:

Sch+CZ 0.097 0.077 0.072 0.082 0.102 0.104 0.105 0.105 0.101 0.104
(.013) (.011) (.011) (.013) (.013) (.024) (.024) (.024) (.024) (.024)

Sch only 0.076 0.061 0.058 0.063 0.078 0.060 0.060 0.060 0.061 0.061
(.016) (.014) (.013) (.016) (.015) (.023) (.023) (.023) (.023) (.023)

CZ only 0.079 0.062 0.057 0.065 0.083 0.078 0.078 0.078 0.079 0.078
(.018) (.014) (.013) (.017) (.018) (.024) (.024) (.024) (.024) (.024)

iii. ELS / ZIP Code:
Sch+CZ 0.090 0.072 0.067 0.074 0.094 0.103 0.102 0.103 0.103 0.103

(.016) (.013) (.013) (.016) (.015) (.027) (.027) (.027) (.027) (.027)
Sch only 0.073 0.059 0.055 0.061 0.076 0.069 0.069 0.068 0.067 0.069

(.017) (.015) (.014) (.017) (.015) (.024) (.024) (.024) (.024) (.024)
CZ only 0.065 0.051 0.048 0.055 0.069 0.075 0.076 0.076 0.075 0.076

(.017) (.014) (.013) (.017) (.017) (.026) (.026) (.026) (.026) (.026)

NOTE.—The row Sch+CZ reports the average effect of moving students from a school and
commuting zone at the 10th percentile of the distribution of the sum of school and commuting zone
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quality to the 90th percentile value. The row Sch Only (CZ Only) reports the average effect of a
shift from the 10th percentile of school (commuting zone) quality to the 90th. The estimates are
based on the model estimates in Table 4, which are for the full set of XXX i variables. See Section 6.4
and Online Appendix B3.3 for the details of the treatment effect calculations. The panel headings
indicate the outcome, the data set and whether the neighborhood definition is block group or ZIP
code. The column heading identify the subgroup. “white” are white non-Hispanic students. “black”
and “Hispanic” are non-Hispanic black and Hispanic students. “sg mother, hs deg” are students with
a single mother who has a high school degree or less. “both par wh, col deg” are white students
with two resident parents with college degrees. Bootstrap standard errors are in parentheses.
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FIG. 1A.—The probability of high school graduation, college enrollment, and BA degree attain-
ment by percentile of XXX iBBB at the median value of school and commuting zone quality in NELS. The
figure displays the average predicted value for the NELS grade 8 sample from the probit function
evaluated at the indicated quantile of the XXX iBBB index with school and commuting zone contribu-
tions set to the median value. The average is taken over neighborhood and unobserved individual
contributions, as well as the control function, which represents a mix of school contributions and
school-means of individual contributions. See Section 6 for details about the estimating equation.
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FIG. 1B.—The probability of high school graduation, college enrollment, and BA degree attain-
ment by percentile of XXX iBBB at the median value of school and commuting zone quality in ELS. The
figure displays the average predicted value for the ELS block group sample from the probit function
evaluated at the indicated quantile of the XXX iBBB index with school and commuting zone contribu-
tions set to the median value. The average is taken over neighborhood and unobserved individual
contributions, as well as the control function, which represents a mix of school contributions and
school-means of individual contributions. See Section 6 for details about the estimating equation.
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FIG. 2.—Treatment effect on high school graduation of a 10th to 90th percentile shift in school
quality + commuting zone quality, by percentile of XXX iBBB index. The figure displays the average
predicted change in the probability of high school graduation for a student at the indicated quantile
of the XXX iBBB index from growing up in combined school/commuting zone environment at the 90th

quantile of quality versus the 10th quantile of combined school/commuting zone quality. See Section
6.4 for details about how these values are calculated. The three lines display average predicted
changes in probability for students in the NELS grade 8 sample, the ELS sample with ZIP codes
designating neighborhoods, and the ELS sample with block groups designating neighborhoods.
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FIG. 3.—Treatment effect on college enrollment of a 10th to 90th percentile shift in school qual-
ity + commuting zone quality, by percentile of XXX iBBB index. The figure displays the average predicted
change in the probability of enrollment at a four-year college for a student at the indicated quantile
of the XXX iBBB index from growing up in combined school/commuting zone environment at the 90th

quantile of quality versus the 10th quantile of combined school/commuting zone quality. See Sec-
tion 6.4 for details about how these values are calculated. The three lines display average predicted
changes in probability for students in the NELS grade 8 sample, the ELS sample with ZIP codes
designating neighborhoods, and the ELS sample with block groups designating neighborhoods.
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FIG. 4.—Treatment effect on college BA of a 10th to 90th percentile shift in school quality
+ commuting zone quality, by percentile of XXX iBBB index. The figure display the average predicted
change in the probability of graduation from a four-year college for a student at the indicated quan-
tile of the XXX iBBB index from growing up in combined school/commuting zone environment at the 90th

quantile of quality versus the 10th quantile of combined school/commuting zone quality. See Sec-
tion 6.4 for details about how these values are calculated. The three lines display average predicted
changes in probability for students in the NELS grade 8 sample, the ELS sample with ZIP codes
designating neighborhoods, and the ELS sample with block groups designating neighborhoods.
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Appendices

A1 List of Variables

Student Characteristics (included in XXX i): 1(Female), 1(Non-Hispanic black), 1(Hispanic),

1(Asian), and 1(White) (excluded) and 1(Other Race) (ELS only), 1(Immigrant), 1(Native English

Speaker) and 1(Athletic). In addition, the full model includes Math score, Reading score, Weekly

homework hours, 1(Parent checks homework), Hours/per week spent reading, 1(Attends class with-

out a pencil) and 1(Fought in school).

Parent and Family Characteristics (included in XXX i): SES Index, Number of siblings, 1(Does

not live with both mother and father), Father’s years education, Mother’s years education, 1(Mother’s

education missing), Ln(family income), 1(Mother or father is an immigrant), religion dummies

(1(Catholic), 1(Other Christian), 1(Other Religion), 1(Religion Missing), where 1(Protestant) is ex-

cluded); mother’s occupation dummies (1(Clerical), 1(Manager/accountant/nurse/business owner/teacher),

1(Sales or service), 1(Other or homemaker), 1(Missing)), father’s occupation dummies (1(Accoun-

tant/ nurse/teacher/manager/dentist/lawyer/business owner), 1(Military/security/craftsman/technician),

1(Service/ clerical/sales/missing/other/homemaker), 1(Farmer, laborer, operative)), Home environ-

ment index (first principal component), Parental school engagement index (first principal compo-

nent), Parent’s years of education desired for child.

Neighborhood Characteristics (included in XXXn variables):.NELS and ELS ZIP code speci-

fication: % Black, % Hispanic, % Non-married households, % Foreign born, % Some college or

associate degree, % Four-year college degree or higher, Log(median income), Gini coefficient (ELS

only), % SSI or welfare recipients, Log(median house value) (ELS only), and % Housing properties

occupied (ELS only). ELS block group specification: Proportion of jobs in agriculture, mining, oil,

utility, construction, or manufacturing, Proportion of jobs in information, finance, insurance, real

estate, professional, or science, Proportion of jobs in management, administration, waste manage-

ment, Proportion of jobs in education, other services and public administration, and Proportion of

jobs in transportation and warehousing. They also include % Black, % Hispanic, % Other, % Non-

married households, % Foreign born, % Some college or associate degree, % Four-year college

degree or higher, Log(median income), Gini coefficient, % SSI or welfare recipients, Log(median

house value) and % Housing properties occupied.

School Characteristics (included in XXX s): % Minority, % Limited English proficient, % Free/reduced

lunch. The full specification also includes % Special ed, % Remedial reading and % Remedial math.
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School Characteristics (included in ZZZS
2s): Variables common to both ELS and NELS: 1(Catholic

school), 1(Private school), School enrollment, Student-teacher ratio, % Minority teachers, and

school security policies indices (first and second principal components).

In addition, the ELS specification also includes Teacher turnover rate, % Teachers with certi-

fication, Teacher evaluation policy index (first principal component), Teacher incentive pay index

(first principal component), Teacher technology access index (first principal component), School

physical environment index (first principal component), administrator’s reported school facilities

index (first principal component), 1(Rural, not in MSA), 1(Rural, in MSA), 1(town), 1(Suburb of

medium city), 1(Medium city), (Large city), and School administrator’s assessment of crime in the

school neighborhood.

In addition, the NELS specification includes % Teachers with a masters degree, 1(Collective

bargaining), Log(minimum teacher salary), 1(Urban), 1(Suburban), 1(Gifted program), Junior High

(JH) school minutes per year, JH course assignment index (first principal component), JH student

retainment policy index (first principal component), JH student activities index (first principal com-

ponent), JH school environment index (first principal component), JH movement in school policy

index (first principal component), JH counseling policy index, JH school uniform policy index, JH

student problems index (first principal component), and JH student punishment policy index (first

principal component).

Commuting Zone Characteristics (included in ZZZC
2c): Household income per capita, Theil

racial segregation index, Log population density, % Black, Income segregation index, Social capital

index, Poverty rate, Unemployment rate, Fraction of Children with Single Mothers, Gini coefficient,

HS dropout rate (income adjusted), College graduate rate (income adjusted), Number of Colleges

per Capita, Chetty-Hendren estimate of commuting zone causal effect on college attendance from

age 18-23, Chetty-Hendren commuting zone causal effect on rank in national income distribution

at age 26, 1(Northeast region), 1(Midwest region) and 1(West region).
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TABLE A1

KEY SCHOOL AND COMMUTING ZONE VARIANCE COMPONENTS OF 10-90 TREATMENT EFFECTS

OF SCHOOL AND COMMUTING ZONE QUALITY (FULL, INTERACTED SPECIFICATION)

A. HS Grad B. College Enroll
NELS ELSbg ELSz NELS ELSbg ELSz

(1) (2) (3) (4) (5) (6)
Panel A:

Var(ZZZS
2sGGG

S
2) (1) 0.006 0.007 0.009 0.008 0.004 0.006

[.003, .022] [.009, .041] [.010, .044] [.004, .014] [.002, .011] [.003, .014]
Var(ZZZC

2cGGGC
2 ) (2) 0.011 0.011 0.008 0.014 0.007 0.008

[.006, .032] [.006, .028] [.004, .027] [.010, .026] [.004, .017] [.004, .017]
2*Cov(ZZZS

2sGGG
S
2,ZZZ

C
2cGGGC

2 ) (3) -0.002 0.001 0.003 0.000 0.003 0.002
[-.014, .003] [-.009, .007] [-.008, .01] [-.009, .005] [-.004, .005] [-.007, .004]

Var(vs-vc) (4) 0.004 0.009 0.006 0.010 0.010 0.010
[.002, .006] [.003, .009] [.003, .009] [.002, .008] [.002, .01] [.002, .008]

Var(vc) (5) 0.002 0.002 0.002 0.001 0.005 0.004
[.001, .003] [.001, .003] [.001, .004] [.000, .002] [.001, .008] [.001, .007]

Panel B:
School and CZ:
Var(ZZZS

2sGGG
S
2+ZZZC

2cGGGC
2 +vs+vc)

(6) 0.022 0.030 0.029 0.033 0.028 0.030
[.017, .045] [.026, .069] [.025, .07] [.021, .042] [.015, .035] [.015, .034]

School only: Var(ZZZS
2sGGG

S
2 + vs)

(7) 0.010 0.016 0.015 0.018 0.013 0.016
[.006, .026] [.014, .047] [.014, .051] [.007, .019] [.005, .018] [.006, .018]

CZ only: Var(ZZZC
2cGGGC

2 + vc)
(8) 0.014 0.013 0.011 0.015 0.012 0.013

[.007, .034] [.008, .03] [.006, .028] [.011, .027] [.006, .021] [.006, .02]
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