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Abstract 

The notions of ku-sub-implicative ideals, ku-sub-commutative ideals and kp-ideals of ku-algebras are 

introduced. We show that a nonempty subset of a KU-algebra is a ku-sub-implicative ideal if and only if 

it is both a ku-sub-commutative ideal and a ku-positive implicative ideal. We discuss the relation 

between kp-ideal and a ku-sub-implicative ideal and a ku-sub-commutative ideal that is, in ku-algebra 

any kp-ideal is always ku-sub-implicative and ku-sub-commutative ideals, but the converse is not true. 

We give a characterization of ku-positive implicative ideals of ku-algebras. Moreover some other 

properties about ku-sub implicative ideals and ku-sub commutative ideals of ku-algebras are given. We 

give conditions for ideals to be a ku-sub-implicative ideal, ku-sub-commutative ideal and ku-positive 

implicative ideal. Moreover we show that any ku-sub-implicative ideal, a ku-sub-commutative ideal and 

kp-ideal are ideals, but the converse is not true. We verify that, in an implicative ku-algebra every ideal 

is a ku-sub-commutative. In the end, some algorithms for KU-algebra have been constructed. 

Keywords: Ku-algebras; Ku-sub implicative ideals; Ku-sub-commutative; Ku-positive implicative; Kp-

ideal. 

Introduction 

Iami and Iseki [1-3] in 1966 proposed the 

notion of BCK-algebras. Iseki [2] introduced the 

notion of a BCI-algebra which is a generalization 

of BCK-algebra. Since then numerous 

mathematical papers have been written 

investigating the algebraic properties of the 

BCK/BCI-algebras and their relationship with 

other universal structures including lattices and 

Boolean algebras. There is a great deal of 

literature has been produced on the theory of 

BCK/BCI-algebras, in particular, emphasis 

seems to have been put on the ideal theory of 

BCK/BCI-algebras. For the general development 

of BCK/BCI-algebras the ideal theory plays an 

important role. The notions of ideals in BCK- 

algebras and positive implicative (implicative) 

ideals in BCK-algebras were introduced by Iseki 

[1-3].The notions of commutative ideals in 

BCK-algebras and implicative ideals in BCK-

algebras were introduced by Meng [7-11]. 

Prabpayak and Leerawat [15,16] introduced a 

new algebraic structure which is called KU - 

algebra . They gave the concept of 

homomorphisms of KU - algebras and 

investigated some related properties. Mostafa et 

al [12-14] introduced the notion of KU-ideals of 

KU-algebras and then they investigated several 

basic properties which are related to KU-ideals 

.The idea of sub implicative ideal was introduced 

by Liu and Meng [6], they established the 

concepts of sub-implicative ideals and sub-

commutative ideals in BCI-algebras and 

investigated some of their properties. 

The goal of this paper is to introduce the 

notions of ku-sub implicative, ku-positive 

implicative, ku-sub-commutative and kp-ideal 

ideals in ku-algebras and investigate some their 

related properties. We show that in a ku-algebra 

X, a nonempty subset of X is a sub-implicative 

ideal if and only if it is both a sub-commutative 

ideal and positive implicative ideal .We prove 

that any kp-ideal is always ku- sub-implicative 

and ku-sub-commutative ideals, but the converse 

is not true. Moreover we show that, any ku-sub 

implicative (ku-sub-commutative) ideal is an 

ideal, but the converse is not true. On the other 

hand the properties of ku-sub-commutative 

ideals of ku-algebras are given. 

Preliminaries 

Now we recall some known concepts 

related to ku-algebra from the literature which 

will be helpful in further study of this article. 
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Definition 2.1. [15,16] Algebra(X, ∗, 0) of type 

(2, 0) is said to be a ku-algebra, if it satisfies the 

following axioms: 

(
1ku )  0)]())[()(  zxzyyx , 

(
2ku )  00 x , 

( 3ku )  xx 0 , 

(
4ku ) 0 yx  and 0 xy  implies yx  , 

( 5ku ) 0 xx , 

 For all Xzyx ,, . 

On a KU-algebra )0,,( X we can define a binary 

relation   on X  by putting: 

0 xyyx . 

Thus a KU - algebra X   satisfies the conditions: 

 ( \1
ku ): )()()( yxzxzy     

 ( \2
ku ): x0    

 ( \3
ku ): xyyx  ,  implies yx  , 

( \4
ku ):   xxy  . 

Theorem 2.2. [12]: In a ku-algebra X  , the 

following axioms are satisfied: 

For all Xzyx ,, , 

 (1):  yx  imply zxzy  , 

 (2): )()( zxyzyx  , for all Xzyx ,, , 

 (3): yxxy  ))(( . 

(4) )())))(( xyxxxy   

Proof. Since 

)()(*)( yxzxzy  ,  

implies )())(( yxzzyx  , put x=0, we 

have ,)()0())((0 yxxyyzzy   

then y*x≤ ( (y*x)*x)*x…………..1 

But, 
0)])[()])[()]))[(()(  xxyxxyxxxyxy

 2.................).........()))((. xyxxxyei   

From 1, 2 ,we have )())))(( xyxxxy   

We will refer to X  is a ku-algebra unless 

otherwise indicated. 

Definition 2.3. [15,16] Let I  be a non-empty 

subset of a KU-algebra X . Then I  is said to be 

an ideal of X , if  

)( 1I  I0  

)( 2I ,, Xzy  if Izy  )(  and ,Iy  

imply Iz . 

Definition 2.4. [12] Let I  be a non-empty 

subset of a KU-algebra X . Then I  is said to be 

an KU- ideal of X , if  

)( 1I  I0  

)( 2I ,,, Xzyx  if Izyx  )(  and ,Iy  

imply Izx  . 

Definition 2.5. [13,14] A ku-algebra )0,,( X is 

said to be ku -positive implicative, if it 

satisfies: )()()( yxzyzxz  , for all 

zyx ,,  in X . 

Theorem 2.6.[13,14 ] Let )0,,( X be a ku-

algebra. X is ku-positive implicative if and only 

if )( xyyxy  . 

Definition 2.7. [13,14] a ku-algebra )0,,( X is 

said to be ku - commutative if it satisfies: 

Xyx  , , yyxxxy  )()( .  

Theorem2.8. [13,14 ] For a ku-algebra )0,,( X , 

the following are equivalent: 

(a) X is ku - commutative, 

(b) yyxxxy  )()( , 

(c) 0))(())((  xxyyyx . 

Definition 2.9. [13,14 ]. A KU-algebra )0,,( X is 

called ku- implicative if xyxx  )( , for all 

yx,  in X . 

Definition 2.10. [13,14 ]. ku-algebra is said to be 

implicative if it satisfies     

)))(()()( xxyyxyyx    

Definition2.11. [ 13,14 ]. ku-algebra is said to be 

commutative if it satisfies  

xyyximpliesyx  )(    

Lemma 2.12. [13,14 ]. Let X be a KU-algebra. 

X is ku-implicative if X is ku-positive 

implicative and ku-commutative. 

Ku-(Subimplicative, positive implicative, 

subcommutative) ideals 

In this section, we discuss the notion of ku (sub 

implicative\positive implicative\sub 

commutative) ideals, and then we give some 

characterizations of these concepts. 

Definition 3.1. A non-empty subset A  of a KU-

algebra X  is called a ku-sub implicative ideal 

of X , if ,,, Xzyx   

)1(  A0  

)2( Axxyyxz  )))(()(( and ,Az  

imply Ayyx  )( . 

Example 3.2. Let }4,3,2,1,0{X in which the 

operation   is given by the table 1. 

Table 1 

 

 

 

 

 

 

Using the 

  0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 1 3 4 

2 0 0 0 3 4 

3 0 0 0 0 4 

4 0 0 0 0 0 
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algorithms in Appendix A, then )0,,( X is a KU-

Algebra.  

It is easy to verify that }3,2,1,0{A is a ku-sub 

implicative ideal of X . 

Theorem 3.3. Let A  be an ideal of X. Then A is 

ku- sub implicative if and only if  

 (A) Axxyyx  )))(()(( implies 

Ayyx  )(  

Proof. Suppose that A is a ku-sub implicative 

ideal of X.  For any ,, Xyx   

If Axxyyx  )))(()(( , then 

Axxyyx  )))(()((0 and A0  by 

(definition 3.1 – (2)). Hence (A) holds. 

Conversely, suppose that an ideal A satisfies  

(A), For ,,, Xzyx  if 

Axxyyxz  )))(()((  and ,Az  (by the 

definition of ideals) we obtain 

Axxyyx  )))(()(( , It follows from (A) 

that Ayyx  )( .This mean that A  is a ku- 

sub implicative ideal. This completes the proof. 

Theorem 3.4. Any sub implicative ideal is an 

ideal, but the converse is not true. 

Proof. Suppose that A   is ku-sub implicative 

ideal of X and let yx    in (definition 3.1 – (2)), 

we get  

 Axzxzxxxxxz  ))]0(0()))(()((

00 
 , 

Az  imply Ax . This means that A  is an 

ideal. 

The last part is shown by the following example. 

Example 3.5. Let }4,3,2,1,0{X in which the 

operation   is given by the table 2. 

Table 2 

  0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 2 1 4 

2 0 1 0 3 4 

3 0 0 2 0 4 

4 0 1 0 3 0 

Using the algorithms in Appendix A, then 

)0,,( X is a KU-Algebra. It is easy to verify that 

}0{A is an ideal, but not ku-sub implicative 

ideal of X . Since, 

AA  0,))4)42(()24((0 , but  

A 22)24( . 

Definition 3.6. Let )0,,( X be a KU-algebra, a 

nonempty subset A of X is said to be a ku-

positive implicative ideal if it satisfies, for all 

zyx ,,  in X , 

(1) A0 , 

(2) Ayxz  )( and Axz  imply Ayz  . 

Lemma 3.7. Any ku-positive implicative ideal is 

an ideal, but the converse is not true. 

Proof: clear 

Example. 3.8. Let }4,3,2,1,0{X in which the 

operation   is given by the table in (example. 

3.5.) Then )0,,( X is a KU-Algebra. 

  3,2,1,0,3,1,0 are ku-positive implicative ideals 

of X .     4,2,02,0,0 and  are ideals of X , but 

not ku-positive implicative ideals. 

Theorem 3.9. Let )0,,( X be a KU-algebra, if 

A is a ku - positive implicative ideal 

of X , the following are equivalent :  

(a) A is a ku-positive implicative ideal of X ,  

 (b) A is an  ideal and for any yx,  

in X , Axyy  )( implies Axy  . 

 (c) A is an  ideal and for any zyx ,,  in X , 

Axyz  )(  implies Axzyz  )()( . 

 (d) A0  and AzAxyyz  ,))((  implies 

Axy  . 

Proof. ( ba ).If A is a ku-positive implicative 

ideal of X , by Lemma 3.7. is an ideal. Suppose 

Axyy  )( , since Ayy  0 ,by  

Definition 3.6 (2), we have Axy  )( , (b) hold.  

( cb ).Assume (b) and Axyz  )( . Since  

Axyzxzyzzxyzzz  )())()((())))(((( , 

it follows that 

Axyzzz  )))(((( ,by (b) we have 

Axyzzxzyz  ))(()()(  

And so (c) hold. 

( dc ) It clear that A0 .  

If AzAxyyz  ,))((( , then  

Axzyy  ))((( by ( c ), we get  

Axyzyyxyzxyz  )(()()((0)(

Since A is an ideal and Az  , then Axy  )(  , 

and so (d) hold 

( ad  ) First observe that if A  satisfied ( d ), 

then A is an ideal of X . 

In fact suppose Axy  )(  and ,Ay  then 

AyAxy  ,))0(0(( , 

using ( d ) we obtain x= Ax0 , i.e A is an  

ideal. Next, let Axyz  )( and  

Ayz  . As 

Axyzxzyxzzyz  )()())(()( , 

it follows that 

Axzzyz  ))(()( . Combining  

Axy  )( and using ( d ), we have  

Axz  )( . This have  proved A is a ku-positive 

implicative ideal of X . 
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Theorem 3.10.  Any sub-implicative ideal is a 

positive implicative ideal, but 

the converse does not hold. 

Proof. Assume that A is a ku-sub implicative 

ideal of X. It follows from 

(Theorem 3,4) that A  is an ideal. In order to 

prove that A is a positive implicative 

ideal from (Theorem 3,9(b)) it suffices to show 

that if Axyy  )(  then Axy   

by (Theorem 3.3)for any ,, Xvu   we 

have Auuvvu  )))(()(( implies 

Avvu  )( Substituting vxyux  , ,then 

Axyyxxxyy

xyxxyxyxuuvvu





)()))((((

)}{())({})({())(()((  

Hence if Axyy  )( , then , Avvu  )( , i.e                                                                                                   
Axyxyxyxxyxyxyx  )()(0)())*(*(()())((((

Therefore A is a ku-positive implicative ideal of 

X . 

In example 3.5. 3,1,0  is ku-positive implicative 

ideal, but not ku-sub implicative ideal. This 

finishes the proof. 

Definition 3.11. A non-empty subset A  of a 

KU-algebra X  is called a ku-sub commutative 

ideal of X , if  

)1(  A0  

)2( Ayyxxyz  }))){((  and ,Az  

imply Axxy  )( . 

Example 3.12. Let }3,2,1,0{X in which the 

operation   is given by the table 3. 

Table 3 

* 0 1 2 3 

0 0 1 2 3 

1 0 0 1 3 

2 0 0 0 3 

3 0 1 2 0 

Using the algorithms in Appendix A, then 

)0,,( X is a ku-Algebra. It is easy to verify that 

{0} and {0,3} are all ku-sub-commutative ideals 

of X. 

Proposition 3.13. An ideal A  of X is ku-sub-

commutative if and only if 

(B) Ayyxxy  )))((  we have 

Axxy  )( . 

Proof. Suppose that A is a ku-sub commutative 

ideal of X.  For any ,, Xyx   

If Ayyxxy  )))(( , then 

Ayyxxy  )))((0 and A0  by 

Definition 3.11 – (2). Hence (B) holds. 

Conversely, suppose that an ideal A  satisfies  

(B), For ,,, Xzyx  if 

Ayyxxyz  ))))((  and ,Az  (by the 

definition of ideals) we obtain 

Ayyxxy  ))))(( , It follows from (B) that 

Axxy  )( .This mean that A  is a ku-sub 

commutative ideal. This completes the proof. 

Proposition 3.14. ku-sub-commutative ideal is 

an ideal, but the converse does not hold. 

 Proof. Suppose that A   is ku-sub commutative 

ideal of X and let yx    in (definition 3.11 – 

(2)), Axzxxxxxz  }))){(( , ,Az  

imply Ax . This means that A  is ideal. 

The last part is shown by the example 3.5. 3,1,0  

is ideal, but not ku-sub commutative ideal. This 

finishes the proof. 

Definition 3.15. A nonempty subset A  of a KU-

algebra X is called a kp-ideal of X if it satisfies  

)1(  A0  , 

(2) Axzyz  )()(  , AxAy   

Proposition 3.16. kp-ideal ideal is an ideal, but 

the converse does not hold 

Proof: clear  

Theorem 3.17. Any kp-ideal is a ku- sub-

implicative ideal, but the converse is 

not true. 

Proof. Suppose that A   is kp-ideal, then A is 

ideal . Now we show 

Axxyyx  )))(()( implies Ayyx  )(  

Axyxyxxyyyyxxxyyx  0)()())((])[())])(()[(

We have Axxyyx  )))(()(  it follows that  

Ayyx  )( . By (Theorem 3.3) means that A is 

ku-sub implicative. The last part is shown by the 

following example 

Example 3.18. Let }4,3,2,1,0{X in which the 

operation   is given by the table 4. 

Table 4 

 

 

 

 

 

 

 

Using the algorithms in Appendix A, then 

)0,,( X is a ku-Algebra. It is easy to verify that 

}3,2,1,0{A is a ku-sub implicative ideal of X , 

but not kp-ideal, since A 0)44()04(  , 

AA  40  

Theorem 3.19. Any kp-ideal is a ku-sub-

commutative ideal, but the converse is 

not true. 

  0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 1 3 4 

2 0 0 0 3 4 

3 0 0 1 0 4 

4 0 0 0 0 0 
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Proof. Suppose that A is kp-ideal, then A is ideal. 

Now we show 

Ayyxxy  )))(( implies Axxy  )( . 

We have Ayyxxy  )))((  it follows that, 

by (Proposition 3.13) it means that A is ku-sub-

commutative. 

In example 3.12. It is easy to verify that {0,3} is 

ku-sub-commutative ideals  

but not kp-ideal , since A 0)22()32(  , 

AA  23  

Corollary 3.20. In an implicative KU-algebra 

every ideal is an ku- sub-commutative  

Proof. The proof is straightforward. 

Conclusions 

In the present work the the concepts of ku-sub 

implicative, ku-positive implicative, ku-sub-

commutative and kp-ideals in ku-algebras is 

introduced and some their related properties is 

investigated. We show that in a ku-algebra X, a 

nonempty subset of X is a sub-implicative ideal 

if and only if it is both a sub-commutative ideal 

and positive implicative ideal .We prove that any 

kp-ideal is always an ku- sub-implicative ideal 

and an ku-sub-commutative ideal, but the 

converse is not true. Moreover we prove that any 

ku-sub implicative (ku-sub-commutative) ideal 

is an ideal, but the converse is not true.  
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