

Research Article

Sub implicative ideals of KU-Algebras

S. M. Mostafa, R. A. K Omar, O. W. Abd El- Baseer

Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt.

*Corresponding author's e-mail: samymostafa@yahoo.com

Abstract

The notions of ku-sub-implicative ideals, ku-sub-commutative ideals and kp-ideals of ku-algebras are introduced. We show that a nonempty subset of a KU-algebra is a ku-sub-implicative ideal if and only if it is both a ku-sub-commutative ideal and a ku-positive implicative ideal. We discuss the relation between kp-ideal and a ku-sub-implicative ideal and a ku-sub-commutative ideal that is, in ku-algebra any kp-ideal is always ku-sub-implicative and ku-sub-commutative ideals, but the converse is not true. We give a characterization of ku-positive implicative ideals of ku-algebras. Moreover some other properties about ku-sub implicative ideals and ku-sub commutative ideals of ku-algebras are given. We give conditions for ideals to be a ku-sub-implicative ideal, ku-sub-commutative ideal and ku-positive implicative ideal. Moreover we show that any ku-sub-implicative ideal, a ku-sub-commutative ideal and kp-ideal are ideals, but the converse is not true. We verify that, in an implicative ku-algebra every ideal is a ku-sub-commutative. In the end, some algorithms for KU-algebra have been constructed.

Keywords: Ku-algebras; Ku-sub implicative ideals; Ku-sub-commutative; Ku-positive implicative; Kp-ideal.

Introduction

Iami and Iseki [1-3] in 1966 proposed the notion of BCK-algebras. Iseki [2] introduced the notion of a BCI-algebra which is a generalization BCK-algebra. then of Since numerous papers mathematical have been written investigating the algebraic properties of the BCK/BCI-algebras and their relationship with other universal structures including lattices and Boolean algebras. There is a great deal of literature has been produced on the theory of particular. BCK/BCI-algebras, in emphasis seems to have been put on the ideal theory of BCK/BCI-algebras. For the general development of BCK/BCI-algebras the ideal theory plays an important role. The notions of ideals in BCKalgebras and positive implicative (implicative) ideals in BCK-algebras were introduced by Iseki [1-3]. The notions of commutative ideals in BCK-algebras and implicative ideals in BCKalgebras were introduced by Meng [7-11]. Prabpayak and Leerawat [15,16] introduced a new algebraic structure which is called KU algebra They gave the concept of homomorphisms of KU algebras and investigated some related properties. Mostafa et al [12-14] introduced the notion of KU-ideals of KU-algebras and then they investigated several basic properties which are related to KU-ideals .The idea of sub implicative ideal was introduced by Liu and Meng [6], they established the concepts of sub-implicative ideals and subcommutative ideals in BCI-algebras and investigated some of their properties.

The goal of this paper is to introduce the notions of ku-sub implicative, ku-positive implicative, ku-sub-commutative and kp-ideal ideals in ku-algebras and investigate some their related properties. We show that in a ku-algebra X, a nonempty subset of X is a sub-implicative ideal if and only if it is both a sub-commutative ideal and positive implicative ideal .We prove that any kp-ideal is always ku- sub-implicative and ku-sub-commutative ideals, but the converse is not true. Moreover we show that, any ku-sub implicative (ku-sub-commutative) ideal is an ideal, but the converse is not true. On the other hand the properties of ku-sub-commutative ideals of ku-algebras are given.

Preliminaries

Now we recall some known concepts related to ku-algebra from the literature which will be helpful in further study of this article.

Mostafa et al., 2017.

Definition 2.1. [15,16] Algebra(X, *, 0) of type (2, 0) is said to be a ku-algebra, if it satisfies the following axioms: $(ku_1) (x*y)*[(y*z))*(x*z)]=0,$ $(ku_2) x * 0 = 0,$ $(ku_3) \quad 0 * x = x$, $(ku_A) x * y = 0$ and y * x = 0 implies x = y, $(ku_{5}) x * x = 0,$ For all $x, y, z \in X$. On a KU-algebra (X, *, 0) we can define a binary relation \leq on X by putting: $x \le y \Leftrightarrow y * x = 0$. Thus a KU - algebra X satisfies the conditions: $(ku_{1}): (y*z)*(x*z) \le (x*y)$ $(ku_{2}): 0 \le x$ (ku_{2}) : $x \le y, y \le x$ implies x = y, $(ku_{A}): y * x \le x.$ **Theorem 2.2.** [12]: In a ku-algebra X, the following axioms are satisfied: For all $x, y, z \in X$, (1): $x \le y$ imply $y * z \le x * z$, (2): x * (y * z) = y * (x * z), for all $x, y, z \in X$, (3): $((y * x) * x) \le y$. (4)((y * x) * x) * x)) = (y * x)**Proof.** Since $(y*z)^{*}(x*z) \le (x*y)$, implies $x * ((y * z) * z) \le (x * y)$, put x=0, we have $0 * ((y * z) * z) \le (0 * y) \Longrightarrow (y * x) * x \le y$, then $y^*x \le ((y^*x)^*x)^*x....1$ But. (y * x) * [((y * x) * x) * x)] = [(y * x) * x)] * [(y * x) * x)] = 0*i.e* $((y * x) * x) * x) \le (y * x).....2$ From 1, 2, we have ((y * x) * x) * x) = (y * x)We will refer to X is a ku-algebra unless otherwise indicated. Definition 2.3. [15,16] Let I be a non-empty subset of a KU-algebra X. Then I is said to be an ideal of X, if $(I_1) \quad 0 \in I$ $(I_2) \forall y, z \in X$, if $(v * z) \in I$ and $v \in I$, imply $z \in I$. Definition 2.4. [12] Let I be a non-empty subset of a KU-algebra X. Then I is said to be an KU- ideal of X, if

 $(I_1) \quad 0 \in I$

 $(I_2) \ \forall x, y, z \in X, \text{if } x * (y * z) \in I \text{ and } y \in I,$ imply $x * z \in I$. **Definition 2.5.** [13,14] A ku-algebra (X,*,0) is said to be ku -positive implicative, if it satisfies: (z*x)*(z*y) = z*(x*y), for all x, y, z in X.

Theorem 2.6.[13,14] Let (X,*,0) be a kualgebra. X is ku-positive implicative if and only if y * x = y * (y * x).

Definition 2.7. [13,14] a ku-algebra (X,*,0) is said to be ku - commutative if it satisfies: $\forall x, y \in X$, (y*x)*x = (x*y)*y.

Theorem2.8. [13,14] For a ku-algebra (X,*,0), the following are equivalent:

(a) X is ku - commutative,

(b) $(y * x) * x \le (x * y) * y$,

(c)((x*y)*y)*((y*x)*x) = 0.

Definition 2.9. [13,14]. A KU-algebra (X,*,0) is called *ku*- implicative if x = (x*y)*x, for all x, y in X.

Definition 2.10. [13,14]. ku-algebra is said to be implicative if it satisfies (x * y) * y = (x * y) * ((y * x) * x))

Definition2.11. [13,14]. ku-algebra is said to be commutative if it satisfies $x \le y$ implies(x * y) * y = x

Lemma 2.12. [13,14]. Let X be a KU-algebra. X is ku-implicative if X is ku-positive implicative and ku-commutative.

Ku-(Subimplicative, positive implicative, subcommutative) ideals

In this section, we discuss the notion of ku (sub implicative\positive implicative\sub commutative) ideals, and then we give some characterizations of these concepts.

Definition 3.1. A non-empty subset A of a KUalgebra X is called a ku-sub implicative ideal of X, if $\forall x, y, z \in X$,

(1) $0 \in A$

(2) $z * ((x * y) * ((y * x) * x)) \in A$ and $z \in A$, imply $(x * y) * y \in A$.

Example 3.2. Let $X = \{0,1,2,3,4\}$ in which the operation * is given by the table 1.

Table 1

0	1	2	3	4
0	1	2	3	4
0	0	1	3	4
0	0	0	3	4
0	0	0	0	4
0	0	0	0	0
	0 0 0 0 0 0	0 1 0 1 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Using

the

algorithms in Appendix A, then (X, *, 0) is a KU-Algebra.

It is easy to verify that $A = \{0,1,2,3\}$ is a ku-sub implicative ideal of X.

Theorem 3.3. Let A be an ideal of X. Then A is *ku*- sub implicative if and only if

 $(A)((x * y) * ((y * x) * x)) \in A$ implies

 $(x * y) * y \in A$

Proof. Suppose that A is a ku-sub implicative ideal of X. For any $x, y \in X$,

If $((x * y) * ((y * x) * x)) \in A$, then

 $0*((x*y)*((y*x)*x)) \in A \text{ and } 0 \in A \text{ by}$

(definition 3.1 - (2)). Hence (A) holds.

Conversely, suppose that an ideal A satisfies (A), For $x, y, z \in X$, if

 $z*((x*y)*((y*x)*x)) \in A$ and $z \in A$, (by the definition of ideals) we obtain

 $((x * y) * ((y * x) * x)) \in A$, It follows from (A) that $(x * y) * y \in A$. This mean that A is a kusub implicative ideal. This completes the proof.

Theorem 3.4. Any sub implicative ideal is an ideal, but the converse is not true.

Proof. Suppose that *A* is ku-sub implicative ideal of X and let x = y in (definition 3.1 - (2)), we get

67°8 67°8

$$z*((x*x)*((x*x)*x)) = z*[(0*(0*x))] = z*x \in A \quad ,$$

 $z \in A$ imply $x \in A$. This means that A is an ideal.

The last part is shown by the following example. *Example 3.5.* Let $X = \{0, 1, 2, 3, 4\}$ in which the operation * is given by the table 2.

Table 2

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	1	4
2	0	1	0	3	4
3	0	0	2	0	4
4	0	1	0	3	0

Using the algorithms in Appendix A, then (X,*,0) is a KU-Algebra. It is easy to verify that $A = \{0\}$ is an ideal, but not ku-sub implicative ideal of X. Since,

 $0 * ((4 * 2) * ((2 * 4) * 4)) \in A, 0 \in A$, but $(4 * 2) * 2 = 2 \notin A$.

Definition 3.6. Let (X,*,0) be a KU-algebra, a nonempty subset A of X is said to be a kupositive implicative ideal if it satisfies, for all x, y, z in X,

$$(1) \ 0 \in A,$$

(2) $z * (x * y) \in A$ and $z * x \in A$ imply $z * y \in A$. *Lemma 3.7.* Any ku-positive implicative ideal is an ideal, but the converse is not true. Proof: clear

Example. 3.8. Let $X = \{0, 1, 2, 3, 4\}$ in which the operation * is given by the table in (example. 3.5.) Then (X,*,0) is а KU-Algebra. {0,1,3}, {0,1,2,3} are ku-positive implicative ideals of X. $\{0\}, \{0,2\}$ and $\{0,2,4\}$ are ideals of X, but not *ku*-positive implicative ideals.

Theorem 3.9. Let (X,*,0) be a KU-algebra, if *A* is a ku - positive implicative ideal

of X, the following are equivalent :

(a) A is a ku-positive implicative ideal of X,

A is an ideal and for any x, y(b) in X, $y * (y * x) \in A$ implies $y * x \in A$.

(c) A is an ideal and for any x, y, z in X, $z*(y*x) \in A$ implies $(z*y)*(z*x) \in A$.

(d) $0 \in A$ and $z * (y * (y * x)) \in A, z \in A$ implies $y * x \in A$.

Proof. $(a \Rightarrow b)$. If A is a ku-positive implicative ideal of X, by Lemma 3.7. is an ideal. Suppose $y * (y * x) \in A$, since $y * y = 0 \in A$, by

Definition 3.6 (2), we have $(y * x) \in A$, (b) hold.

 $(b \Rightarrow c)$. Assume (b) and $z * (y * x) \in A$. Since

 $z * ((z * ((z * y) * x))) = z * (((z * y) * (z * x)) \le z * (y * x) \in A,$

it follows that

 $z * ((z * ((z * y) * x)) \in A, by$ (b) we have $(z * y) * (z * x) = z * ((z * y) * x) \in A$ And so (c) hold. $(c \Rightarrow d)$ It clear that $0 \in A$. If $z * ((y * (y * x)) \in A, z \in A$, then $(y*(y*(z*x)) \in A$ by (c), we get $z * (y * x) = 0 * (z * (y * x)) = (y * y) * (z * (y * x)) \in A$ Since A is an ideal and $z \in A$, then $(y * x) \in A$, and so (d) hold $(d \Rightarrow a)$ First observe that if A satisfied (d), then A is an ideal of X. In fact suppose $(y * x) \in A$ and $y \in A$, then $(y * (0 * (0 * x)) \in A, y \in A,$

using (d) we obtain $x=0 * x \in A$, i.e A is an ideal. Next, let $z * (v * x) \in A$ and

$$z * y \in A$$
. As
 $(z * y) * (z * (z * x)) \le y * (z * x) = z * (y * x) \in A$,
it follows that

 $(z * y) * (z * (z * x)) \in A$. Combining

 $(y * x) \in A$ and using (d), we have

 $(z * x) \in A$. This have proved A is a ku-positive implicative ideal of X.

Theorem 3.10. Any sub-implicative ideal is a positive implicative ideal, but

the converse does not hold.

Proof. Assume that *A* is a ku-sub implicative ideal of X. It follows from

(Theorem 3,4) that A is an ideal. In order to prove that A is a positive implicative

ideal from (Theorem 3,9(b)) it suffices to show that if $y * (y * x) \in A$ then $y * x \in A$

by (Theorem 3.3) for any $u, v \in X$, we have $((u * v) * ((v * u) * u)) \in A$ implies

 $(u * v) * v \in A$ Substituting x = u, y * x = v, then $((u * v)*((v*u)*u) = \{(x*(y*x)*\{\} = (y*x)*x)*\{(y*x)\}\}$ $= ((y*((y*x)*x)*x) = y*(y*x) \in A$

Hence if $y * (y * x) \in A$, then $(u * v) * v \in A$, i.e $(((x*(y*x))*(y*x) = ((y*(x*x))*(y*x) = 0*(y*x) = (y*x) \in A$ Therefore *A* is a ku-positive implicative ideal of *X*.

In example $3.5. \{0,1,3\}$ is ku-positive implicative ideal, but not ku-sub implicative ideal. This finishes the proof.

Definition 3.11. A non-empty subset A of a KU-algebra X is called a ku-sub commutative ideal of X, if

(1) $0 \in A$

(2) $z * \{((y * x) * x) * y) * y\} \in A$ and $z \in A$, imply $(y * x) * x \in A$.

Example 3.12. Let $X = \{0,1,2,3\}$ in which the operation ***** is given by the table 3.

Table 3					
*	0	1	2	3	
0	0	1	2	3	
1	0	0	1	3	
2	0	0	0	3	
3	0	1	2	0	

Using the algorithms in Appendix A, then (X, *, 0) is a ku-Algebra. It is easy to verify that $\{0\}$ and $\{0,3\}$ are all ku-sub-commutative ideals of X.

Proposition 3.13. An ideal *A* of X is ku-sub-commutative if and only if

 $(B)((y*x)*x)*y)*y \in A \qquad \text{we} \qquad \text{have} \\ (y*x)*x \in A.$

Proof. Suppose that *A* is a ku-sub commutative ideal of X. For any $x, y \in X$,

If $((y * x) * x) * y > y \in A$, then

 $0*((y*x)*x)*y)*y \in A \text{ and } 0 \in A \text{ by}$

Definition 3.11 - (2). Hence (B) holds.

Conversely, suppose that an ideal A satisfies (B), For $x, y, z \in X$, if

 $z*((y*x)*x)*y)*y \in A$ and $z \in A$, (by the definition of ideals) we obtain

 $((y*x)*x)*y)*y \in A$, It follows from (B) that $(y*x)*x \in A$. This mean that A is a ku-sub commutative ideal. This completes the proof.

Proposition 3.14. ku-sub-commutative ideal is an ideal, but the converse does not hold.

Proof. Suppose that A is ku-sub commutative ideal of X and let x = y in (definition 3.11 - (2)), $z * \{((x * x) * x) * x) * x\} = z * x \in A, z \in A$,

imply $x \in A$. This means that A is ideal.

The last part is shown by the example $3.5.\{0,1,3\}$ is ideal, but not ku-sub commutative ideal. This finishes the proof.

Definition 3.15. A nonempty subset A of a KUalgebra X is called a kp-ideal of X if it satisfies (1) $0 \in A$,

 $(2)(z*y)*(z*x) \in A , y \in A \Longrightarrow x \in A$

Proposition 3.16. kp-ideal ideal is an ideal, but the converse does not hold

Proof: clear

Theorem 3.17. Any kp-ideal is a ku-sub-implicative ideal, but the converse is not true.

Proof. Suppose that A is kp-ideal, then A is ideal. Now we show

 $(x * y) * ((y * x) * x)) \in A$ implies $(x * y) * y \in A$ $[(x*y)*((y*x)*x)]*[(x*y)*y] \le y*((y*x)*x) = (y*x)*(y*x) = 0 \in A$ We have $(x * y)*((y*x)*x)) \in A$ it follows that

 $(x * y) * y \in A$. By (Theorem 3.3) means that *A* is ku-sub implicative. The last part is shown by the following example

Example 3.18. Let $X = \{0,1,2,3,4\}$ in which the operation * is given by the table 4.

Table 4					
*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	1	3	4
2	0	0	0	3	4
3	0	0	1	0	4
4	0	0	0	0	0

Using the algorithms in Appendix A, then (X,*,0) is a ku-Algebra. It is easy to verify that $A = \{0,1,2,3\}$ is a ku-sub implicative ideal of X, but not kp-ideal, since $(4*0)*(4*4) = 0 \in A$, $0 \in A \Longrightarrow 4 \notin A$

Theorem 3.19. Any kp-ideal is a ku-sub-commutative ideal, but the converse is not true.

Mostafa et al., 2017.

Proof. Suppose that *A* is kp-ideal, then *A* is ideal. Now we show

 $((y * x) * x) * y) * y \in A \text{ implies} (y * x) * x \in A.$ $\{((y * x) * x) * y) * y\} * [(y * x) * x] =$

 $(y * x) * [\{(y * x) * x) * y\} * x] \le \{(y * x) * x) * y\} * y = 0 \in A$

We have $((y * x) * x) * y) * y \in A$ it follows that, by (Proposition 3.13) it means that *A* is ku-subcommutative.

In example 3.12. It is easy to verify that $\{0,3\}$ is ku-sub-commutative ideals

but not kp-ideal, since $(2*3)*(2*2)=0 \in A$, $3 \in A \Longrightarrow 2 \notin A$

Corollary 3.20. In an implicative KU-algebra every ideal is an ku- sub-commutative Proof. The proof is straightforward.

Conclusions

In the present work the the concepts of ku-sub implicative, ku-positive implicative, ku-subcommutative and kp-ideals in ku-algebras is introduced and some their related properties is investigated. We show that in a ku-algebra X, a nonempty subset of X is a sub-implicative ideal if and only if it is both a sub-commutative ideal and positive implicative ideal .We prove that any kp-ideal is always an ku- sub-implicative ideal and an ku-sub-commutative ideal, but the converse is not true. Moreover we prove that any ku-sub implicative (ku-sub-commutative) ideal is an ideal, but the converse is not true.

Acknowledgment

The authors are greatly appreciated the referees for their valuable comments and suggestions for improving the paper.

Conflicts of Interest

State any potential conflicts of interest here or the authors declare no conflict of interest.

References

[1] K. Iseki. On ideals in BCK-algebras. Math Sem Notes. 1975;3;1-12

- [2] K. Iseki. On BCI-algebras. Math Sem Notes. 1980;8:125-130.
- [3] K. Iseki, S. Tanaka. An introduction to the theory of BCK-algebras. Math Japon. 1978;23:1-26.
- [4] Y. L. Liu, J. Meng, Y. Xu. BCI-implicative ideals of BCI-algebras. Information Sciences. 2007;177(22):4987-4996.
- [5] J. Meng, X. L. Xin. Positive implicative BCI-algebras. Pure Appl Math. 1993;9(1):19-22.
- [6] Y. L. Liu, J. Meng. Sub-implmicative ideal and sub-commutative ideal of BCIalgebra. Soochow Journal of Mathematics. 2000;26(4):441-453.
- [7] J. Meng. On ideals in BCK algebras. Math Japon. 1994;40:143-154.
- [8] J. Meng. An ideal Characterization of commutative BCI-algebars. Pusan Kyongnam Math J. 1993;9(1):1-6.
- [9] J. Meng, X. L. Xin. Commutative BCIalgebras. Math Japonica. 1992;37:569-572.
- [10] J. Meng, X. L. Xin. Implicative BCIalgebras. Pure Appl Math. 1992;8:99-103.
- [11] J. Meng, X. L. Xin. Positive implicative BCI-algebras. Pure Appl Math. 1993;9:19-22.
- [12] S. M. Mostafa, M. A. Abd-Elnaby, M. M. M. Yousef. Fuzzy ideals of ku-Algebras. International Math Forum. 2011;6(63)3139-3149.
- [13] S. M. Mostafa, F. F. Kareem. N-Fold Commutative ku-Algebras. International Journal of Algebra. 2014;8(6):267-275.
- [14] A. E. Radwan, S. M. Mostafa, F. A. Ibrahem, F. F. Kareem. Topology spectrum of a ku-Algebra. Journal of New Theory. 2015;5(8);78-91.
- [15] C. Prabpayak, U. Leerawat. On ideals and congruence in KU-algebras. Scientia Magna Journal. 2009;5(1):54-57.
- [16] C. Prabpayak C, U. Leerawat. On isomorphisms of ku-algebras. Scientia Magna Journal. 2009;5(3):25-31.
